Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic control of susceptibility to infection with Plasmodium chabaudi chabaudi AS in inbred mouse strains

Abstract

To identify genetic effects modulating the blood stage replication of the malarial parasite, we phenotyped a group of 25 inbred mouse strains for susceptibility to Plasmodium chabaudi chabaudi AS infection (peak parasitemia, survival). A broad spectrum of responses was observed, with strains such as C57BL/6J being the most resistant (low parasitemia, 100% survival) and strains such as NZW/LacJ and C3HeB/FeJ being extremely susceptible (very high parasitemia and uniform lethality). A number of strains showed intermediate phenotypes and gender-specific effects, suggestive of rich genetic diversity in response to malaria in inbred strains. An F2 progeny was generated from SM/J (susceptible) and C57BL/6J (resistant) parental strains, and was phenotyped for susceptibility to P. chabaudi chabaudi AS. A whole-genome scan in these animals identified the Char1 locus (LOD=7.40) on chromosome 9 as a key regulator of parasite density and pointed to a conserved 0.4-Mb haplotype at Char1 that segregates with susceptibility/resistance to infection. In addition, a second locus was detected in [SM/J × C57BL/6J] F2 mice on the X chromosome (LOD=4.26), which was given the temporary designation Char11. These studies identify a conserved role of Char1 in regulating response to malaria in inbred mouse strains, and provide a prioritized 0.4-Mb interval for the search of positional candidates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Greenwood BM, Fidock DA, Kyle DE, Kappe SH, Alonso PL, Collins FH et al. Malaria: progress, perils, and prospects for eradication. J Clin Invest 2008; 118: 1266–1276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J et al. Artemisinin resistance in plasmodium falciparum malaria. N Engl J Med 2009; 361: 455–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Corbel V, N'Guessan R, Brengues C, Chandre F, Djogbenou L, Martin T et al. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Trop 2007; 101: 207–216.

    Article  CAS  PubMed  Google Scholar 

  4. Kwiatkowski DP . How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 2005; 77: 171–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bongfen SE, Laroque A, Berghout J, Gros P . Genetic and genomic analyses of host-pathogen interactions in malaria. Trends Parasitol 2009; 25: 417–422.

    Article  CAS  PubMed  Google Scholar 

  6. Weatherall DJ . Genetic variation and susceptibility to infection: the red cell and malaria. Br J Haematol 2008; 141: 276–286.

    Article  CAS  PubMed  Google Scholar 

  7. Allison AC . Genetic control of resistance to human malaria. Curr Opin Immunol 2009; 21: 499–505.

    Article  CAS  PubMed  Google Scholar 

  8. Rihet P, Traore Y, Abel L, Aucan C, Traore-Leroux T, Fumoux F . Malaria in humans: plasmodium falciparum blood infection levels are linked to chromosome 5q31-q33. Am J Hum Genet 1998; 63: 498–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Timmann C, Evans JA, Konig IR, Kleensang A, Ruschendorf F, Lenzen J et al. Genome-wide linkage analysis of malaria infection intensity and mild disease. PLoS Genet 2007; 3: e48.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Flori L, Kumulungui B, Aucan C, Esnault C, Traore AS, Fumoux F et al. Linkage and association between plasmodium falciparum blood infection levels and chromosome 5q31-q33. Genes Immun 2003; 4: 265–268.

    Article  CAS  PubMed  Google Scholar 

  11. Garcia A, Marquet S, Bucheton B, Hillaire D, Cot M, Fievet N et al. Linkage analysis of blood plasmodium falciparum levels: interest of the 5q31-q33 chromosome region. Am J Trop Med Hyg 1998; 58: 705–709.

    Article  CAS  PubMed  Google Scholar 

  12. Sakuntabhai A, Ndiaye R, Casademont I, Peerapittayamongkol C, Rogier C, Tortevoye P et al. Genetic determination and linkage mapping of plasmodium falciparum malaria related traits in Senegal. PLoS One 2008; 3: e2000.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jallow M, Teo YY, Small KS, Rockett KA, Deloukas P, Clark TG et al. Genome-wide and fine-resolution association analysis of malaria in West Africa. Nat Genet 2009; 41: 657–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lamb TJ, Brown DE, Potocnik AJ, Langhorne J . Insights into the immunopathogenesis of malaria using mouse models. Expert Rev Mol Med 2006; 8: 1–22.

