Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

The Sp1 transcription factor binds to the G-allele of the –1087 IL-10 gene polymorphism and enhances transcriptional activation

Abstract

The objectives of this study were to evaluate the influence of the −1087 single nucleotide polymorphism (SNP) on the gene expression of interleukin (IL)-10 and to identify transcription factors binding to this site in B cells. Using electrophoretic mobility-shift assays and nuclear extract from the DG75 B-cell line, we demonstrated that the Sp1 transcription factor bound to the −1087 G-allele of the IL-10 promoter and that the transcription factors PU.1 and Spi-B bound to both the G- and A-alleles. Transient transfections showed that lipopolysaccharide stimulation resulted in a 15-fold increase in promoter activity for the G-allele as compared to a 6-fold increase for the A-allele. Co-transfection with Sp1 expression vector in Sp1-deficient SL2 cells leading to Sp1 binding to the G-allele of the −1087 SNP resulted in increased IL-10 promoter activity. The results suggest a role for Sp1 transcription factor in the activation of IL-10 through the G-allele of the −1087 SNP in response to inflammatory signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Csiszár A, Nagy GY, Gergely P, Pozsony T, Pócsik E . Increased interferon-gamma (IFN-gamma), IL-10 and decreased IL-4 mRNA expression in peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE). Clin Exp Immunol 2000; 122: 464–470.

    Article  Google Scholar 

  2. Fiorentino DF, Bond MW, Mosmann TR . Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 1989; 170: 2081–2095.

    Article  CAS  Google Scholar 

  3. Borish L . IL-10: evolving concepts. J Allergy Clin Immunol 1998; 101: 293–297.

    Article  CAS  Google Scholar 

  4. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A . Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19: 683–765.

    Article  CAS  Google Scholar 

  5. Burdin N, Rousset F, Banchereau J . B-cell-derived IL-10: production and function. Methods 1997; 11: 98–111.

    Article  CAS  Google Scholar 

  6. Llorente L, Richaud-Patin Y, Wijdenes J, Alcocer-Varela J, Maillot MC, Durand-Gasselin I et al. Spontaneous production of interleukin-10 by B lymphocytes and monocytes in systemic lupus erythematosus. Eur Cytokine Netw 1993; 4: 421–427.

    CAS  PubMed  Google Scholar 

  7. Llorente L, Richaud-Patin Y, Fior R, Alcocer-Varela J, Wijdenes J, Fourrier BM et al. In vivo production of interleukin-10 by non-T cells in rheumatoid arthritis, Sjogren's syndrome, and systemic lupus erythematosus. A potential mechanism of B lymphocyte hyperactivity and autoimmunity. Arthritis Rheum 1994; 37: 1647–1655.

    Article  CAS  Google Scholar 

  8. Mongan AE, Ramdahin S, Warrington RJ . Interleukin-10 response abnormalities in systemic lupus erythematosus. Scand J Immunol 1997; 46: 406–412.

    Article  CAS  Google Scholar 

  9. O’Garra A, Chang R, Go N, Hastings R, Haughton G, Howard M . Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10. Eur J Immunol 1992; 22: 711–717.

    Article  Google Scholar 

  10. Burastero SE, Casali P, Wilder RL, Notkins AL . Monoreactive high affinity and polyreactive low affinity rheumatoid factors are produced by CD5+ B cells from patients with rheumatoid arthritis. J Exp Med 1988; 168: 1979–1992.

    Article  CAS  Google Scholar 

  11. Dauphinée M, Tovar Z, Talal N . B cells expressing CD5 are increased in Sjogren's syndrome. Arthritis Rheum 1988; 31: 642–647.

    Article  Google Scholar 

  12. Zheng NY, Wilson K, Wang X, Boston A, Kolar G, Jackson SM et al. Human immunoglobulin selection associated with class switch and possible tolerogenic origins for C delta class-switched B cells. J Clin Invest 2004; 113: 1188–1201.

    Article  CAS  Google Scholar 

  13. Berglundh T, Liljenberg B, Tarkowski A, Lindhe J . The presence of local and circulating autoreactive B cells in patients with advanced periodontitis. J Clin Periodontol 2002; 29: 281–286.

