Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Early endosome localization and activity of RasGEF1b, a toll-like receptor-inducible Ras guanine-nucleotide exchange factor

Abstract

Guanine-nucleotide exchange factors (GEFs) stimulate the intrinsic GDP/GTP exchange activity of Ras and promote the formation of active Ras–GTP, which in turn controls diverse signalling networks important for the regulation of cell proliferation, survival, differentiation, vesicular trafficking, and gene expression. RasGEF1b is a GEF, whose expression is induced in macrophages on stimulation with toll-like receptor (TLR) agonists. Here, we showed that in vitro RasGEF1b expression by macrophages is mostly induced by TLR3 (poly I:C) and TLR4 (lipopolysaccharyde) through the MyD88-independent pathway. In vivo infection with the protozoan parasites Trypanosoma cruzi and Plasmodium chabaudi induced RasGEF1b in an MyD88-, TRIF-, and IFN-γ-dependent manner. Ectopically expressed RasGEF1b was found, mostly, in the heavy membrane fraction of HEK 293T, and by confocal microscopy, it was found to be located at early endosomes. Computational modelling of the RasGEF1b–Ras interaction revealed that RasGEF1b interacts with the binding domain site of Ras, a critical region for interacting with GEFs involved in the activation of Ras-Raf-MEK-ERK pathway. More important, RasGEF1b was found to be closely associated with Ras in live cells and to trigger Ras activity. Altogether, these results indicate that on TLR activation, RasGEF1b may trigger Ras-like proteins and regulate specific biological activities described for this subtype of GTPases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Akira S, Uematsu S, Takeuchi O . Pathogen recognition and innate immunity. Cell 2006; 124: 783–801.

    Article  CAS  Google Scholar 

  2. Akira S, Takeda K . Toll-like receptor signaling. Nat Rev Immunol 2004; 4: 499–511.

    Article  CAS  Google Scholar 

  3. Wennerberg K, Rossman KL, Der CJ . The Ras superfamily at a glance. J Cell Sci 2005; 118: 843–846.

    Article  CAS  Google Scholar 

  4. Quilliam LA, Rebhun JF, Castro AF . A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. Prog Nucleic Acid Res Mol Biol 2002; 71: 391–444.

    Article  CAS  Google Scholar 

  5. Ferreira LR, Abrantes EF, Rodrigues CV, Caetano B, Cerqueira GC, Salim AC et al. Identification and characterization of a novel mouse gene encoding a Ras-associated guanine nucleotide exchange factor: expression in macrophages and myocarditis elicited by Trypanosoma cruzi parasites. J Leukoc Biol 2002; 72: 1215–1227.

    CAS  PubMed  Google Scholar 

  6. Chardin P, Camonis JH, Gale NW, Van Aelst L, Schlessinger J, Wigler MH et al. D.Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2 1993; 260: 1338–1343.

  7. Chen JM, Friedman FK, Hyde MJ, Monaco R, Pincus MR . Molecular dynamics analysis of the structures of ras-guanine nucleotide exchange protein (SOS) bound to wild-type and oncogenic ras-p21. Identification of effector domains of SOS. Protein Chem 1999; 18: 867–874.

    Article  CAS  Google Scholar 

  8. Campos MA, Almeida IC, Takeuchi O, Akira S, Valente EP, Procopio DO et al. Activation of toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol 2001; 167: 416–423.

    Article  CAS  Google Scholar 

  9. Ura K, Obama K, Satoh S, Sakai Y, Nakamura Y, Furukawa Y . Enhanced RASGEF1A expression is involved in the growth and migration of intrahepatic cholangiocarcinoma. Clin Cancer Res 2006; 12: 6611–6616.

    Article  CAS  Google Scholar 

  10. Dai LC, Xu DY, Yao X, Min LS, Zhao N, Xu BY et al. Construction of a fusion protein expression vector MK-EGFP and its subcellular localization in different carcinoma cell lines. World J Gastroenterol 2006; 12: 7649–7653.

