Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pathway-based association analysis of two genome-wide screening data identifies rheumatoid arthritis-related pathways

Abstract

The pathways can explain molecular mechanisms of complex diseases from the perspective of biology function. We carried out a genome-wide pathway-based association analysis to identify the risk pathways of rheumatoid arthritis (RA). First, we performed two genome-wide association studies using two RA data sets from GAW16 (Genetic Analysis Workshop 16) and the Wellcome Trust Case Control Consortium, and obtained risk P-value for each single-nucleotide polymorphism (SNP). Next, we mapped all the SNPs to genome-wide autosomal genes and calculated gene-wise risk values by minimum P-value method. We calculated the KEGG (Kyoto Encyclopedia of Gene and Genomes) pathway risk scores according to Fisher combination method and identified the significant pathways by permutation test. At last, we merged the results from the two pathway-based genome-wide association analyses to identify the high-risk pathways, which were found in both the data sets. The results showed that there were nine pathways, focal adhesion pathway, extracellular matrix-receptor interaction pathway, calcium signaling pathway, dopaminergic synapse pathway, long-term potentiation pathway, retrograde endocannabinoid signaling pathway, glutamatergic synapse pathway, cholinergic synapse pathway and morphine addiction pathway, associated with susceptibility to RA. Among these pathways, four pathways were reported as RA-risk pathways in the previous literatures. We also inferred that other five pathways may be related to RA. Further researches of these pathways will help us to understand the molecular mechanisms of RA.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Cerhan JR, Saag KG, Merlino LA, Mikuls TR, Criswell LA . Antioxidant micronutrients and risk of rheumatoid arthritis in a cohort of older women. Am J Epidemiol 2003; 157: 345–354.

    Article  PubMed  Google Scholar 

  2. Plenge RM . Rheumatoid arthritis genetics: 2009 update. Curr Rheumatol Rep 2009; 11: 351–356.

    Article  CAS  PubMed  Google Scholar 

  3. Plenge RM, Cotsapas C, Davies L, Price AL, de Bakker PI, Maller J et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet 2007; 39: 1477–1482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thomson W, Barton A, Ke X, Eyre S, Hinks A, Bowes J et al. Rheumatoid arthritis association at 6q23. Nat Genet 2007; 39: 1431–1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luo L, Peng G, Zhu Y, Dong H, Amos CI, Xiong M . Genome-wide gene and pathway analysis. Eur J Hum Genet 2010; 18: 1045–1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beyene J, Hu P, Hamid JS, Parkhomenko E, Paterson AD, Tritchler D . Pathway-based analysis of a genome-wide case-control association study of rheumatoid arthritis. BMC Proc 2009; 3 (Suppl 7): S128.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Torkamani A, Topol EJ, Schork NJ . Pathway analysis of seven common diseases assessed by genome-wide association. Genomics 2008; 92: 265–272.

    Article  CAS  PubMed  Google Scholar 

  8. Neale BM, Sham PC . The future of association studies: gene-based analysis and replication. Am J Hum Genet 2004; 75: 353–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang K, Li M, Bucan M . Pathway-based approaches for analysis of genomewide association studies. Am J Hum Genet 2007; 81: 1278–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, Pelletier D et al. Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum Mol Genet 2009; 18: 2078–2090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Benfey PN, Mitchell-Olds T . From genotype to phenotype: systems biology meets natural variation. Science 2008; 320: 495–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schadt EE, Lum PY . Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Reverse engineering gene networks to identify key drivers of complex disease phenotypes. J Lipid Res 2006; 47: 2601–2613.

    Article  CAS  PubMed  Google Scholar 

  13. Yang W, de las Fuentes L, Davila-Roman VG, Charles Gu C . Variable set enrichment analysis in genome-wide association studies. Eur J Hum Genet 2011; 19: 893–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khatri P, Sirota M, Butte AJ . Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 2012; 8: e1002375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu Y, Chance MR . Pathway analyses and understanding disease associations. Curr Genet Med Rep 2013; 1: 4.

