Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Overexpression of CD45RA isoforms in carriers of the C77G mutation leads to hyporeactivity of CD4+CD25highFoxp3+ regulatory T cells

Subjects

Abstract

Disorders in regulatory T-cell (Treg) function can result in the breakdown of immunological self-tolerance. Thus, the identification of mechanisms controlling the activity of Treg is of great relevance. We used Treg from individuals carrying the C77G polymorphism as models to study the role of CD45 molecules in humans. C77G prevents splicing of CD45 exon A thereby leading to an aberrant expression pattern of CD45 isoforms in affected individuals. Resting and in vitro expanded/activated CD4+CD25highFoxp3+ Treg from carriers of C77G strongly expressed CD45RA isoforms whereas these isoforms were almost absent in cells from individuals with wild-type CD45. C77G Treg showed diminished upregulation of activation markers, lower phosphorylation of p56lck(Y505) and a reduced proliferative potential when stimulated with anti-TcR or anti-TcR plus CD28 mAb suggesting decreased responsiveness to activating stimuli. In addition, the capacity to suppress proliferation of conventional CD4+ T cells was impaired in C77G Treg. Furthermore, microarray studies revealed distinct gene expression patterns in Treg from C77G carriers. These data suggest that the changes in CD45 isoform combination resulting from the C77G mutation alter the responsiveness of Treg to TcR-mediated signaling. Targeting CD45 isoform expression might be a useful approach to modulate Treg function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sakaguchi S . Regulatory T cells: key controllers of immunologic self-tolerance. Cell 2000; 101: 455–458.

    Article  CAS  Google Scholar 

  2. Shevach EM . CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2002; 2: 389–400.

    Article  CAS  Google Scholar 

  3. Hori S, Nomura T, Sakaguchi S . Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061.

    Article  CAS  Google Scholar 

  4. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 2006; 203: 1701–1711.

    Article  CAS  Google Scholar 

  5. Sakaguchi S, Miyara M, Costantino CM, Hafler DA . FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 2010; 10: 490–500.

    Article  CAS  Google Scholar 

  6. Buckner JH . Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol 2010; 10: 849–859.

    Article  CAS  Google Scholar 

  7. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949.

    Article  CAS  Google Scholar 

  8. Liao G, Nayak S, Regueiro JR, Berger SB, Detre C, Romero X et al. GITR engagement preferentially enhances proliferation of functionally competent CD4+CD25+FoxP3+ regulatory T cells. Int Immunol 2010; 22: 259–270.

    Article  CAS  Google Scholar 

  9. Hodi FS, Butler M, Oble DA, Seiden MV, Haluska FG, Kruse A et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci USA 2008; 105: 3005–3010.

    Article  CAS  Google Scholar 

  10. Levings MK, Sangregorio R, Roncarolo M . Human CD25+CD4+ T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med 2001; 193: 1295–1301.

    Article  CAS  Google Scholar 

  11. Hermiston ML, Xu Z, Weiss A . CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol 2003; 21: 107–137.

    Article  CAS  Google Scholar 

  12. Shimizu J, Iida R, Sato Y, Moriizumi E, Nishikawa A, Ishida Y . Cross-linking of CD45 on suppressive/regulatory T cells leads to the abrogation of their suppressive activity in vitro. J Immunol 2005; 174: 4090–4097.

    Article  CAS  Google Scholar 

  13. Streuli M, Hall LR, Saga Y, Schlossman SF, Saito H . Differential usage of three exons generates at least five different mRNAs encoding human leukocyte common antigens. J Exp Med 1987; 166: 1548–1566.

    Article  CAS  Google Scholar 

  14. Zikherman J, Weiss A . Alternative splicing of CD45: the tip of the iceberg. Immunity 2008; 29: 839–841.

    Article  CAS  Google Scholar 

  15. Akbar AN, Terry L, Timms A, Beverley PC, Janossy G . Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol 1988; 140: 2171–2178.

    CAS  Google Scholar 

  16. Young JL, Ramage JM, Gaston JS, Beverley PC . In vitro responses of human CD45R0brightRA- and CD45R0-RAbright T cell subsets and their relationship to memory and naive T cells. Eur J Immunol 1997; 27: 2383–2390.

    Article  CAS  Google Scholar 

  17. Tchilian EZ, Beverley PC . Altered CD45 expression and disease. Trends Immunol 2006; 27: 146–153.

    Article  CAS  Google Scholar 

  18. Boxall S, Stanton T, Hirai K, Ward V, Yasui T, Tahara H et al. Disease associations and altered immune function in CD45 138G variant carriers. Hum Mol Genet 2004; 13: 2377–2384.

    Article  CAS  Google Scholar 

  19. Hennig BJ, Fry AE, Hirai K, Tahara H, Tamori A, Moller M et al. PTPRC (CD45) variation and disease association studied using single nucleotide polymorphism tagging. Tissue Antigens 2008; 71: 458–463.

