Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Unique contribution of IRF-5-Ikaros axis to the B-cell IgG2a response

Abstract

IRF-5 is a transcription factor activated by toll like receptor (TLR)7 and TLR9 during innate immune responses. IRF-5 activates not only Type I IFN, but also inflammatory cytokines. Most importantly, a genetic variation in the IRF-5 gene shows a strong association with autoimmune diseases such as Lupus. Here, we report that IRF5-deficient mice have attenuated IgG2a/c responses to T-cell-dependent and -independent antigens and to polyoma virus infection. This defect is due to the intrinsic deletion of IRF-5 in B cells, as SCID mice reconstituted with Irf5−/− B cells show a decrease in IgG2a/c expression after viral infection compared with mice that received wild-type B cells. Irf5−/−B cells in vitro have diminished TLR and cytokine-induced class switching to IgG2a/c. Addressing the molecular mechanism, we show that IRF-5 regulates IgG2a/c expression by decreasing Ikaros expression; reconstitution of IRF-5 in Irf5−/− B cells downregulates Ikaros levels and increases switching to IgG2a/c. The IRF site in ikzf1 promoter binds IRF-5, IRF-4 and IRF-8. We show that IRF-8 but not IRF-4 activates the ikzf1 promoter, and IRF-5 inhibits the transcriptional activity of IRF-8. Collectively, these results identify the IRF-5-Ikaros axis as a critical modulator of IgG2a/c class switching.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Honda K, Takaoka A, Taniguchi T . Type I interferon α gene induction by the interferon regulatory factor family of transcription factors. Immunity 2006; 25: 349–360.

    Article  CAS  Google Scholar 

  2. Paun A, Pitha PM . The IRF family, revisited. Biochimie 2007; 89: 744–753.

    Article  CAS  Google Scholar 

  3. Barnes BJ, Moore PA, Pitha PM . Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon alpha genes. J Biol Chem 2001; 276: 23382–23390.

    Article  CAS  Google Scholar 

  4. Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 2005; 434: 243–249.

    Article  CAS  Google Scholar 

  5. Paun A, Reinert JT, Jiang Z, Medin C, Balkhi MY, Fitzgerald KA et al. Functional characterization of murine interferon regulatory factor 5 (IRF-5) and its role in the innate antiviral response. J Biol Chem 2008; 283: 14295–14308.

    Article  CAS  Google Scholar 

  6. Schoenemeyer A, Barnes BJ, Mancl ME, Latz E, Goutagny N, Pitha PM et al. The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling. J Biol Chem 2005; 280: 17005–17012.

    Article  CAS  Google Scholar 

  7. Lin SC, Lo YC, Wu H . Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 2010; 465: 885–890.

    Article  CAS  Google Scholar 

  8. Balkhi MY, Fitzgerald KA, Pitha PM . Functional regulation of MyD88-activated interferon regulatory factor 5 by K63-linked polyubiquitination. Mol Cell Biol 2008; 28: 7296–7308.

    Article  CAS  Google Scholar 

  9. Mancl ME, Hu G, Sangster-Guity N, Olshalsky SL, Hoops K, Fitzgerald-Bocarsly P et al. Two discrete promoters regulate the alternatively spliced human interferon regulatory factor-5 isoforms. Multiple isoforms with distinct cell type-specific expression, localization, regulation, and function. J Biol Chem 2005; 280: 21078–21090.

    Article  CAS  Google Scholar 

  10. Graham RR, Kozyrev SV, Baechler EC, Reddy MV, Plenge RM, Bauer JW et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 2006; 38: 550–555.

    Article  CAS  Google Scholar 

  11. Sigurdsson S, Padyukov L, Kurreeman FA, Liljedahl U, Wiman AC, Alfredsson L et al. Association of a haplotype in the promoter region of the interferon regulatory factor 5 gene with rheumatoid arthritis. Arthritis Rheum 2007; 56: 2202–2210.

    Article  CAS  Google Scholar 

  12. Kozyrev SV, Alarcon-Riquelme ME . The genetics and biology of Irf5-mediated signaling in lupus. Autoimmunity 2007; 40: 591–601.

    Article  CAS  Google Scholar 

  13. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA 2003; 100: 2610–2615.

    Article  CAS  Google Scholar 

  14. Ehlers M, Fukuyama H, McGaha TL, Aderem A, Ravetch JV . TLR9/MyD88 signaling is required for class switching to pathogenic IgG2a and 2b autoantibodies in SLE. J Exp Med 2006; 203: 553–561.