    Article  Google Scholar 

  16. Lee YH, Bae SC, Choi SJ, Ji JD, Song GG . Genome-wide pathway analysis of genome-wide association studies on systemic lupus erythematosus and rheumatoid arthritis. Mol Biol Rep 2012; 39: 10627–10635.

    Article  CAS  PubMed  Google Scholar 

  17. Buchel F, Mittag F, Wrzodek C, Zell A, Gasser T, Sharma M . Integrative pathway-based approach for genome-wide association studies: identification of new pathways for rheumatoid arthritis and type 1 diabetes. PLoS One 2013; 8: e78577.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ballard DH, Aporntewan C, Lee JY, Lee JS, Wu Z, Zhao H . A pathway analysis applied to Genetic Analysis Workshop 16 genome-wide rheumatoid arthritis data. BMC Proc 2009; 3 (Suppl 7): S91.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447: 661–678.

    Article  Google Scholar 

  20. Liu G, Jiang Y, Chen X, Zhang R, Ma G, Feng R et al. Measles contributes to rheumatoid arthritis: evidence from pathway and network analyses of genome-wide association studies. PLoS One 2013; 8: e75951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun L, Chai Y . Bioinformatic analysis to find small molecules related to rheumatoid arthritis. Int J Rheum Dis 2014; 17: 71–77.

    Article  CAS  PubMed  Google Scholar 

  22. Connolly M, Veale DJ, Fearon U . Acute serum amyloid A regulates cytoskeletal rearrangement, cell matrix interactions and promotes cell migration in rheumatoid arthritis. Ann Rheum Dis 2011; 70: 1296–1303.

    Article  CAS  PubMed  Google Scholar 

  23. Nakano K, Whitaker JW, Boyle DL, Wang W, Firestein GS . DNA methylome signature in rheumatoid arthritis. Ann Rheum Dis 2013; 72: 110–117.

    Article  CAS  PubMed  Google Scholar 

  24. Bohm BB, Freund I, Krause K, Kinne RW, Burkhardt H . ADAM15 adds to apoptosis resistance of synovial fibroblasts by modulating focal adhesion kinase signaling. Arthritis Rheum 2013; 65: 2826–2834.

    Article  PubMed  Google Scholar 

  25. Shahrara S, Castro-Rueda HP, Haines GK, Koch AE . Differential expression of the FAK family kinases in rheumatoid arthritis and osteoarthritis synovial tissues. Arthritis Res Ther 2007; 9: R112.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brownlee C . Role of the extracellular matrix in cell-cell signalling: paracrine paradigms. Curr Opin Plant Biol 2002; 5: 396–401.

    Article  CAS  PubMed  Google Scholar 

  27. Ertel A, Tozeren A . Switch-like genes populate cell communication pathways and are enriched for extracellular proteins. BMC Genomics 2008; 9: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vig M, Kinet JP . Calcium signaling in immune cells. Nat Immunol 2009; 10: 21–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Walleczek J . Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J 1992; 6: 3177–3185.

    Article  CAS  PubMed  Google Scholar 

  30. Rao A, Hogan PG . Calcium signaling in cells of the immune and hematopoietic systems. Immunol Rev 2009; 231: 5–9.

    Article  CAS  PubMed  Google Scholar 

  31. Davies EV, Hallett MB . Cytosolic Ca2+ signalling in inflammatory neutrophils: implications for rheumatoid arthritis (Review). Int J Mol Med 1998; 1: 485–490.

    CAS  PubMed  Google Scholar 

  32. Lu C, Xiao C, Chen G, Jiang M, Zha Q, Yan X et al. Cold and heat pattern of rheumatoid arthritis in traditional Chinese medicine: distinct molecular signatures indentified by microarray expression profiles in CD4-positive T cell. Rheumatol Int 2012; 32: 61–68.

    Article  PubMed  Google Scholar 

  33. Zhang Y, Wang D, Tan S, Xu H, Liu C, Lin N . A systems biology-based investigation into the pharmacological mechanisms of wu tou tang acting on rheumatoid arthritis by integrating network analysis. Evid Based Complement Alternat Med 2013; 2013: 548498.