    Article  CAS  Google Scholar 

  20. Thude H, Hundrieser J, Wonigeit K, Schwinzer R . A point mutation in the human CD45 gene associated with defective splicing of exon A. Eur J Immunol 1995; 25: 2101–2106.

    Article  CAS  Google Scholar 

  21. Lynch KW, Weiss A . A CD45 polymorphism associated with multiple sclerosis disrupts an exonic splicing silencer. J Biol Chem 2001; 276: 24341–24347.

    Article  CAS  Google Scholar 

  22. Schwinzer R, Wonigeit K . Genetically determined lack of CD45R- T cells in healthy individuals. Evidence for a regulatory polymorphism of CD45R antigen expression. J Exp Med 1990; 171: 1803–1808.

    Article  CAS  Google Scholar 

  23. Do HT, Baars W, Borns K, Windhagen A, Schwinzer R . The 77C→G mutation in the human CD45 (PTPRC) gene leads to increased intensity of TCR signaling in T cell lines from healthy individuals and patients with multiple sclerosis. J Immunol 2006; 176: 931–938.

    Article  CAS  Google Scholar 

  24. Windhagen A, Sonmez D, Hornig-Do HT, Kalinowsky A, Schwinzer R . Altered CD45 isoform expression in C77G carriers influences cytokine responsiveness and adhesion properties of T cells. Clin Exp Immunol 2007; 150: 509–517.

    Article  CAS  Google Scholar 

  25. Nyakeriga AM, Garg H, Joshi A . TCR-induced T cell activation leads to simultaneous phosphorylation at Y505 and Y394 of p56(lck) residues. Cytometry A 2012; 81: 797–805.

    Article  Google Scholar 

  26. Hermiston ML, Zikherman J, Zhu JW . CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells. Immunol Rev 2009; 228: 288–311.

    Article  CAS  Google Scholar 

  27. Holmes N . CD45: all is not yet crystal clear. Immunology 2006; 117: 145–155.

    Article  CAS  Google Scholar 

  28. Ogilvy S, Louis-Dit-Sully C, Cooper J, Cassady RL, Alexander DR, Holmes N . Either of the CD45RB and CD45RO isoforms are effective in restoring T cell, but not B cell, development and function in CD45-null mice. J Immunol 2003; 171: 1792–1800.

    Article  CAS  Google Scholar 

  29. Kruger J, Butler JR, Cherapanov V, Dong Q, Ginzberg H, Govindarajan A et al. Deficiency of Src homology 2-containing phosphatase 1 results in abnormalities in murine neutrophil function: studies in motheaten mice. J Immunol 2000; 165: 5847–5859.

    Article  CAS  Google Scholar 

  30. Yu WM, Wang S, Keegan AD, Williams MS, Qu CK . Abnormal Th1 cell differentiation and IFN-gamma production in T lymphocytes from motheaten viable mice mutant for Src homology 2 domain-containing protein tyrosine phosphatase-1. J Immunol 2005; 174: 1013–1019.

    Article  CAS  Google Scholar 

  31. Carter JD, Calabrese GM, Naganuma M, Lorenz U . Deficiency of the Src homology region 2 domain-containing phosphatase 1 (SHP-1) causes enrichment of CD4+CD25+ regulatory T cells. J Immunol 2005; 174: 6627–6638.

    Article  CAS  Google Scholar 

  32. Pan X, Yuan X, Zheng Y, Wang W, Shan J, Lin F et al. Increased CD45RA+ FoxP3(low) regulatory T cells with impaired suppressive function in patients with systemic lupus erythematosus. PLoS One 2012; 7: e34662.

    Article  CAS  Google Scholar 

  33. Schaier M, Seissler N, Schmitt E, Meuer S, Hug F, Zeier M et al. DR(high+)CD45RA(-)-Tregs potentially affect the suppressive activity of the total Treg pool in renal transplant patients. PLoS One 2012; 7: e34208.

    Article  CAS  Google Scholar 

  34. Booth NJ, McQuaid AJ, Sobande T, Kissane S, Agius E, Jackson SE et al. Different proliferative potential and migratory characteristics of human CD4+ regulatory T cells that express either CD45RA or CD45RO. J Immunol 2010; 184: 4317–4326.

    Article  CAS  Google Scholar 

  35. Camirand G, Wang Y, Lu Y, Wan YY, Lin Y, Deng S et al. CD45 ligation expands Tregs by promoting interactions with DCs. J Clin Invest 2014; 124: 4603–4613.

    Article  CAS  Google Scholar 

  36. Konig S, Probst-Kepper M, Reinl T, Jeron A, Huehn J, Schraven B et al. First insight into the kinome of human regulatory T cells. PLoS One 2012; 7: e40896.