    Article  CAS  Google Scholar 

  11. Ehrhardt A, Ehrhardt GR, Guo X, Schrader JW . Ras and relatives—job sharing and networking keep an old family together. Exp Hematol 2002; 30: 1089–1106.

    Article  CAS  Google Scholar 

  12. Quilliam LA, Khosravi-Far R, Huff SY, Der CJ . Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins. Bioessays 1995; 17: 395–404.

    Article  CAS  Google Scholar 

  13. Satoh T, Nakafuku M, Kaziro Y . Function of Ras as a molecular switch in signal transduction. J Biol Chem 1992; 267: 24149–24152.

    CAS  PubMed  Google Scholar 

  14. Lowy DR, Willumsen BM . Function and regulation of Ras. Annu Rev Biochem 1993; 62: 851–891.

    Article  CAS  Google Scholar 

  15. Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ . Increasing complexity of Ras signaling. Oncogene 1998; 17: 1395–1413.

    Article  CAS  Google Scholar 

  16. Jaumot M, Yan J, Clyde-Smith J, Sluimer J, Hancock JF . The linker domain of the H-Ras hypervariable region regulates interactions with exchange factors, Raf-1 and phosphoinositide 3-kinase. J Biol Chem 2002; 277: 272–278.

    Article  CAS  Google Scholar 

  17. Lewis V, Green SA, Marsh M, Vihko P, Helenius A, Mellman I . Glycoproteins of the lysosomal membrane. J Cell Biol 1985; 100: 1839–1847.

    Article  CAS  Google Scholar 

  18. Hamer PJ, Trimpe KL, Pullano T, Ng S, LaVecchio JA, Petit DA et al. Production and characterization of anti-RAS p21 monoclonal antibodies. Hybridoma 1990; 9: 573–587.

    Article  CAS  Google Scholar 

  19. Broek D, Toda T, Michaeli T, Levin L, Birchmeier C, Zoller M et al. The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase 1987; 48: 789–799.

  20. Gulbins E, Langlet C, Baier G, Bonnefoy-Berard N, Herbert E, Altman A et al. Tyrosine phosphorylation and activation of Vav GTP/GDP exchange activity in antigen receptor-triggered B cells. J Immunol 1994; 152: 2123–2129.

    CAS  PubMed  Google Scholar 

  21. Tognon CE, Kirk HE, Passmore LA, Whitehead IP, Der CJ, Kay RJ . Regulation of RasGRP via a phorbol ester-responsive C1 domain. Cell Biol 1998; 18: 6995–7008.

    CAS  Google Scholar 

  22. Kang G, Chepurny OG, Holz GG . cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic beta-cells. J Physiol 2001; 536: 375–385.

    Article  CAS  Google Scholar 

  23. Topham MK, Prescott SM . Diacylglycerol kinase zeta regulates Ras activation by a novel mechanism. J Cell Biol 2001; 152: 1135–1143.

    Article  CAS  Google Scholar 

  24. Korotayev K, Chaussepied M, Ginsberg D . ERK activation is regulated by E2F1 and is essential for E2F1-induced S phase entry. Cell Signal 2008; 20: 1221–1226.

    Article  CAS  Google Scholar 

  25. Epting D, Vorwerk S, Hageman A, Meyer D . Expression of rasgef1b in zebrafish. Gene Expr Patterns 2007; 7: 389–395.

    Article  CAS  Google Scholar 

  26. Miletic AV, Graham DB, Montgrain V, Fujikawa K, Kloeppel T, Brim K et al. Vav proteins control MyD88-dependent oxidative burst. Blood 2007; 109: 3360–3368.

    Article  CAS  Google Scholar 

  27. Apolloni A, Prior IA, Lindsay M, Parton RG, Hancock JF . H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol Cell Biol 2000; 20: 2475–2487.

    Article  CAS  Google Scholar 

  28. Chiu VK, Bivona T, Hach A, Sajous JB, Silletti J, Wiener H et al. Ras signaling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 2002; 4: 343–350.