    PubMed  PubMed Central  Google Scholar 

  34. Cooke SF, Bliss TV . Plasticity in the human central nervous system. Brain 2006; 129 (Pt 7): 1659–1673.

    Article  CAS  PubMed  Google Scholar 

  35. Cohen LG, Ziemann U, Chen R . Mechanisms, functional relevance and modulation of plasticity in the human central nervous system. Electroencephalogr Clin Neurophysiol Suppl 1999; 51: 174–182.

    CAS  PubMed  Google Scholar 

  36. Crupi R, Cambiaghi M, Spatz L, Hen R, Thorn M, Friedman E et al. Reduced adult neurogenesis and altered emotional behaviors in autoimmune-prone B-cell activating factor transgenic mice. Biol Psychiatry 2010; 67: 558–566.

    Article  CAS  PubMed  Google Scholar 

  37. Hinoi E, Yoneda Y . Possible involvement of glutamatergic signaling machineries in pathophysiology of rheumatoid arthritis. J Pharmacol Sci 2011; 116: 248–256.

    Article  CAS  PubMed  Google Scholar 

  38. Ducy P, Schinke T, Karsenty G . The osteoblast: a sophisticated fibroblast under central surveillance. Science 2000; 289: 1501–1504.

    Article  CAS  PubMed  Google Scholar 

  39. Karsenty G, Kronenberg HM, Settembre C . Genetic control of bone formation. Annu Rev Cell Dev Biol 2009; 25: 629–648.

    Article  CAS  PubMed  Google Scholar 

  40. Chenu C, Serre CM, Raynal C, Burt-Pichat B, Delmas PD . Glutamate receptors are expressed by bone cells and are involved in bone resorption. Bone 1998; 22: 295–299.

    Article  CAS  PubMed  Google Scholar 

  41. Nakaoka H, Cui T, Tajima A, Oka A, Mitsunaga S, Kashiwase K et al. A systems genetics approach provides a bridge from discovered genetic variants to biological pathways in rheumatoid arthritis. PLoS One 2011; 6: e25389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 2014; 506: 376–381.

    Article  CAS  PubMed  Google Scholar 

  43. Altermann E, Klaenhammer TR . PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. BMC Genomics 2005; 6: 60.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wixon J, Kell D . The Kyoto encyclopedia of genes and genomes—KEGG. Yeast 2000; 17: 48–55.

    Article  CAS  PubMed  Google Scholar 

  45. Kanehisa M, Goto S . KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28: 27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. de las Fuentes L, Yang W, Davila-Roman VG, Gu C . Pathway-based genome-wide association analysis of coronary heart disease identifies biologically important gene sets. Eur J Hum Genet 2012; 20: 1168–1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng G, Gastwirth JL . On estimation of the variance in Cochran-Armitage trend tests for genetic association using case-control studies. Stat Med 2006; 25: 3150–3159.

    Article  PubMed  Google Scholar 

  48. Zhang K, Chang S, Cui S, Guo L, Zhang L, Wang J . ICSNPathway: identify candidate causal SNPs and pathways from genome-wide association study by one analytical framework. Nucleic Acids Res 2011; 39 (Web Server issue): W437–W443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu K, Li Q, Bergen AW, Pfeiffer RM, Rosenberg PS, Caporaso N et al. Pathway analysis by adaptive combination of P-values. Genet Epidemiol 2009; 33: 700–709.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Peng G, Luo L, Siu H, Zhu Y, Hu P, Hong S et al. Gene and pathway-based second-wave analysis of genome-wide association studies. Eur J Hum Genet 2010; 18: 111–117.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Natural Science Foundation of China (grant numbers 81172842, 31200934 and 61300116) and the Natural Science Foundations of Heilongjiang Province (grant numbers QC2013C063 and C201206).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y-S Jiang or R-J Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, MM., Jiang, YS., Lv, HC. et al. Pathway-based association analysis of two genome-wide screening data identifies rheumatoid arthritis-related pathways. Genes Immun 15, 487–494 (2014). https://doi.org/10.1038/gene.2014.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.48

This article is cited by

Search

Quick links