Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Non-HLA type 1 diabetes genes modulate disease risk together with HLA-DQ and islet autoantibodies

Abstract

The possible interrelations between human leukocyte antigen (HLA)-DQ, non-HLA single-nucleotide polymorphisms (SNPs) and islet autoantibodies were investigated at clinical onset in 1–34-year-old type 1 diabetes (T1D) patients (n=305) and controls (n=203). Among the non-HLA SNPs reported by the Type 1 Diabetes Genetics Consortium, 24% were supported in this Swedish replication set including that the increased risk of minor PTPN22 allele and high-risk HLA was modified by GAD65 autoantibodies. The association between T1D and the minor AA+AC genotype in ERBB3 gene was stronger among IA-2 autoantibody-positive patients (comparison P=0.047). The association between T1D and the common insulin (AA) genotype was stronger among insulin autoantibody (IAA)-positive patients (comparison P=0.008). In contrast, the association between T1D and unidentified 26471 gene was stronger among IAA-negative (comparison P=0.049) and IA-2 autoantibody-negative (comparison P=0.052) patients. Finally, the association between IL2RA and T1D was stronger among IAA-positive than among IAA-negative patients (comparison P=0.028). These results suggest that the increased risk of T1D by non-HLA genes is often modified by both islet autoantibodies and HLA-DQ. The interactions between non-HLA genes, islet autoantibodies and HLA-DQ should be taken into account in T1D prediction studies as well as in prevention trials aimed at inducing immunological tolerance to islet autoantigens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. In't Veld P, Marichal M . Microscopic anatomy of the human islet of Langerhans. Adv Exp Med Biol 2010; 654: 1–19.

    Article  Google Scholar 

  2. La Torre D, Lernmark A . Immunology of beta-cell destruction. Adv Exp Med Biol 2010; 654: 537–583.

    Article  CAS  Google Scholar 

  3. Ziegler AG, Nepom GT . Prediction and pathogenesis in type 1 diabetes. Immunity 2010; 32: 468–478.

    Article  CAS  Google Scholar 

  4. Bluestone JA, Herold K, Eisenbarth G . Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010; 464: 1293–1300.

    Article  CAS  Google Scholar 

  5. Barker JM, Barriga KJ, Yu L, Miao D, Erlich HA, Norris JM et al. Prediction of autoantibody positivity and progression to type 1 diabetes: Diabetes Autoimmunity Study in the Young (DAISY). J Clin Endocrinol Metab 2004; 89: 3896–3902.

    Article  CAS  Google Scholar 

  6. Hagopian WA, Erlich H, Lernmark A, Rewers M, Ziegler AG, Simell O et al. The Environmental Determinants of Diabetes in the Young (TEDDY): genetic criteria and international diabetes risk screening of 421 000 infants. Pediatr Diabetes 2011; 12: 733–743.

    Article  Google Scholar 

  7. Kimpimaki T, Kulmala P, Savola K, Kupila A, Korhonen S, Simell T et al. Natural history of beta-cell autoimmunity in young children with increased genetic susceptibility to type 1 diabetes recruited from the general population. J Clin Endocrinol Metab 2002; 87: 4572–4579.

    Article  CAS  Google Scholar 

  8. Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 2013; 309: 2473–2479.

    Article  CAS  Google Scholar 

  9. Andersson C, Vaziri-Sani F, Delli A, Lindblad B, Carlsson A, Forsander G et al. Triple specificity of ZnT8 autoantibodies in relation to HLA and other islet autoantibodies in childhood and adolescent type 1 diabetes. Pediatr Diabetes 2013; 14: 97–105.

    Article  CAS  Google Scholar 

  10. Yu L, Boulware DC, Beam CA, Hutton JC, Wenzlau JM, Greenbaum CJ et al. Zinc transporter-8 autoantibodies improve prediction of type 1 diabetes in relatives positive for the standard biochemical autoantibodies. Diabetes Care 2012; 35: 1213–1218.

    Article  CAS  Google Scholar 

  11. Krischer JP, Lynch KF, Schatz DA, Ilonen J, Lernmark A, Hagopian WA et al. The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia 2015; 58: 980–987.

    Article  CAS  Google Scholar 

  12. Diabetes Prevention Trial—Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med 2002; 346: 1685–1691.

    Article  Google Scholar 

  13. Orban T, Sosenko JM, Cuthbertson D, Krischer JP, Skyler JS, Jackson R et al. Pancreatic islet autoantibodies as predictors of type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 2009; 32: 2269–2274.

