Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic burden in multiple sclerosis families

Abstract

A previous study using cumulative genetic risk estimations in multiple sclerosis (MS) successfully tracked the aggregation of susceptibility variants in multi-case and single-case families. It used a limited description of susceptibility loci available at the time (17 loci). Even though the full roster of MS risk genes remains unavailable, we estimated the genetic burden in MS families and assess its disease predictive power using up to 64 single-nucleotide polymorphism (SNP) markers according to the most recent literature. A total of 708 controls, 3251 MS patients and their relatives, as well as 117 twin pairs were genotyped. We validated the increased aggregation of genetic burden in multi-case compared with single-case families (P=4.14e−03) and confirm that these data offer little opportunity to accurately predict MS, even within sibships (area under receiver operating characteristic (AUROC)=0.59 (0.55, 0.53)). Our results also suggest that the primary progressive and relapsing-type forms of MS share a common genetic architecture (P=0.368; difference being limited to that corresponding to ±2 typical MS-associated SNPs). We have confirmed the properties of individual genetic risk score in MS. Comparing with previous reference point for MS genetics (17 SNPs), we underlined the corrective consequences of the integration of the new findings from GWAS and meta-analysis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Oksenberg JR, Baranzini SE, Sawcer S, Hauser SL . The genetics of multiple sclerosis: SNPs to pathways to pathogenesis. Nat Rev Genet 2008; 9: 516–526.

    Article  CAS  Google Scholar 

  2. Bush WS, Sawcer SJ, de Jager PL, Oksenberg JR, McCauley JL, Pericak-Vance MA et al. Evidence for polygenic susceptibility to multiple sclerosis—the shape of things to come. Am J Hum Genet 2010; 86: 621–625.

    Article  Google Scholar 

  3. Gourraud PA, Harbo HF, Hauser SL, Baranzini SE . The genetics of multiple sclerosis: an up-to-date review. Immunol Rev 2012; 248: 87–103.

    Article  Google Scholar 

  4. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011; 476: 214–219.

    Article  CAS  Google Scholar 

  5. Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 2007; 39: 1329–1337.

    Article  CAS  Google Scholar 

  6. Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 2007; 357: 851–862.

    Article  CAS  Google Scholar 

  7. Comabella M, Craig DW, Camina-Tato M, Morcillo C, Lopez C, Navarro A et al. Identification of a novel risk locus for multiple sclerosis at 13q31.3 by a pooled genome-wide scan of 500,000 single nucleotide polymorphisms. PLoS One 2008; 3: e3490.

    Article  Google Scholar 

  8. ANZGENE-consortium. Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat Genet 2009; 41: 824–828.

    Article  Google Scholar 

  9. Baranzini SE, Wang J, Gibson RA, Galwey N, Naegelin Y, Barkhof F et al. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum Mol Genet 2009; 18: 767–778.

    Article  CAS  Google Scholar 

  10. De Jager PL, Jia X, Wang J, de Bakker PI, Ottoboni L, Aggarwal NT et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet 2009; 41: 776–782.

    Article  CAS  Google Scholar 

  11. Jakkula E, Leppa V, Sulonen AM, Varilo T, Kallio S, Kemppinen A et al. Genome-wide association study in a high-risk isolate for multiple sclerosis reveals associated variants in STAT3 gene. Am J Hum Genet 2010; 86: 285–291.

    Article  CAS  Google Scholar 

  12. Nischwitz S, Cepok S, Kroner A, Wolf C, Knop M, Muller-Sarnowski F et al. Evidence for VAV2 and ZNF433 as susceptibility genes for multiple sclerosis. J Neuroimmunol 2010; 227: 162–166.

    Article  CAS  Google Scholar 

  13. Sanna S, Pitzalis M, Zoledziewska M, Zara I, Sidore C, Murru R et al. Variants within the immunoregulatory CBLB gene are associated with multiple sclerosis. Nat Genet 2010; 42: 495–497.

    Article  CAS  Google Scholar 

  14. Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, Pelletier D et al. Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum Mol Genet 2009; 18: 2078–2090.

    Article  CAS  Google Scholar 

  15. Cotsapas C, Voight BF, Rossin E, Lage K, Neale BM, Wallace C et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet 2011; 7: e1002254.

    Article  CAS  Google Scholar 

  16. Rioux JD, Goyette P, Vyse TJ, Hammarstrom L, Fernando MM, Green T et al. Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proc Natl Acad Sci USA 2009; 106: 18680–18685.