    Article  PubMed  Google Scholar 

  15. Coltel N, Combes V, Hunt NH, Grau GE . Cerebral malaria—a neurovascular pathology with many riddles still to be solved. Curr Neurovasc Res 2004; 1: 91–110.

    Article  PubMed  Google Scholar 

  16. Li C, Seixas E, Langhorne J . Rodent malarias: the mouse as a model for understanding immune responses and pathology induced by the erythrocytic stages of the parasite. Med Microbiol Immunol 2001; 189: 115–126.

    Article  CAS  PubMed  Google Scholar 

  17. Stevenson MM, Riley EM . Innate immunity to malaria. Nat Rev Immunol 2004; 4: 169–180.

    Article  CAS  PubMed  Google Scholar 

  18. Fortin A, Stevenson MM, Gros P . Complex genetic control of susceptibility to malaria in mice. Genes Immun 2002; 3: 177–186.

    Article  CAS  PubMed  Google Scholar 

  19. Urban BC, Ing R, Stevenson MM . Early interactions between blood-stage plasmodium parasites and the immune system. Curr Top Microbiol Immunol 2005; 297: 25–70.

    CAS  PubMed  Google Scholar 

  20. Fortin A, Stevenson MM, Gros P . Susceptibility to malaria as a complex trait: big pressure from a tiny creature. Hum Mol Genet 2002; 11: 2469–2478.

    Article  CAS  PubMed  Google Scholar 

  21. Fortin A, Belouchi A, Tam MF, Cardon L, Skamene E, Stevenson MM et al. Genetic control of blood parasitaemia in mouse malaria maps to chromosome 8. Nat Genet 1997; 17: 382–383.

    Article  CAS  PubMed  Google Scholar 

  22. Foote SJ, Burt RA, Baldwin TM, Presente A, Roberts AW, Laural YL et al. Mouse loci for malaria-induced mortality and the control of parasitaemia. Nat Genet 1997; 17: 380–381.

    Article  CAS  PubMed  Google Scholar 

  23. Lin E, Pappenfuss T, Tan RB, Senyschyn D, Bahlo M, Speed TP et al. Mapping of the plasmodium chabaudi resistance locus char2. Infect Immun 2006; 74: 5814–5819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burt RA, Baldwin TM, Marshall VM, Foote SJ . Temporal expression of an H2-linked locus in host response to mouse malaria. Immunogenetics 1999; 50: 278–285.

    Article  CAS  PubMed  Google Scholar 

  25. Hernandez-Valladares M, Naessens J, Gibson JP, Musoke AJ, Nagda S, Rihet P et al. Confirmation and dissection of QTL controlling resistance to malaria in mice. Mamm Genome 2004; 15: 390–398.

    Article  PubMed  Google Scholar 

  26. Hernandez-Valladares M, Rihet P, ole-MoiYoi OK, Iraqi FA . Mapping of a new quantitative trait locus for resistance to malaria in mice by a comparative mapping approach with human chromosome 5q31-q33. Immunogenetics 2004; 56: 115–117.

    Article  CAS  PubMed  Google Scholar 

  27. Fortin A, Diez E, Rochefort D, Laroche L, Malo D, Rouleau GA et al. Recombinant congenic strains derived from A/J and C57BL/6J: a tool for genetic dissection of complex traits. Genomics 2001; 74: 21–35.

    Article  CAS  PubMed  Google Scholar 

  28. Fortin A, Cardon LR, Tam M, Skamene E, Stevenson MM, Gros P . Identification of a new malaria susceptibility locus (Char4) in recombinant congenic strains of mice. Proc Natl Acad Sci USA 2001; 98: 10793–10798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Min-Oo G, Fortin A, Tam MF, Nantel A, Stevenson MM, Gros P . Pyruvate kinase deficiency in mice protects against malaria. Nat Genet 2003; 35: 357–362.

    Article  CAS  PubMed  Google Scholar 

  30. Min-Oo G, Tam M, Stevenson MM, Gros P . Pyruvate kinase deficiency: correlation between enzyme activity, extent of hemolytic anemia and protection against malaria in independent mouse mutants. Blood Cells Mol Dis 2007; 39: 63–69.