    Article  Google Scholar 

  14. Maziarz M, Janer M, Roach JC, Hagopian W, Palmer JP, Deutsch K et al. The association between the PTPN22 1858C>T variant and type 1 diabetes depends on HLA risk and GAD65 autoantibodies. Genes Immun 2010; 11: 406–415.

    Article  CAS  Google Scholar 

  15. Concannon P, Rich SS, Nepom GT . Genetics of type 1A diabetes. N Engl J Med 2009; 360: 1646–1654.

    Article  CAS  Google Scholar 

  16. Cooper JD, Howson JM, Smyth D, Walker NM, Stevens H, Yang JH et al. Confirmation of novel type 1 diabetes risk loci in families. Diabetologia 2012; 55: 996–1000.

    Article  CAS  Google Scholar 

  17. Stene LC, Oikarinen S, Hyoty H, Barriga KJ, Norris JM, Klingensmith G et al. Enterovirus infection and progression from islet autoimmunity to type 1 diabetes: the Diabetes and Autoimmunity Study in the Young (DAISY). Diabetes 2010; 59: 3174–3180.

    Article  CAS  Google Scholar 

  18. Concannon P, Rich SS, Nepom GT . Genetics of type 1A diabetes. N Engl J Med 2009; 360: 1646–1654.

    Article  CAS  Google Scholar 

  19. Todd JA . Etiology of type 1 diabetes. Immunity 2010; 32: 457–467.

    Article  CAS  Google Scholar 

  20. Steck AK, Zhang W, Bugawan TL, Barriga KJ, Blair A, Erlich HA et al. Do non-HLA genes influence development of persistent islet autoimmunity and type 1 diabetes in children with high-risk HLA-DR,DQ genotypes? Diabetes 2009; 58: 1028–1033.

    Article  CAS  Google Scholar 

  21. Graham J, Hagopian WA, Kockum I, Li LS, Sanjeevi CB, Lowe RM et al. Genetic effects on age-dependent onset and islet cell autoantibody markers in type 1 diabetes. Diabetes 2002; 51: 1346–1355.

    Article  CAS  Google Scholar 

  22. Afonso G, Scotto M, Renand A, Arvastsson J, Vassilieff D, Cilio CM et al. Critical parameters in blood processing for T-cell assays: validation on ELISpot and tetramer platforms. J Immunol Methods 2010; 359: 28–36.

    Article  CAS  Google Scholar 

  23. Pipeleers D, Chintinne M, Denys B, Martens G, Keymeulen B, Gorus F . Restoring a functional beta-cell mass in diabetes. Diabetes Obes Metab 2008; 10: 54–62.

    Article  Google Scholar 

  24. Sanjeevi CB, Hagopian WA, Landin-Olsson M, Kockum I, Woo W, Palmer JP et al. Association between autoantibody markers and subtypes of DR4 and DR4-DQ in Swedish children with insulin-dependent diabetes reveals closer association of tyrosine pyrophosphatase autoimmunity with DR4 than DQ8. Tissue Antigens 1998; 51: 281–286.

    Article  CAS  Google Scholar 

  25. Sanjeevi CB, Lybrand TP, Landin-Olsson M, Kockum I, Dahlquist G, Hagopian WA et al. Analysis of antibody markers, DRB1, DRB5, DQA1 and DQB1 genes and modeling of DR2 molecules in DR2-positive patients with insulin-dependent diabetes mellitus. Tissue Antigens 1994; 44: 110–119.

    Article  CAS  Google Scholar 

  26. Vandewalle CL, Falorni A, Lernmark A, Goubert P, Dorchy H, Coucke W et al. Associations of GAD65- and IA-2- autoantibodies with genetic risk markers in new-onset IDDM patients and their siblings. The Belgian Diabetes Registry. Diabetes Care 1997; 20: 1547–1552.

    Article  CAS  Google Scholar 

  27. Williams AJ, Aitken RJ, Chandler MA, Gillespie KM, Lampasona V, Bingley PJ . Autoantibodies to islet antigen-2 are associated with HLA-DRB1*07 and DRB1*09 haplotypes as well as DRB1*04 at onset of type 1 diabetes: the possible role of HLA-DQA in autoimmunity to IA-2. Diabetologia 2008; 51: 1444–1448.

    Article  CAS  Google Scholar 

  28. Delli AJ, Vaziri-Sani F, Lindblad B, Elding-Larsson H, Carlsson A, Forsander G et al. Zinc transporter 8 autoantibodies and their association with SLC30A8 and HLA-DQ genes differ between immigrant and Swedish patients with newly diagnosed type 1 diabetes in the Better Diabetes Diagnosis study. Diabetes 2012; 61: 2556–2564.