    Article  Google Scholar 

  14. Sugawara M, Yamashita K, Yoshie H, Hara K . Detection of, and anti-collagen antibody produced by, CD5-positive B cells in inflamed gingival tissues. J Periodontal Res 1992; 27: 489–498.

    Article  CAS  Google Scholar 

  15. Aramaki M, Nagasawa T, Koseki T, Ishikawa I . Presence of activated B-1 cells in chronic inflamed gingival tissue. J Clin Immunol 1998; 18: 421–429.

    Article  CAS  Google Scholar 

  16. Tabeta K, Yamazaki K, Hotokezaka H, Yoshie H, Hara K . Elevated humoral immune response to heat shock protein 60 (hsp60) family in periodontitis patients. Clin Exp Immunol 2000; 120: 285–293.

    Article  CAS  Google Scholar 

  17. Jonsson R, Pitts A, Lue C, Gay S, Mestecky J . Immunoglobulin isotype distribution of locally produced autoantibodies to collagen type I in adult periodontitis. Relationship to periodontal treatment. J Clin Periodontol 1991; 18: 703–707.

    Article  CAS  Google Scholar 

  18. Rajapakse PS, Dolby AE . Evidence for local production of antibodies to auto and non-self antigens in periodontal disease. Oral Dis 2004; 10: 99–105.

    Article  CAS  Google Scholar 

  19. Hirsch HZ, Tarkowski A, Miller EJ, Gay S, Koopman WJ, Mestecky J . Autoimmunity to collagen in adult periodontal disease. J Oral Pathol 1988; 17: 456–459.

    Article  CAS  Google Scholar 

  20. Kube D, Platzer C, von Knethen A, Straub H, Bohlen H, Hafner M et al. Isolation of the human interleukin 10 promoter. Characterization of the promoter activity in Burkitt's lymphoma cell lines. Cytokine 1995; 7: 1–7.

    Article  CAS  Google Scholar 

  21. Kube D, Rieth H, Eskdale J, Kremsner PG, Gallagher G . Structural characterisation of the distal 5′ flanking region of the human. Genes Immun 2001; 2: 181–190.

    Article  CAS  Google Scholar 

  22. Eskdale J, Kube D, Tesch H, Gallagher G . Mapping of the human IL10 gene and further characterization of the 5′ flanking sequence. Immunogenetics 1997; 46: 120–128.

    Article  CAS  Google Scholar 

  23. Rees LE, Wood NA, Gillespie KM, Lai KN, Gaston K, Mathieson PW . The interleukin-10-1082 G/A polymorphism: allele frequency in different populations and functional significance. Cell Mol Life Sci 2002; 59: 560–569.

    Article  CAS  Google Scholar 

  24. Reuss E, Fimmers R, Kruger A, Becker C, Rittner C, Hohler T . Differential regulation of interleukin-10 production by genetic and environmental factors—a twin study. Genes Immun 2002; 3: 407–413.

    Article  CAS  Google Scholar 

  25. Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ, Hutchinson IV . An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 1997; 24: 1–8.

    Article  CAS  Google Scholar 

  26. Hoffmann SC, Stanley EM, Cox ED, Craighead N, DiMercurio BS, Koziol DE et al. Association of cytokine polymorphic inheritance and in vitro cytokine production in anti-CD3/CD28-stimulated peripheral blood lymphocytes. Transplantation 2001; 72: 1444–1450.

    Article  CAS  Google Scholar 

  27. Mörmann M, Rieth H, Hua TD, Assohou C, Roupelieva M, Hu SL et al. Mosaics of gene variations in the interleukin-10 gene promoter affect interleukin-10 production depending on the stimulation used. Genes Immun 2004; 5: 246–255.

    Article  Google Scholar 

  28. Crawley E, Kay R, Sillibourne J, Patel P, Hutchinson I, Woo P . Polymorphic haplotypes of the interleukin-10 5′ flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthritis. Arthritis Rheum 1999; 42: 1101–1108.

    Article  CAS  Google Scholar 

  29. Kremer KN, Kumar A, Hedin KE . Haplotype-independent costimulation of IL-10 secretion by SDF-1/CXCL12 proceeds via AP-1 binding to the human IL-10 promoter. J Immunol 2007; 178: 1581–1588.