    Article  CAS  Google Scholar 

  15. Richez C, Yasuda K, Bonegio RG, Watkins AA, Aprahamian T, Busto P et al. IFN regulatory factor 5 is required for disease development in the FcgammaRIIB−/−Yaa and FcgammaRIIB−/− mouse models of systemic lupus erythematosus. J Immunol 2010; 184: 796–806.

    Article  CAS  Google Scholar 

  16. Lien C, Fang CM, Huso D, Livak F, Lu R, Pitha PM . Critical role of IRF-5 in regulation of B-cell differentiation. Proc Natl Acad Sci USA 2010; 107: 4664–4668.

    Article  CAS  Google Scholar 

  17. Barr TA, Brown S, Mastroeni P, Gray D . B cell intrinsic MyD88 signals drive IFN-gamma production from T cells and control switching to IgG2c. J Immunol 2009; 183: 1005–1012.

    Article  CAS  Google Scholar 

  18. Coutinho A, Forni L . Intraclonal diversification in immunoglobulin isotype secretion: an analysis of switch probabilities. Embo J 1982; 1: 1251–1257.

    Article  CAS  Google Scholar 

  19. Guay HM, Andreyeva TA, Garcea RL, Welsh RM, Szomolanyi-Tsuda E . MyD88 is required for the formation of long-term humoral immunity to virus infection. J Immunol 2007; 178: 5124–5131.

    Article  CAS  Google Scholar 

  20. Ippagunta SK, Malireddi RK, Shaw PJ, Neale GA, Walle LV, Green DR et al. The inflammasome adaptor ASC regulates the function of adaptive immune cells by controlling Dock2-mediated Rac activation and actin polymerization. Nat Immunol 2011; 12: 1010–1016.

    Article  Google Scholar 

  21. Stavnezer J . Molecular processes that regulate class switching. Curr Top Microbiol Immunol 2000; 245: 127–168.

    CAS  PubMed  Google Scholar 

  22. Snapper CM, Finkelman FD, Paul WE . Regulation of IgG1 and IgE production by interleukin 4. Immunol Rev 1988; 102: 51–75.

    Article  CAS  Google Scholar 

  23. Dunnick WA, Shi J, Holden V, Fontaine C, Collins JT . The role of germline promoters and I exons in cytokine-induced gene-specific class switch recombination. J Immunol 2011; 186: 350–358.

    Article  CAS  Google Scholar 

  24. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T . Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000; 102: 553–563.

    Article  CAS  Google Scholar 

  25. Sellars M, Reina-San-Martin B, Kastner P, Chan S . Ikaros controls isotype selection during immunoglobulin class switch recombination. J Exp Med 2009; 206: 1073–1087.

    Article  CAS  Google Scholar 

  26. Peng SL, Szabo SJ, Glimcher LH . T-bet regulates IgG class switching and pathogenic autoantibody production. Proc Natl Acad Sci USA 2002; 99: 5545–5550.

    Article  CAS  Google Scholar 

  27. Klein U, Casola S, Cattoretti G, Shen Q, Lia M, Mo T et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol 2006; 7: 773–782.

    Article  CAS  Google Scholar 

  28. Thompson EC, Cobb BS, Sabbattini P, Meixlsperger S, Parelho V, Liberg D et al. Ikaros DNA-binding proteins as integral components of B cell developmental-stage-specific regulatory circuits. Immunity 2007; 26: 335–344.

    Article  CAS  Google Scholar 

  29. Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 1996; 5: 537–549.

    Article  CAS  Google Scholar 

  30. Sellars M, Reina-San-Martin B, Kastner P, Chan S . Ikaros controls isotype selection during immunoglobulin class switch recombination. J Exp Med 2009; 206: 1073–1087.

    Article  CAS  Google Scholar 

  31. Ma S, Pathak S, Mandal M, Trinh L, Clark MR, Lu R . Ikaros and Aiolos inhibit pre-B-cell proliferation by directly suppressing c-Myc expression. Mol Cell Biol 2010; 30: 4149–4158.

    Article  CAS  Google Scholar 

  32. Eisenbeis CF, Singh H, Storb U . Pip a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dev 1995; 9: 1377–1387.

    Article  CAS  Google Scholar 

  33. Cretney E, Xin A, Shi W, Minnich M, Masson F, Miasari M et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat Immunol 2011; 12: 304–311.

    Article  CAS  Google Scholar 

  34. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005; 434: 772–777.

    Article  CAS  Google Scholar 

  35. Yasuda K, Richez C, Maciaszek JW, Agrawal N, Akira S, Marshak-Rothstein A et al. Murine dendritic cell type I IFN production induced by human IgG-RNA immune complexes is IFN regulatory factor (IRF)5 and IRF7 dependent and is required for IL-6 production. J Immunol 2007; 178: 6876–6885.

