Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

GWAS identifies novel SLE susceptibility genes and explains the association of the HLA region

Abstract

In a genome-wide association study (GWAS) of individuals of European ancestry afflicted with systemic lupus erythematosus (SLE) the extensive utilization of imputation, step-wise multiple regression, lasso regularization and increasing study power by utilizing false discovery rate instead of a Bonferroni multiple test correction enabled us to identify 13 novel non-human leukocyte antigen (HLA) genes and confirmed the association of four genes previously reported to be associated. Novel genes associated with SLE susceptibility included two transcription factors (EHF and MED1), two components of the NF-κB pathway (RASSF2 and RNF114), one gene involved in adhesion and endothelial migration (CNTN6) and two genes involved in antigen presentation (BIN1 and SEC61G). In addition, the strongly significant association of multiple single-nucleotide polymorphisms (SNPs) in the HLA region was assigned to HLA alleles and serotypes and deconvoluted into four primary signals. The novel SLE-associated genes point to new directions for both the diagnosis and treatment of this debilitating autoimmune disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Rullo OJ, Tsao BP . Recent insights into the genetic basis of systemic lupus erythematosus. Ann Rheum Dis 2013; 72 (Suppl 2): 56–61.

    Article  Google Scholar 

  2. Armstrong DL, Reiff A, Myones BL, Quismorio FP, Klein-Gitelman M, McCurdy D et al. Identification of new SLE-associated genes with a two-step Bayesian study design. Genes Immun 2009; 10: 446–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee HS, Jia X et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet 2012; 44: 291–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benjamini Y, Bogomolov M . Selective inference on multiple families of hypothe- ses. J Royal Stat Soc B 2014; 76: 297–318.

    Article  Google Scholar 

  5. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kumar P, Henikoff S, Ng PC . Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009; 4: 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  7. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP . Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 2012; 7: 46688.

    Article  Google Scholar 

  8. Jacob CO, Eisenstein M, Dinauer MC, Ming W, Liu Q, John S et al. Lupus-associated causal mutation in neutrophil cytosolic factor 2 (NCF2) brings unique insights to the structure and function of NADPH oxidase. Proc Natl Acad Sci USA 2012; 109: 59–67.

    Article  Google Scholar 

  9. Marchini J, Howie B . Genotype imputation for genome-wide association studies. Nat Rev Genet 2010; 11: 499–511.

    Article  CAS  PubMed  Google Scholar 

  10. Friedman J, Hastie T, Tibshirani R . Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010; 33: 1–22.

    Article  PubMed  PubMed Central  Google Scholar 

  11. McClain MT, Ramsland PA, Kaufman KM, James JA . Anti-sm autoantibodies in systemic lupus target highly basic surface structures of complexed spliceosomal autoantigens. J Immunol 2002; 168: 2054–2062.

    Article  CAS  PubMed  Google Scholar 

  12. Dilthey A, Leslie S, Moutsianas L, Shen J, Cox C, Nelson MR et al. Multi-population classical HLA type imputation. PLoS Comput Biol 2013; 9: 1002877.

    Article  Google Scholar 

  13. Dilthey AT, Moutsianas L, Leslie S, McVean G . HLA*IMP–an integrated framework for imputing classical HLA alleles from SNP genotypes. Bioinformatics 2011; 27: 968–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leslie S, Donnelly P, McVean G . A statistical method for predicting classical HLA alleles from SNP data. Am J Hum Genet 2008; 82: 48–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tjernström F, Hellmer G, Nived O, Truedsson L, Sturfelt G . Synergetic effect between interleukin-1 receptor antagonist allele (IL1RN*2) and MHC class II (DR17,DQ2) in determining susceptibility to systemic lupus erythematosus. Lupus 1999; 8: 103–108.

    Article  PubMed  Google Scholar 

  16. Leng RX, Wang W, Cen H, Zhou M, Feng CC, Zhu Y et al. Gene-gene and gene-sex epistatic interactions of MiR146a, IRF5, IKZF1, ETS1 and IL21 in systemic lupus erythematosus. PLoS ONE 2012; 7: 51090.

    Article  Google Scholar 

  17. Lehtonen A, Ahlfors H, Veckman V, Miettinen M, Lahesmaa R, Julkunen I . Gene expression profiling during differentiation of human monocytes to macrophages or dendritic cells. J Leukoc Biol 2007; 82: 710–720.

    Article  CAS  PubMed  Google Scholar 

  18. Gabriel L, Morley BJ, Rogers NJ . The role of iNKT cells in the immunopathology of systemic lupus erythematosus. Ann NY Acad Sci 2009; 1173: 435–441.

