Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Methylation of NKG2D ligands contributes to immune system evasion in acute myeloid leukemia

Subjects

Abstract

Engagement of the activating receptor NKG2D (natural killer group 2 member D) with its ligands (NKG2DL) major histocompatibility complex class I related-A and -B (MICA/B), UL-16 binding protein families (ULBPs 1–6) is important to ensure the innate immunity to tumor cells. However, these cells have developed strategies to downregulate NKG2DL expression and avoid immune recognition. We demonstrate that DNA methylation can contribute to the absence of NKG2DL expression during tumor progression. We analyzed the DNA methylation profiles for each NKG2DL by pyrosequencing in acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), hepatocellular carcinoma (HC), breast cancer and colon cancer cell lines. High levels of DNA methylation for NKG2DL were found in some tumor cell lines, mainly in AML cells. This hypermethylation was correlated with the absence of transcription for NKG2DL. Higher DNA methylation levels for MICA, ULBP1 and ULBP2 were observed in AML patients (n=60) compared with healthy donors (n=25). However, no DNA methylation for NKG2DL was found in colon cancer patients (n=44). Treatment with demethylating agents (5-azacytidine and 5-aza-2’-deoxycytidine) restored the expression of NKG2DL on the cell surface of AML cells, leading to an enhanced recognition by NKG2D-expressing cells. Our data suggest that NKG2DL may be aberrantly silenced by DNA methylation as a consequence of tumor development in AML patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Orr MT, Lanier LL . Natural killer cell education and tolerance. Cell 2010; 142: 847–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lopez-Larrea C, Suarez-Alvarez B, Lopez-Soto A, Lopez-Vazquez A, Gonzalez S . The NKG2D receptor: sensing stressed cells. Trends Mol Med 2008; 14: 179–189.

    Article  CAS  PubMed  Google Scholar 

  3. Gonzalez S, Lopez-Soto A, Suarez-Alvarez B, Lopez-Vazquez A, Lopez-Larrea C . NKG2D ligands: key targets of the immune response. Trends Immunol 2008; 29: 397–403.

    Article  CAS  PubMed  Google Scholar 

  4. Eagle RA, Traherne JA, Hair JR, Jafferji I, Trowsdale J . ULBP6/RAET1L is an additional human NKG2D ligand. Eur J Immunol 2009; 39: 3207–3216.

    Article  CAS  PubMed  Google Scholar 

  5. Gasser S, Orsulic S, Brown EJ, Raulet DH . The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005; 436: 1186–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Terme M, Borg C, Guilhot F, Masurier C, Flament C, Wagner EF et al. BCR/ABL promotes dendritic cell-mediated natural killer cell activation. Cancer Res 2005; 65: 6409–6417.

    Article  CAS  PubMed  Google Scholar 

  7. Unni AM, Bondar T, Medzhitov R . Intrinsic sensor of oncogenic transformation induces a signal for innate immunosurveillance. Proc Natl Acad Sci USA 2008; 105: 1686–1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Textor S, Fiegler N, Arnold A, Porgador A, Hofmann TG, Cerwenka A . Human NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2. Cancer Res 2011; 71: 5998–6009.

    Article  CAS  PubMed  Google Scholar 

  9. Groh V, Wu J, Yee C, Spies T . Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002; 419: 734–738.

    Article  CAS  PubMed  Google Scholar 

  10. Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A, Salih HR . Soluble MICB in malignant diseases: analysis of diagnostic significance and correlation with soluble MICA. Cancer Immunol Immunother 2006; 55: 1584–1589.

    Article  PubMed  Google Scholar 

  11. Song H, Kim J, Cosman D, Choi I . Soluble ULBP suppresses natural killer cell activity via down-regulating NKG2D expression. Cell Immunol 2006; 239: 22–30.

    Article  CAS  PubMed  Google Scholar 

  12. Waldhauer I, Steinle A . Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res 2006; 66: 2520–2526.

    Article  CAS  PubMed  Google Scholar 

  13. Liu G, Atteridge CL, Wang X, Lundgren AD, Wu JD . The membrane type matrix metalloproteinase MMP14 mediates constitutive shedding of MHC class I chain-related molecule A independent of A disintegrin and metalloproteinases. J Immunol 2010; 184: 3346–3350.