    Article  CAS  Google Scholar 

  36. Kasturi SP, Skountzou I, Albrecht RA, Koutsonanos D, Hua T, Nakaya HI et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 2011; 470: 543–547.

    Article  CAS  Google Scholar 

  37. Savitsky DA, Yanai H, Tamura T, Taniguchi T, Honda K . Contribution of IRF5 in B cells to the development of murine SLE-like disease through its transcriptional control of the IgG2a locus. Proc Natl Acad Sci USA 2010; 107: 10154–10159.

    Article  CAS  Google Scholar 

  38. Gerth AJ, Lin L, Peng SL . T-bet regulates T-independent IgG2a class switching. Intern Immunol 2003; 15: 937–944.

    Article  CAS  Google Scholar 

  39. Liu N, Ohnishi N, Ni L, Akira S, Bacon KB . CpG directly induces T-bet expression and inhibits IgG1 and IgE switching in B cells. Nat Immunol 2003; 4: 687–693.

    Article  CAS  Google Scholar 

  40. Kim J, Sif S, Jones B, Jackson A, Koipally J, Heller E et al. Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 1999; 10: 345–355.

    Article  CAS  Google Scholar 

  41. Snapper CM, Paul WE . Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 1987; 236: 944–947.

    Article  CAS  Google Scholar 

  42. Sciammas R, Shaffer AL, Schatz JH, Zhao H, Staudt LM, Singh H . Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity 2006; 25: 225–236.

    Article  CAS  Google Scholar 

  43. Negishi H, Ohba Y, Yanai H, Takaoka A, Honma K, Yui K et al. Negative regulation of Toll-like-receptor signaling by IRF-4. Proc Natl Acad Sci USA 2005; 102: 15989–15994.

    Article  CAS  Google Scholar 

  44. Wan Y, Xiao H, Affolter J, Kim TW, Bulek K, Chaudhuri S et al. Interleukin-1 receptor-associated kinase 2 is critical for lipopolysaccharide-mediated post-transcriptional control. J Biol Chem 2009; 284: 10367–10375.

    Article  CAS  Google Scholar 

  45. Demaria O, Pagni PP, Traub S, de Gassart A, Branzk N, Murphy AJ et al. TLR8 deficiency leads to autoimmunity in mice. J Clin Invest 2010; 120: 3651–3662.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Stone RC, Feng D, Deng J, Singh S, Yang L, Fitzgerald-Bocarsly P et al. IRF5 activation in monocytes of SLE patients is triggered by circulating autoantigens independent of type I IFN. Arthritis Rheum 2012; 64: 788–798.

    Article  CAS  Google Scholar 

  47. Virgin HW, Todd JA . Metagenomics and personalized medicine. Cell 2011; 147: 44–56.

    Article  CAS  Google Scholar 

  48. Schur PH, Monroe M, Rothfield N . The gammaG subclass of antinuclear and antinucleic acid antibodies. Arthritis Rheum 1972; 15: 174–182.

    Article  CAS  Google Scholar 

  49. Casali P . Polyclonal B cell activation and antigen-driven antibody response as mechanisms of autoantibody production in SLE. Autoimmunity 1990; 5: 147–150.

    Article  CAS  Google Scholar 

  50. Fu Q, Zhao J, Qian X, Wong JL, Kaufman KM, Yu CY et al. Association of a functional IRF7 variant with systemic lupus erythematosus. Arthritis Rheum 2011; 63: 749–754.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the generosity of Drs T Mak, E Lien and T Taniguchi for the gift of Irf5−/− N6, Irf5−/− N10 and Irf7−/− mice, respectively, and M Diamond for sharing with us his observation on Dock2 mutation before publication. We also thank Drs P Gerhardt for her advice on the CSR protocols, K Gergopoulos and R Lu for the gift of Ikaros expression plasmids and IRF-5 retroviral vector, respectively. and S Vogel for the gift of anti STAT1 antibodies and critical comments on the manuscript. The advice of Jacqui Watts on mice mating and help from Y Woo and H Lee with mice genotyping is greatly appreciated. The work was supported by NIH AI067632 and 3RO1-AI1067632-05S1 grants to PMP and RO1 CA 66644 and NIH AI 073651 grants to EST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P M Pitha.

Ethics declarations

Competing interests

FK is a director at Ozgene, Ltd. The other authors have no conflict of interest to declare.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, CM., Roy, S., Nielsen, E. et al. Unique contribution of IRF-5-Ikaros axis to the B-cell IgG2a response. Genes Immun 13, 421–430 (2012). https://doi.org/10.1038/gene.2012.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2012.10

Keywords

This article is cited by

Search

Quick links