    Article  CAS  PubMed  Google Scholar 

  19. Bijlmakers MJ, Kanneganti SK, Barker JN, Trembath RC, Capon F . Functional analysis of the RNF114 psoriasis susceptibility gene implicates innate immune responses to double-stranded RNA in disease pathogenesis. Hum Mol Genet 2011; 20: 3129–3137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jacob CO, Reiff A, Armstrong DL, Myones BL, Silverman E, Klein-Gitelman M et al. Identification of novel susceptibility genes in childhood-onset systemic lupus erythematosus using a uniquely designed candidate gene pathway platform. Arthritis Rheum 2007; 56: 4164–4173.

    Article  CAS  PubMed  Google Scholar 

  21. Morris DL, Taylor KE, Fernando MMA, Nititham J, Alarcón-Riquelme ME, Barcellos LF et al. Unraveling multiple MHC gene associations with systemic lupus erythematosus: model choice indicates a role for HLA alleles and non-HLA genes in Europeans. Am J Hum Genet 2012; 91: 778–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hochberg MC . Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997; 40: 1725.

    Article  CAS  PubMed  Google Scholar 

  23. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982; 25: 1271–1277.

    Article  CAS  PubMed  Google Scholar 

  24. Harley JB, Alarcón-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 2008; 40: 204–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bouaziz M, Ambroise C, Guedj M . Accounting for population stratification in practice: a comparison of the main strategies dedicated to genome-wide association studies. PLoS ONE 2011; 6: 28845.

    Article  Google Scholar 

  26. Deng HW . Population admixture may appear to mask, change or reverse genetic effects of genes underlying complex traits. Genetics 2001; 159: 1319–1323.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Baye TM, Tiwari HK, Allison DB, Go RC . Database mining for selection of SNP markers useful in admixture mapping. BioData Min 2009; 2: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  28. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria.

  29. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 1995; 57: 289–300.

    Google Scholar 

  30. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR . Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 2012; 44: 955–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012; 491: 56–65.

    Article  PubMed  Google Scholar 

  32. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007; 449: 851–861.

    Article  CAS  PubMed  Google Scholar 

  33. Taylor KE, Remmers EF, Lee AT, Ortmann WA, Plenge RM, Tian C et al. Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet 2008; 4: 1000084.

    Article  Google Scholar 

  34. Sigurdsson S, Nordmark G, Göring HHH, Lindroos K, Wiman AC, Sturfelt G et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 2005; 76: 528–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee YH, Bae SC, Choi SJ, Ji JD, Song GG . Genome-wide pathway analysis of genome-wide association studies on systemic lupus erythematosus and rheumatoid arthritis. Mol Biol Rep 2012; 39: 10627–10635.

    Article  CAS  PubMed  Google Scholar 

  36. Bauer T, Zagórska A, Jurkin J, Yasmin N, Köffel R, Richter S et al. Identification of Axl as a downstream effector of TGF-β1 during Langerhans cell differentiation and epidermal homeostasis. J Exp Med 2012; 209: 2033–2047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nath SK, Han S, Kim-Howard X, Kelly JA, Viswanathan P, Gilkeson GS et al. A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is as- sociated with systemic lupus erythematosus. Nat Genet 2008; 40: 152–154.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. National Institutes of Health grants: (R01AR043814 to BPT, R01AR057172 to COJ, R01AR043274 to KLS, R56AI063274, P20GM103456 to PMG, N01AR62277, R37AI024717, R01AR042460 and P20RR020143 to JBH, P01AI083194 to JBH, KLS, RPK, LAC, TJV, MEA-R, COJ, BPT and PMG, P01AR49084 to RPK, R01AR33062 to RPK, R01CA141700 and RC1AR058621 to MEA-R, P60AR053308, R01AR052300, and UL1TR000004 to LAC); the Lupus Research Institute grant to BPT; the Alliance for Lupus Research grants to BPT, LAC and COJ; the Arthritis Research UK to TJV; the Arthritis Foundation to PMG; the Kirkland Scholar Award to LAC; Wake Forest University Health Sciences Center for Public Health Genomics to CDL; Swedish Research Council to MEA-R; and Instituto de Salud Carlos III, co-financed by FEDER funds of the European Union to MEA-R. The authors would also like to specifically acknowledge the helpful suggestions of reviewer 2 to improve the analysis and paper.

Disclaimer

The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C O Jacob.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armstrong, D., Zidovetzki, R., Alarcón-Riquelme, M. et al. GWAS identifies novel SLE susceptibility genes and explains the association of the HLA region. Genes Immun 15, 347–354 (2014). https://doi.org/10.1038/gene.2014.23

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.23

This article is cited by

Search

Quick links