    Article  CAS  Google Scholar 

  30. Donati M, Liljenberg B, Padyukov L, Berglundh T . Local expression of interleukin-10 and mCD14 in relation to the −1087IL10 and the −159CD14 gene polymorphisms in chronic periodontitis. J Periodontol 2008; 79: 517–524.

    Article  CAS  Google Scholar 

  31. Berglundh T, Donati M, Hahn-Zoric M, Hanson LA, Padyukov L . Association of the −1087 IL 10 gene polymorphism with severe chronic periodontitis in Swedish caucasians. J Clin Periodontol 2003; 30: 249–254.

    Article  Google Scholar 

  32. Sjöblom A, Yang W, Palmqvist L, Jansson A, Rymo L . An ATF/CRE element mediates both EBNA2-dependent and EBNA2-independent activation of the Epstein–Barr virus LMP1 gene promoter. J Virol 1998; 72: 1365–1376.

    PubMed  PubMed Central  Google Scholar 

  33. Steinke JW, Barekzi E, Hagman J, Borish L . Functional analysis of −571 IL-10 promoter polymorphism reveals a repressor element controlled by sp1. J Immunol 2004; 173: 3215–3222.

    Article  CAS  Google Scholar 

  34. Liu Y-W, Tseng H-P, Chen L-C, Chen B-K, Chang W-C . Functional cooperation of simian virus 40 promoter factor 1 and CCAAT/enhancer-binding protein beta and delta in lipopolysaccharide-induced gene activation of IL-10 in mouse macrophages. J Immunol 2003; 171: 821–828.

    Article  CAS  Google Scholar 

  35. Brightbill HD, Plevy SE, Modlin RL, Smale ST . A prominent role for Sp1 during lipopolysaccharide-mediated induction of the IL-10 promoter in macrophages. J Immunol 2000; 164: 1940–1951.

    Article  CAS  Google Scholar 

  36. Borràs FE, Lloberas J, Maki RA, Celada A . Repression of I-A beta gene expression by the transcription factor PU.1. J Biol Chem 1995; 270: 24385–24391.

    Article  Google Scholar 

  37. Garrett-Sinha LA, Su GH, Rao S, Kabak S, Hao Z, Clark MR et al. PU.1 and Spi-B are required for normal B cell receptor-mediated signal transduction. Immunity 1999; 10: 399–408.

    Article  CAS  Google Scholar 

  38. Chanteux H, Guisset AC, Pilette C, Sibille Y . LPS induces IL-10 production by human alveolar macrophages via MAPKinases- and Sp1-dependent mechanisms. Respir Res 2007; 8: 71.

    Article  Google Scholar 

  39. Tone M, Powell MJ, Tone Y, Thompson SA, Waldmann H . IL-10 gene expression is controlled by the transcription factors Sp1 and Sp3. J Immunol 2000; 165: 286–291.

    Article  CAS  Google Scholar 

  40. Miyake K . Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol 2004; 12: 186–192.

    Article  CAS  Google Scholar 

  41. Ma W, Lim W, Gee K, Aucoin S, Nandan D, Kozlowski M et al. The p38 mitogen-activated kinase pathway regulates the human interleukin-10 promoter via the activation of Sp1 transcription factor in lipopolysaccharide-stimulated human macrophages. J Biol Chem 2001; 276: 13664–13674.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The current project was supported by grants from TUA Research, University of Gothenburg and Swedish Dental Society. We thank Dr Karen E Hedin (Department of Immunology, Mayo Clinic, Rochester, MN, USA) for providing the IL-10 GCC and ACC expression plasmids, G Suske (Klinikum der Philipps-Universität Marburg, Marburg, Germany) for the pPacO and the pPacSp1 expression plasmids and Cecilia Boreström (Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg) for assistance with the SL2 transfections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Berglundh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsson, L., Johansson, P., Jansson, A. et al. The Sp1 transcription factor binds to the G-allele of the –1087 IL-10 gene polymorphism and enhances transcriptional activation. Genes Immun 10, 280–284 (2009). https://doi.org/10.1038/gene.2008.79

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.79

Keywords

This article is cited by

Search

Quick links