    Article  Google Scholar 

  37. Hanschen M, Tajima G, O'Leary F, Hoang K, Ikeda K, Lederer JA . Phospho-flow cytometry based analysis of differences in T cell receptor signaling between regulatory T cells and CD4+ T cells. J Immunol Methods 2012; 376: 1–12.

    Article  CAS  Google Scholar 

  38. Irie-Sasaki J, Sasaki T, Matsumoto W, Opavsky A, Cheng M, Welstead G et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 2001; 409: 349–354.

    Article  CAS  Google Scholar 

  39. Piercy J, Petrova S, Tchilian EZ, Beverley PC . CD45 negatively regulates tumour necrosis factor and interleukin-6 production in dendritic cells. Immunology 2006; 118: 250–256.

    Article  CAS  Google Scholar 

  40. Schmidt A, Oberle N, Krammer PH . Molecular mechanisms of treg-mediated T cell suppression. Front Immunol 2012; 3: 51.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sancho D, Gomez M, Viedma F, Esplugues E, Gordon-Alonso M, Garcia-Lopez MA et al. CD69 downregulates autoimmune reactivity through active transforming growth factor-beta production in collagen-induced arthritis. J Clin Invest 2003; 112: 872–882.

    Article  CAS  Google Scholar 

  42. Sancho D, Gomez M, Sanchez-Madrid F . CD69 is an immunoregulatory molecule induced following activation. Trends Immunol 2005; 26: 136–140.

    Article  CAS  Google Scholar 

  43. Bluestone JA . Regulatory T-cell therapy: is it ready for the clinic? Nat Rev Immunol 2005; 5: 343–349.

    Article  CAS  Google Scholar 

  44. Edinger M, Hoffmann P . Regulatory T cells in stem cell transplantation: strategies and first clinical experiences. Curr Opin Immunol 2011; 23: 679–684.

    Article  CAS  Google Scholar 

  45. Hoffmann P, Boeld TJ, Eder R, Huehn J, Floess S, Wieczorek G et al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur J Immunol 2009; 39: 1088–1097.

    Article  CAS  Google Scholar 

  46. Hoffmann P, Eder R, Edinger M . Polyclonal expansion of human CD4(+)CD25(+) regulatory T cells. Methods Mol Biol 2011; 677: 15–30.

    Article  CAS  Google Scholar 

  47. Jacobsen M, Schweer D, Ziegler A, Gaber R, Schock S, Schwinzer R et al. A point mutation in PTPRC is associated with the development of multiple sclerosis. Nat Genet 2000; 26: 495–499.

    Article  CAS  Google Scholar 

  48. Schwinzer R, Witte T, Hundrieser J, Ehlers S, Momot T, Hunzelmann N et al. Enhanced frequency of a PTPRC (CD45) exon A mutation (77C→G) in systemic sclerosis. Genes Immun 2003; 4: 168–169.

    Article  CAS  Google Scholar 

  49. Vogel A, Strassburg CP, Manns MP . 77 C/G mutation in the tyrosine phosphatase CD45 gene and autoimmune hepatitis: evidence for a genetic link. Genes Immun 2003; 4: 79–81.

    Article  CAS  Google Scholar 

  50. Dawes R, Hennig B, Irving W, Petrova S, Boxall S, Ward V et al. Altered CD45 expression in C77G carriers influences immune function and outcome of hepatitis C infection. J Med Genet 2006; 43: 678–684.

    Article  CAS  Google Scholar 

  51. Schwinzer R, Schraven B, Kyas U, Meuer SC, Wonigeit K . Phenotypical and biochemical characterization of a variant CD45R expression pattern in human leukocytes. Eur J Immunol 1992; 22: 1095–1098.

    Article  CAS  Google Scholar 

  52. Schwinzer R, Franklin RA, Domenico J, Renz H, Gelfand EW . Monoclonal antibodies directed to different epitopes in the CD3-TCR complex induce different states of competence in resting human T cells. J Immunol 1992; 148: 1322–1328.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the assistance of the Cell Sorting Core Facility of Hannover Medical School, which is supported in part by Braukmann-Wittenberg-Herz-Stiftung and Deutsche Forschungsgemeinschaft. We thank Dr Penelope Kay-Fedorov for her constructive comments on the manuscript. This work was supported in part by grants from the Deutsche Forschungsgemeinschaft (Schw437/2 and SFB 738).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Schwinzer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokoyski, C., Lienen, T., Rother, S. et al. Overexpression of CD45RA isoforms in carriers of the C77G mutation leads to hyporeactivity of CD4+CD25highFoxp3+ regulatory T cells. Genes Immun 16, 519–527 (2015). https://doi.org/10.1038/gene.2015.39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2015.39

Search

Quick links