    Article  CAS  PubMed  Google Scholar 

  14. Sun D, Wang X, Zhang H, Deng L, Zhang Y . MMP9 mediates MICA shedding in human osteosarcomas. Cell Biol Int 2011; 35: 569–574.

    Article  CAS  PubMed  Google Scholar 

  15. Chitadze G, Lettau M, Bhat J, Wesch D, Steinle A, Furst D et al. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: heterogeneous involvement of the ‘a disintegrin and metalloproteases’ 10 and 17. Int J Cancer 2013; 133: 1557–1566.

    Article  CAS  PubMed  Google Scholar 

  16. Duan X, Mao X, Sun W . ADAM15 is involved in MICB shedding and mediates the effects of gemcitabine on MICB shedding in PANC-1 pancreatic cancer cells. Mol Med Rep 2013; 7: 991–997.

    Article  CAS  PubMed  Google Scholar 

  17. Fernandez-Messina L, Ashiru O, Boutet P, Aguera-Gonzalez S, Skepper JN, Reyburn HT et al. Differential mechanisms of shedding of the glycosylphosphatidylinositol (GPI)-anchored NKG2D ligands. J Biol Chem 2010; 285: 8543–8551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaiser BK, Yim D, Chow IT, Gonzalez S, Dai Z, Mann HH et al. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 2007; 447: 482–486.

    Article  CAS  PubMed  Google Scholar 

  19. Huergo-Zapico L, Gonzalez-Rodriguez AP, Contesti J, Gonzalez E, Lopez-Soto A, Fernandez-Guizan A et al. Expression of ERp5 and GRP78 on the membrane of chronic lymphocytic leukemia cells: association with soluble MICA shedding. Cancer Immunol Immunother 2012; 61: 1201–1210.

    Article  CAS  PubMed  Google Scholar 

  20. Aguera-Gonzalez S, Gross CC, Fernandez-Messina L, Ashiru O, Esteso G, Hang HC et al. Palmitoylation of MICA, a ligand for NKG2D, mediates its recruitment to membrane microdomains and promotes its shedding. Eur J Immunol 2011; 41: 3667–3676.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Baragaño Raneros A, Suarez-Álvarez B, López-Larrea C . Secretory pathways generating immunosuppressive NKG2D ligands: new targets for therapeutic intervention. Oncoimmunology 2014; 3: e28497.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stone R, Sekeres M, Garcia-Manero G . Evolving strategies in the treatment of MDS and AML. Clin Adv Hematol Oncol 2009; 7: 1–14 quiz 12 p following 14.

    PubMed  Google Scholar 

  23. Rohner A, Langenkamp U, Siegler U, Kalberer CP, Wodnar-Filipowicz A . Differentiation-promoting drugs up-regulate NKG2D ligand expression and enhance the susceptibility of acute myeloid leukemia cells to natural killer cell-mediated lysis. Leuk Res 2007; 31: 1393–1402.

    Article  CAS  PubMed  Google Scholar 

  24. Schmiedel BJ, Arelin V, Gruenebach F, Krusch M, Schmidt SM, Salih HR . Azacytidine impairs NK cell reactivity while decitabine augments NK cell responsiveness toward stimulation. Int J Cancer 2011; 128: 2911–2922.

    Article  CAS  PubMed  Google Scholar 

  25. Tang KF, He CX, Zeng GL, Wu J, Song GB, Shi YS et al. Induction of MHC class I-related chain B (MICB) by 5-aza-2'-deoxycytidine. Biochem Biophys Res Commun 2008; 370: 578–583.

    Article  CAS  PubMed  Google Scholar 

  26. Kato N, Tanaka J, Sugita J, Toubai T, Miura Y, Ibata M et al. Regulation of the expression of MHC class I-related chain A, B (MICA, MICB) via chromatin remodeling and its impact on the susceptibility of leukemic cells to the cytotoxicity of NKG2D-expressing cells. Leukemia 2007; 21: 2103–2108.

    Article  CAS  PubMed  Google Scholar 

  27. Diermayr S, Himmelreich H, Durovic B, Mathys-Schneeberger A, Siegler U, Langenkamp U et al. NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood 2008; 111: 1428–1436.