    Article  CAS  Google Scholar 

  29. Kanatsuna N, Papadopoulos GK, Moustakas AK, Lenmark A . Etiopathogenesis of insulin autoimmunity. Anat Res Int 2012; 2012: 457546.

    PubMed  PubMed Central  Google Scholar 

  30. Roep BO, Peakman M . Antigen targets of type 1 diabetes autoimmunity. Cold Spring Harb Perspect Med 2012; 2: a007781.

    Article  Google Scholar 

  31. Hermann R, Lipponen K, Kiviniemi M, Kakko T, Veijola R, Simell O et al. Lymphoid tyrosine phosphatase (LYP/PTPN22) Arg620Trp variant regulates insulin autoimmunity and progression to type 1 diabetes. Diabetologia 2006; 49: 1198–1208.

    Article  CAS  Google Scholar 

  32. Howson JM, Walker NM, Smyth DJ, Todd JA . Analysis of 19 genes for association with type I diabetes in the Type I Diabetes Genetics Consortium families. Genes Immun 2009; 10: S74–S84.

    Article  CAS  Google Scholar 

  33. Lempainen J, Hermann R, Veijola R, Simell O, Knip M, Ilonen J . Effect of the PTPN22 and INS risk genotypes on the progression to clinical type 1 diabetes after the initiation of beta-cell autoimmunity. Diabetes 2012; 61: 963–966.

    Article  CAS  Google Scholar 

  34. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004; 36: 337–338.

    Article  CAS  Google Scholar 

  35. Rich SS, Concannon P, Erlich H, Julier C, Morahan G, Nerup J et al. The Type 1 Diabetes Genetics Consortium. Ann N Y Acad Sci 2006; 1079: 1–8.

    Article  CAS  Google Scholar 

  36. Lempainen J, Harkonen T, Laine A, Knip M, Ilonen J . Associations of polymorphisms in non-HLA loci with autoantibodies at the diagnosis of type 1 diabetes: INS and IKZF4 associate with insulin autoantibodies. Pediatr Diabetes 2013; 14: 490–496.

    Article  CAS  Google Scholar 

  37. Butty V, Campbell C, Mathis D, Benoist C . Impact of diabetes susceptibility loci on progression from pre-diabetes to diabetes in at-risk individuals of the diabetes prevention trial-type 1 (DPT-1). Diabetes 2008; 57: 2348–2359.

    Article  CAS  Google Scholar 

  38. Gregersen PK . Gaining insight into PTPN22 and autoimmunity. Nat Genet 2005; 37: 1300–1302.

    Article  CAS  Google Scholar 

  39. Ilonen J, Hammais A, Laine AP, Lempainen J, Vaarala O, Veijola R et al. Patterns of beta-cell autoantibody appearance and genetic associations during the first years of life. Diabetes 2013; 62: 3636–3640.

    Article  CAS  Google Scholar 

  40. Frey MR, Brent Polk D . ErbB receptors and their growth factor ligands in pediatric intestinal inflammation. Pediatr Res 2014; 75: 127–132.

    Article  CAS  Google Scholar 

  41. Ziegler AG, Bonifacio E . Age-related islet autoantibody incidence in offspring of patients with type 1 diabetes. Diabetologia 2012; 55: 1937–1943.

    Article  CAS  Google Scholar 

  42. Gorus FK, Goubert P, Semakula C, Vandewalle CL, De Schepper J, Scheen A et al. IA-2-autoantibodies complement GAD65-autoantibodies in new-onset IDDM patients and help predict impending diabetes in their siblings. The Belgian Diabetes Registry. Diabetologia 1997; 40: 95–99.

    Article  CAS  Google Scholar 

  43. Gorus FK, Balti EV, Vermeulen I, Demeester S, Van Dalem A, Costa O et al. Screening for insulinoma antigen 2 and zinc transporter 8 autoantibodies: a cost-effective and age-independent strategy to identify rapid progressors to clinical onset among relatives of type 1 diabetic patients. Clin Exp immunol 2013; 171: 82–90.

    Article  CAS  Google Scholar 

  44. Shin JH, Janer M, McNeney B, Blay S, Deutsch K, Sanjeevi CB et al. IA-2 autoantibodies in incident type I diabetes patients are associated with a polyadenylation signal polymorphism in GIMAP5. Genes Immun 2007; 8: 503–512.