    Article  CAS  PubMed  Google Scholar 

  31. Ayi K, Min-Oo G, Serghides L, Crockett M, Kirby-Allen M, Quirt I et al. Pyruvate kinase deficiency and malaria. N Engl J Med 2008; 358: 1805–1810.

    Article  CAS  PubMed  Google Scholar 

  32. Ayi K, Liles WC, Gros P, Kain KC . Adenosine triphosphate depletion of erythrocytes simulates the phenotype associated with pyruvate kinase deficiency and confers protection against Plasmodium falciparum in vitro. J Infect Dis 2009; 200: 1289–1299.

    Article  CAS  PubMed  Google Scholar 

  33. Min-Oo G, Fortin A, Pitari G, Tam M, Stevenson MM, Gros P . Complex genetic control of susceptibility to malaria: positional cloning of the Char9 locus. J Exp Med 2007; 204: 511–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Min-Oo G, Ayi K, Bongfen SE, Tam M, Radovanovic I, Gauthier S et al. Cysteamine, the natural metabolite of pantetheinase, shows specific activity against Plasmodium. Exp Parasitol 2010; 125: 315–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Min-Oo G, Fortin A, Poulin JF, Gros P . Cysteamine, the molecule used to treat cystinosis, potentiates the antimalarial efficacy of artemisinin. Antimicrob Agents Chemother 2010; 54: 3262–3270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Min-Oo G, Willemetz A, Tam M, Canonne-Hergaux F, Stevenson MM, Gros P . Mapping of Char10, a novel malaria susceptibility locus on mouse chromosome 9. Genes Immun 2010; 11: 113–123.

    Article  CAS  PubMed  Google Scholar 

  37. Paigen K, Eppig JT . A mouse phenome project. Mamm Genome 2000; 11: 715–717.

    Article  CAS  PubMed  Google Scholar 

  38. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ et al. Efficient control of population structure in model organism association mapping. Genetics 2008; 178: 1709–1723.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ohno T, Ishih A, Kohara Y, Yonekawa H, Terada M, Nishimura M . Chromosomal mapping of the host resistance locus to rodent malaria (Plasmodium yoelii) infection in mice. Immunogenetics 2001; 53: 736–740.

    Article  CAS  PubMed  Google Scholar 

  40. Wunderlich F, Marinovski P, Benten WP, Schmitt-Wrede HP, Mossmann H . Testosterone and other gonadal factor(s) restrict the efficacy of genes controlling resistance to Plasmodium chabaudi malaria. Parasite Immunol 1991; 13: 357–367.

    Article  CAS  PubMed  Google Scholar 

  41. Krucken J, Dkhil MA, Braun JV, Schroetel RM, El-Khadragy M, Carmeliet P et al. Testosterone suppresses protective responses of the liver to blood-stage malaria. Infect Immun 2005; 73: 436–443.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wunderlich F, Mossmann H, Helwig M, Schillinger G . Resistance to Plasmodium chabaudi in B10 mice: influence of the H-2 complex and testosterone. Infect Immun 1988; 56: 2400–2406.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 2007; 4: 651–657.

    Article  CAS  PubMed  Google Scholar 

  44. Cheverud JM . A simple correction for multiple comparisons in interval mapping genome scans. Heredity 2001; 87 (Pt 1): 52–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Molly Bogue, Director of the mouse Phenome Project at the Jackson Laboratory, for providing mice and Dr Gary Churchill at the Jackson Laboratory for sharing a list of 28 000 SNPs from Chr. 9. We also thank Dr Tamio Ohno at Nagoya University for providing DNA from NC/Jic mice, and further acknowledge Susan Gauthier for breeding and maintaining the mice. This work was supported by a CIHR Team Grant in Malaria (CTP 79842) and operating grant MOP-79343 (PG), FRSQ (AL) and CIHR (GM-O, AL) studentships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Gros.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laroque, A., Min-Oo, G., Tam, M. et al. Genetic control of susceptibility to infection with Plasmodium chabaudi chabaudi AS in inbred mouse strains. Genes Immun 13, 155–163 (2012). https://doi.org/10.1038/gene.2011.67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2011.67

Keywords

This article is cited by

Search

Quick links