    Article  CAS  PubMed  Google Scholar 

  28. Lopez-Soto A, Folgueras AR, Seto E, Gonzalez S . HDAC3 represses the expression of NKG2D ligands ULBPs in epithelial tumour cells: potential implications for the immunosurveillance of cancer. Oncogene 2009; 28: 2370–2382.

    Article  CAS  PubMed  Google Scholar 

  29. Poggi A, Catellani S, Garuti A, Pierri I, Gobbi M, Zocchi MR . Effective in vivo induction of NKG2D ligands in acute myeloid leukaemias by all-trans-retinoic acid or sodium valproate. Leukemia 2009; 23: 641–648.

    Article  CAS  PubMed  Google Scholar 

  30. Lu X, Ohata K, Kondo Y, Espinoza JL, Qi Z, Nakao S . Hydroxyurea upregulates NKG2D ligand expression in myeloid leukemia cells synergistically with valproic acid and potentially enhances susceptibility of leukemic cells to natural killer cell-mediated cytolysis. Cancer Sci 2010; 101: 609–615.

    Article  CAS  PubMed  Google Scholar 

  31. Huang B, Sikorski R, Sampath P, Thorne SH . Modulation of NKG2D-ligand cell surface expression enhances immune cell therapy of cancer. J Immunother 2011; 34: 289–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang F, Shao Y, Liu M, Huang J, Zhu K, Guo C et al. Valproic acid upregulates NKG2D ligand expression and enhances susceptibility of human renal carcinoma cells to NK cell-mediated cytotoxicity. Arch Med Sci 2013; 9: 323–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu X, Tao Y, Hou J, Meng X, Shi J . Valproic acid upregulates NKG2D ligand expression through an ERK-dependent mechanism and potentially enhances NK cell-mediated lysis of myeloma. Neoplasia 2012; 14: 1178–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Berghuis D, Schilham MW, Vos HI, Santos SJ, Kloess S, Buddingh EP et al. Histone deacetylase inhibitors enhance expression of NKG2D ligands in Ewing sarcoma and sensitize for natural killer cell-mediated cytolysis. Clin Sarcoma Res 2012; 2: 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sers C, Kuner R, Falk CS, Lund P, Sueltmann H, Braun M et al. Down-regulation of HLA Class I and NKG2D ligands through a concerted action of MAPK and DNA methyltransferases in colorectal cancer cells. Int J Cancer 2009; 125: 1626–1639.

    Article  CAS  PubMed  Google Scholar 

  36. Schrambach S, Ardizzone M, Leymarie V, Sibilia J, Bahram S . In vivo expression pattern of MICA and MICB and its relevance to auto-immunity and cancer. PLoS ONE 2007; 2: e518.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 2001; 14: 123–133.

    Article  CAS  PubMed  Google Scholar 

  38. Fernandez-Messina L, Reyburn HT, Vales-Gomez M . Human NKG2D-ligands: cell biology strategies to ensure immune recognition. Front Immunol 2012; 3: 299.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Stern-Ginossar N, Mandelboim O . An integrated view of the regulation of NKG2D ligands. Immunology 2009; 128: 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nowbakht P, Ionescu MC, Rohner A, Kalberer CP, Rossy E, Mori L et al. Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 2005; 105: 3615–3622.

    Article  CAS  PubMed  Google Scholar 

  41. Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A et al. Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 2005; 105: 2066–2073.

    Article  CAS  PubMed  Google Scholar 

  42. Sanchez-Correa B, Morgado S, Gayoso I, Bergua JM, Casado JG, Arcos MJ et al. Human NK cells in acute myeloid leukaemia patients: analysis of NK cell-activating receptors and their ligands. Cancer Immunol Immunother 2011; 60: 1195–1205.

    Article  CAS  PubMed  Google Scholar 

  43. Hilpert J, Grosse-Hoves L, Grunebach F, Buechele C, Nuebling T, Raum T et al. Comprehensive analysis of NKG2D ligand expression and release in leukemia: implications for NKG2D-mediated NK cell responses. J Immunol 2012; 189: 1360–1371.

    Article  CAS  PubMed  Google Scholar 

  44. Kamimura H, Yamagiwa S, Tsuchiya A, Takamura M, Matsuda Y, Ohkoshi S et al. Reduced NKG2D ligand expression in hepatocellular carcinoma correlates with early recurrence. J Hepatol 2012; 56: 381–388.