    Article  CAS  Google Scholar 

  45. Roach JC, Deutsch K, Li S, Siegel AF, Bekris LM, Einhaus DC et al. Genetic mapping at 3-kilobase resolution reveals inositol 1,4,5-triphosphate receptor 3 as a risk factor for type 1 diabetes in Sweden. Am J Hum Genet 2006; 79: 614–627.

    Article  CAS  Google Scholar 

  46. Kockum I, Wassmuth R, Holmberg E, Michelsen B, Lernmark A . HLA-DQ primarily confers protection and HLA-DR susceptibility in type I (insulin-dependent) diabetes studied in population-based affected families and controls. Am J Hum Genet 1993; 53: 150–167.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Graham J, Kockum I, Sanjeevi CB, Landin-Olsson M, Nystrom L, Sundkvist G et al. Negative association between type 1 diabetes and HLA DQB1*0602-DQA1*0102 is attenuated with age at onset. Swedish Childhood Diabetes Study Group. Eur J Immunogenet 1999; 26: 117–127.

    Article  CAS  Google Scholar 

  48. Landin-Olsson M, Palmer JP, Lernmark A, Blom L, Sundkvist G, Nystrom L et al. Predictive value of islet cell and insulin autoantibodies for type 1 (insulin-dependent) diabetes mellitus in a population-based study of newly-diagnosed diabetic and matched control children. Diabetologia 1992; 35: 1068–1073.

    Article  CAS  Google Scholar 

  49. Landin-Olsson M, Karlsson FA, Lernmark A, Sundkvist G . Islet cell and thyrogastric antibodies in 633 consecutive 15- to 34-yr-old patients in the diabetes incidence study in Sweden. Diabetes 1992; 41: 1022–1027.

    Article  CAS  Google Scholar 

  50. Larsson HE, Lynch K, Lernmark B, Nilsson A, Hansson G, Almgren P et al. Diabetes-associated HLA genotypes affect birthweight in the general population. Diabetologia 2005; 48: 1484–1491.

    Article  CAS  Google Scholar 

  51. Nilsson AL, Vaziri-Sani F, Andersson C, Larsson K, Carlsson A, Cedervall E et al. Relationship between Ljungan virus antibodies, HLA-DQ8, and insulin autoantibodies in newly diagnosed type 1 diabetes children. Viral Immunol 2013; 26: 207–215.

    Article  CAS  Google Scholar 

  52. Graham J, Kockum I, Breslow N, Lernmark A, Holmberg E . A comparison of three statistical models for IDDM associations with HLA. Tissue Antigens 1996; 48: 1–14.

    Article  CAS  Google Scholar 

  53. Wenzlau JM, Juhl K, Yu L, Moua O, Sarkar SA, Gottlieb P et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci USA 2007; 104: 17040–17045.

    Article  CAS  Google Scholar 

  54. Vaziri-Sani F, Delli AJ, Elding-Larsson H, Lindblad B, Carlsson A, Forsander G et al. A novel triple mix radiobinding assay for the three ZnT8 (ZnT8-RWQ) autoantibody variants in children with newly diagnosed diabetes. J Immunol Methods 2011; 371: 25–37.

    Article  CAS  Google Scholar 

  55. Palmer JP, Asplin CM, Clemons P, Lyen K, Tatpati O, Raghu PK et al. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science 1983; 222: 1337–1339.

    Article  CAS  Google Scholar 

  56. Hagopian WA, Karlsen AE, Gottsater A, Landin-Olsson M, Grubin CE, Sundkvist G et al. Quantitative assay using recombinant human islet glutamic acid decarboxylase (GAD65) shows that 64K autoantibody positivity at onset predicts diabetes type. J Clin Invest 1993; 91: 368–374.

    Article  CAS  Google Scholar 

  57. Hagopian WA, Sanjeevi CB, Kockum I, Landin-Olsson M, Karlsen AE, Sundkvist G et al. Glutamate decarboxylase-, insulin-, and islet cell-antibodies and HLA typing to detect diabetes in a general population-based study of Swedish children. J Clin Invest 1995; 95: 1505–1511.

    Article  CAS  Google Scholar 

  58. Falorni A, Grubin CE, Takei I, Shimada A, Kasuga A, Maruyama T et al. Radioimmunoassay detects the frequent occurrence of autoantibodies to the Mr 65,000 isoform of glutamic acid decarboxylase in Japanese insulin-dependent diabetes. Autoimmunity 1994; 19: 113–125.