    Article  CAS  Google Scholar 

  29. Bos JL, de Rooij J, Reedquist KA . Rap1 signalling: adhering to new models. Nat Rev Mol Cell Biol 2001; 2: 369–377.

    Article  CAS  Google Scholar 

  30. Yaman E, Gasper R, Koerner C, Wittinghofer A, Tazebay UH . RasGEF1A and RasGEF1B are guanine nucleotide exchange factors that discriminate between Rap GTP-binding proteins and mediate Rap2-specific nucleotide exchange. FEBS J 2009; 276: 4607–4616.

    Article  CAS  Google Scholar 

  31. Margarit SM, Sondermann H, Hall BE, Nagar B, Hoelz A, Pirruccello M et al. Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS. Cell 2003; 112: 685–695.

    Article  CAS  Google Scholar 

  32. Hall BE, Bar-Sagi D, Nassar N . The structural basis for the transition from Ras-GTP to Ras-GDP. Proc Natl Acad Sci USA 2002; 99: 12138–12142.

    Article  CAS  Google Scholar 

  33. Hisata S, Sakisaka T, Baba T, Yamada T, Aoki K, Matsuda M et al. Rap1-PDZ-GEF1 interacts with a neurotrophin receptor at late endosomes, leading to sustained activation of Rap1 and ERK and neurite outgrowth. J Cell Biol 2007; 178: 843–860.

    Article  CAS  Google Scholar 

  34. Dower NA, Stang SL, Bottorff DA, Ebinu JO, Dickie P, Ostergaard HL et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat Immunol 2000; 1: 317–321.

    Article  CAS  Google Scholar 

  35. Hebeis B, Vigorito E, Kovesdi D, Turner M . Vav proteins are required for B-lymphocyte responses to LPS. Blood 2005; 106: 635–640.

    Article  CAS  Google Scholar 

  36. Genot E, Cleverley S, Henning S, Cantrell D . Multiple p21ras effector pathways regulate nuclear factor of activated T cells. EMBO J 1996; 15: 3923–3933.

    Article  CAS  Google Scholar 

  37. Shibolet O, Giallourakis C, Rosenberg I, Mueller T, Xavier RJ, Podolsky DK . AKAP13, a RhoA GTPase-specific guanine exchange factor, is a novel regulator of TLR2 signaling. J Biol Chem 2007; 282: 35308–35317.

    Article  CAS  Google Scholar 

  38. Xu H, An H, Yu Y, Zhang M, Qi R, Cao X . Ras participates in CpG oligodeoxynucleotide signaling through association with toll-like receptor 9 and promotion of interleukin-1 receptor-associated kinase/tumor necrosis factor receptor-associated factor 6 complex formation in macrophages. J Biol Chem 2003; 278: 36334–36340.

    Article  CAS  Google Scholar 

  39. Chen C, Okayama H . High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 1987; 7: 2745–2752.

    Article  CAS  Google Scholar 

  40. Lambert C, Leonard N, De Bolle X, Depiereux E . ESyPred3D: prediction of proteins 3D structures. Bioinformatics 2002; 18: 1250–1256.

    Article  CAS  Google Scholar 

  41. Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, Kuriyan J . The structural basis of the activation of Ras by Sos. Nature 1998; 394: 337–343.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Ronaldo Nagem for help and advice regarding the virtual analysis of RasGEF1b. This study was supported by FAPEMIG, the National Institute of Science and Technology for Vaccine Development/CNPq and the Ludwig Institute of Cancer Research—Atlantic Philanthropy—Program for Clinical Discovery. RTG and AMS are research fellows of CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R T Gazzinelli.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, W., Silva, A., Alves, V. et al. Early endosome localization and activity of RasGEF1b, a toll-like receptor-inducible Ras guanine-nucleotide exchange factor. Genes Immun 11, 447–457 (2010). https://doi.org/10.1038/gene.2009.107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2009.107

Keywords

This article is cited by

Search

Quick links