    Article  CAS  PubMed  Google Scholar 

  45. de Kruijf EM, Sajet A, van Nes JG, Putter H, Smit VT, Eagle RA et al. NKG2D ligand tumor expression and association with clinical outcome in early breast cancer patients: an observational study. BMC Cancer 2012; 12: 24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Esteller M . Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 2007; 8: 286–298.

    Article  CAS  PubMed  Google Scholar 

  47. McGilvray RW, Eagle RA, Watson NF, Al-Attar A, Ball G, Jafferji I et al. NKG2D ligand expression in human colorectal cancer reveals associations with prognosis and evidence for immunoediting. Clin Cancer Res 2009; 15: 6993–7002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Calvanese V, Fernandez AF, Urdinguio RG, Suarez-Alvarez B, Mangas C, Perez-Garcia V et al. A promoter DNA demethylation landscape of human hematopoietic differentiation. Nucleic Acids Res 2012; 40: 116–13147.

    Article  CAS  PubMed  Google Scholar 

  49. Bormann F, Sers C, Seliger B, Handke D, Bergmann T, Seibt S et al. Methylation-specific ligation detection reaction (msLDR): a new approach for multiplex evaluation of methylation patterns. Mol Genet Genomics 2011; 286: 279–291.

    Article  CAS  PubMed  Google Scholar 

  50. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Gattermann N, Germing U et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol 2010; 28: 562–569.

    Article  CAS  PubMed  Google Scholar 

  51. Kantarjian HM, Thomas XG, Dmoszynska A, Wierzbowska A, Mazur G, Mayer J et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol 2012; 30: 2670–2677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schmiedel BJ, Arélin V, Gruenebach F, Krush M, Schmidt SM, Salih HR . Azacytidine impairs NK cell reactivity while decitabine augments NK cell responsiveness toward stimulation. Int J Cancer 2011; 128: 2911–2922.

    Article  CAS  PubMed  Google Scholar 

  53. Koch J, Steinle A, Watzl C, Mandelboim O . Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol 2013; 34: 182–191.

    Article  CAS  PubMed  Google Scholar 

  54. Costello RT, Sivori S, Marcenaro E, Lafage-Pochitaloff M, Mozziconacci MJ, Reviron D et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 2002; 99: 3661–3667.

    Article  CAS  PubMed  Google Scholar 

  55. Verheyden S, Bernier M, Demanet C . Identification of natural killer cell receptor phenotypes associated with leukemia. Leukemia 2004; 18: 2002–2007.

    Article  CAS  PubMed  Google Scholar 

  56. Sanchez-Correa B, Gayoso I, Bergua JM, Casado JG, Morgado S, Solana R et al. Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol Cell Biol 2012; 90: 109–115.

    Article  CAS  PubMed  Google Scholar 

  57. Stringaris K, Sekine T, Khoder A, Alsuliman A, Razzaghi B, Sargeant R et al. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia. Haematologica 2014; 99: 836–847.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105: 3051–3057.

    Article  CAS  PubMed  Google Scholar 

  59. Locatelli F, Pende D, Maccario R, Mingari MC, Moretta A, Moretta L . Haploidentical hemopoietic stem cell transplantation for the treatment of high-risk leukemias: how NK cells make the difference. Clin Immunol 2009; 133: 171–178.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Red de Investigación Renal (REDinREN RD12/0021), Spain, and the Spanish Fondo de Investigaciones Sanitarias-Fondos FEDER European Union (FIS PI12/02587) del Plan Nacional de I+D+I 2008-2011. ABR was supported by a Severo Ochoa fellowship (FICYT, Consejería de Educación y Ciencia del Principado de Asturias, Spain).

Author Contributions

ABR, BS-A and CL-L designed the study. ABR and AFS did the research. VM-P, RMR and MFF provided samples. ABR and BS-A collected, analyzed and interpreted the results. ABR, BS-A and CL-L wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Lopez-Larrea or B Suarez-Alvarez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baragaño Raneros, A., Martín-Palanco, V., Fernandez, A. et al. Methylation of NKG2D ligands contributes to immune system evasion in acute myeloid leukemia. Genes Immun 16, 71–82 (2015). https://doi.org/10.1038/gene.2014.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.58

This article is cited by

Search

Quick links