    Article  CAS  Google Scholar 

  59. Grubin CE, Daniels T, Toivola B, Landin-Olsson M, Hagopian WA, Li L et al. A novel radioligand binding assay to determine diagnostic accuracy of isoform-specific glutamic acid decarboxylase antibodies in childhood IDDM. Diabetologia 1994; 37: 344–350.

    Article  CAS  Google Scholar 

  60. Mire-Sluis AR, Gaines Das R, Lernmark A . Participants of the study. The World Health Organization International Collaborative Study for Islet Cell Antibodies. Diabetologia 2000; 43: 1282–1292.

    Article  CAS  Google Scholar 

  61. Lan MS, Lu J, Goto Y, Notkins AL . Molecular cloning and identification of a receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol 1994; 13: 505–514.

    Article  CAS  Google Scholar 

  62. Rabin DU, Pleasic SM, Palmer-Crocker R, Shapiro JA . Cloning and expression of IDDM-specific human autoantigens. Diabetes 1992; 41: 183–186.

    Article  CAS  Google Scholar 

  63. Kawasaki E, Eisenbarth GS, Wasmeier C, Hutton JC . Autoantibodies to protein tyrosine phosphatase-like proteins in type I diabetes: overlapping specificities to phogrin and ICA512/IA-2. Diabetes 1996; 45: 1344–1349.

    Article  CAS  Google Scholar 

  64. Olsson ML, Sundkvist G, Lernmark A . Prolonged incubation in the two-colour immunofluorescence test increases the prevalence and titres of islet cell antibodies in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1987; 30: 327–332.

    Article  CAS  Google Scholar 

  65. Bonifacio E, Lernmark A, Dawkins RL . Serum exchange and use of dilutions have improved precision of measurement of islet cell antibodies. J Immunol Methods 1988; 106: 83–88.

    Article  CAS  Google Scholar 

  66. Agresti A . Categorical Data Analysis 2nd edn John Wiley & Sons: Hoboken, NJ, USA, 2002.

    Book  Google Scholar 

Download references

Acknowledgements

We thank Stephen Rich and Beena Alkolkar for facilitating the genotyping by the T1DGC. This research utilizes resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), National Human Genome Research Institute (NHGRI), National Institute of Child Health and Human Development (NICHD), and Juvenile Diabetes Research Foundation International (JDRF) and supported by U01 DK062418. The work in the authors’ laboratory was supported in part by the Swedish Child Diabetes Foundation, the National Institutes of Health (DK63861, DK26190), the Swedish Research Council, the Swedish Diabetes Association Research Fund, the Skåne County Council Foundation for Research and Development.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M Maziarz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

The following authors are from the Diabetes Incidence in Sweden Study Group: Jinko Graham and Brad MacNeney, both at Simon Fraser University, Vancouver, British Columbia, Canada; Hans Arnqvist, Department of Internal Medicine, University of Linköping, Linköping; Mona Landin-Olsson, Department of Clinical Sciences, Lund University, Lund, Sweden; Lennarth Nyström, Department of Epidemiology and Public Health, University of Umeå, Umeå; Lars Olof Ohlson, Sahlgrenska Hospital, University of Göteborg, Göteborg; and Jan Östman, Center for Metabolism and Endocrinology, Huddinge University Hospital, Stockholm. The following authors are from the Swedish Childhood Diabetes Study Group, all from Departments of Pediatrics: M Aili, Halmstad; LE Bååth, Östersund; E Carlsson, Kalmar; H Edenwall, Karlskrona; G Forsander, Falun; BW Granström, Gällivare; I Gustavsson, Skellefteå; R Hanås, Uddevalla; L Hellenberg, Nyköping; H Hellgren, Lidköping; E Holmberg, Umeå; H Hörnell, Hudiksvall; Sten-A Ivarsson, Malmö; C Johansson, Jönköping; G Jonsell, Karlstad; B Lindblad, Mölndal; A Lindh, Borås; J Ludvigsson, Linköping; U Myrdal, Västerås; J Neiderud, Helsingborg; K Segnestam, Eskilstuna; L Skogsberg, Boden; L Strömberg, Norrköping; U Ståhle, Ängelholm; B Thalme, Huddinge; K Tullus, Danderyd; T Tuvemo, Uppsala; M Wallensteen, Stockholm; O Westphal, Göteborg; and J Åman, Örebro.

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maziarz, M., Hagopian, W., Palmer, J. et al. Non-HLA type 1 diabetes genes modulate disease risk together with HLA-DQ and islet autoantibodies. Genes Immun 16, 541–551 (2015). https://doi.org/10.1038/gene.2015.43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2015.43

Search

Quick links