    Article  CAS  Google Scholar 

  17. Couturier N, Bucciarelli F, Nurtdinov RN, Debouverie M, Lebrun-Frenay C, Defer G et al. Tyrosine kinase 2 variant influences T lymphocyte polarization and multiple sclerosis susceptibility. Brain 2011; 134 (Pt 3): 693–703.

    Article  Google Scholar 

  18. De Jager PL, Baecher-Allan C, Maier LM, Arthur AT, Ottoboni L, Barcellos L et al. The role of the CD58 locus in multiple sclerosis. Proc Natl Acad Sci USA 2009; 106: 5264–5269.

    Article  CAS  Google Scholar 

  19. Gregory AP, Dendrou CA, Attfield KE, Haghikia A, Xifara DK, Butter F et al. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature 2012; 488: 508–511.

    Article  CAS  Google Scholar 

  20. Gregory SG, Schmidt S, Seth P, Oksenberg JR, Hart J, Prokop A et al. Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet 2007; 39: 1083–1091.

    Article  CAS  Google Scholar 

  21. Maier LM, Lowe CE, Cooper J, Downes K, Anderson DE, Severson C et al. IL2RA genetic heterogeneity in multiple sclerosis and type 1 diabetes susceptibility and soluble interleukin-2 receptor production. PLoS Genet 2009; 5: e1000322.

    Article  Google Scholar 

  22. De Jager PL, Chibnik LB, Cui J, Reischl J, Lehr S, Simon KC et al. Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score. Lancet Neurol 2009; 8: 1111–1119.

    Article  CAS  Google Scholar 

  23. Gourraud PA, McElroy JP, Caillier SJ, Johnson BA, Santaniello A, Hauser SL et al. Aggregation of multiple sclerosis genetic risk variants in multiple and single case families. Ann Neurol 2011; 69: 65–74.

    Article  Google Scholar 

  24. Sawcer S, Ban M, Wason J, Dudbridge F . What role for genetics in the prediction of multiple sclerosis? Ann Neurol 2010; 67: 3–10.

    Article  CAS  Google Scholar 

  25. Patsopoulos NA, Esposito F, Reischl J, Lehr S, Bauer D, Heubach J et al. Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann Neurol 2011; 70: 897–912.

    Article  CAS  Google Scholar 

  26. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 2010; 467: 832–838.

    Article  CAS  Google Scholar 

  27. Barcellos LF, Oksenberg JR, Green AJ, Bucher P, Rimmler JB, Schmidt S et al. Genetic basis for clinical expression in multiple sclerosis. Brain 2002; 125 (Pt 1): 150–158.

    CAS  PubMed  Google Scholar 

  28. Goodkin DE, Doolittle TH, Hauser SS, Ransohoff RM, Roses AD, Rudick RA . Diagnostic criteria for multiple sclerosis research involving multiply affected families. Arch Neurol 1991; 48: 805–807.

    Article  CAS  Google Scholar 

  29. Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, de Bakker PI . SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 2008; 24: 2938–2939.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institutes of Health (grant RO1NS26799 RO1NS19142), the National Multiple Sclerosis Society (grant RG2901) and the Cambridge NIHR Biomedical Research Centre, the Institut National de la Santé et de la Recherche Médicale (INSERM), the Fondation d’Aide pour la Recherche sur la Sclérose En Plaques (ARSEP), the Association Française contre les Myopathies (AFM) and GIS-IBISA. The research leading to these results has received funding from the program ‘Investissements d’avenir’ ANR-10-IAIHU-06. We acknowledge use of the cohort of the REFGENSEP and thank ICM, CIC Pitié-Salpêtrière, Généthon and REFGENSEP’s members for their help and support. NI is a postdoctoral fellow supported by Japan Society for Promotion of Science. VD received a travel grant from ARSEP. P-AG is a recipient of the Nancy Davis Foundation young investigator award. We acknowledge the assistance of Stacy Caillier, Adam Santaniello, Vinod Bakthavachalam Jinyang Wang and Matthew Chan in sample and data management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P-A Gourraud.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isobe, N., Damotte, V., Lo Re, V. et al. Genetic burden in multiple sclerosis families. Genes Immun 14, 434–440 (2013). https://doi.org/10.1038/gene.2013.37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2013.37

Keywords

This article is cited by

Search

Quick links