Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A functional polymorphism of the vasoactive intestinal peptide receptor 1 gene correlates with the presence of HLA-B *2705 in Sardinia

Abstract

The association of HLA-B27 with ankylosing spondylitis (AS) is the strongest among all inflammatory diseases. However, the exact role of these molecules in disease pathogenesis is still unknown. The existence of HLA-B27 variants rarely found in patients introduces a further level of complexity. It is now accepted that other genes of minor impact contribute to modify disease susceptibility and these genes might be diverse in different populations depending on the genetic background. We report here a study performed in Sardinia, an outlier population in which two major HLA-B27 subtypes are present, B *2705 strongly associated with AS and B *2709 which is not, and show the co-occurrence of the B *2705 allele with a single nucleotide polymorphism (SNP) mapping at 3′-UTR of the receptor 1 (VIPR1) for the vasoactive intestinal peptide (VIP), a neuropeptide with anti-inflammatory properties. This same SNP is associated with a different kinetics of down-modulation of the VIPR1 mRNA in monocytes after exposure to lipopolysaccharide (P=0.004). This particular setting, HLA-B *2705 and a functional polymorphism in VIPR1 gene, might be due to a founder effect or might be the result of a selective pressure. Irrespectively, the consequent downregulation of this receptor in the presence of a ‘danger’ signal might influence susceptibility to AS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Voice JK, Dorsam G, Chan RC, Grinninger C, Kong Y, Goetzl EJ . Immunoeffector and immunoregulatory activities of vasoactive intestinal peptide. Regul Pept 2002; 109: 199–208.

    Article  CAS  Google Scholar 

  2. Sreedharan SP, Huang JX, Cheung MC, Goetzl EJ . Structure, expression, and chromosomal localization of the type I human vasoactive intestinal peptide receptor gene. Proc Natl Acad Sci USA 1995; 92: 2939–2943.

    Article  CAS  Google Scholar 

  3. Pozo D, Delgado M . The many faces of VIP in neuroimmunology: a cytokine rather than a neuropeptide? FASEB J 2004; 18: 1325–1334.

    Article  CAS  Google Scholar 

  4. Gonzalez-Rey E, Chorny A, Fernandez-Martin A, Ganea D, Delgado M . Vasoactive intestinal peptide generates human tolerogenic dendritic cells that induce CD4 and CD8 regulatory T cells. Blood 2006; 107: 3632–3638.

    Article  CAS  Google Scholar 

  5. Gonzalez-Rey E, Delgado M . Therapeutic treatment of experimental colitis with regulatory dendritic cells generated with vasoactive intestinal peptide. Gastroenterology 2006; 131: 1799–1811.

    Article  CAS  Google Scholar 

  6. Gonzalez-Rey E, Fernandez-Martin A, Chorny A, Delgado M . Vasoactive intestinal peptide induces CD4+, CD25+ T regulatory cells with therapeutic effect in collagen-induced arthritis. Arthritis Rheum 2006; 54: 864–876.

    Article  CAS  Google Scholar 

  7. Fernandez-Martin A, Gonzalez-Rey E, Chorny A, Martin J, Pozo D, Ganea D et al. VIP prevents experimental multiple sclerosis by downregulating both inflammatory and autoimmune components of the disease. Ann NY Acad Sci 2006; 1070: 276–281.

    Article  CAS  Google Scholar 

  8. Martínez C, Arranz A, Juarranz Y, Abad C, García-Gómez M, Rosignoli F et al. PAC1 receptor: emerging target for septic shock therapy. Ann NY Acad Sci 2006; 1070: 405–410.

    Article  Google Scholar 

  9. Tunçel N, Sener E, Cerit C, Karasu U, Gürer F, Sahintürk V et al. Brain mast cells and therapeutic potential of vasoactive intestinal peptide in a Parkinson's disease model in rats: brain microdialysis, behavior, and microscopy. Peptides 2005; 26: 827–836.

    Article  Google Scholar 

  10. Lodde BM, Mineshiba F, Wang J, Cotrim AP, Afione S, Tak PP et al. Effect of human vasoactive intestinal peptide gene transfer in a murine model of Sjogren's syndrome. Ann Rheum Dis 2006; 65: 195–200.

    Article  CAS  Google Scholar 

  11. Lara-Marquez M, O'Dorisio M, O'Dorisio T, Shah M, Karacay B . Selective gene expression and activation-dependent regulation of vasoactive intestinal peptide receptor type 1 and type 2 in human T cells. J Immunol 2001; 166: 2522–2530.

    Article  CAS  Google Scholar 

  12. Brewerton DA, Hart FD, Nicholls A, Caffrey M, James DCO, Sturrock RD . Ankylosing spondylitis and HL-A 27. Lancet 1973; 40: 904–907.

    Article  Google Scholar 

  13. Benjamin R, Parham P . Guilty by association: HLA-B27 and ankylosing spondylitis. Immunol Today 1990; 11: 137–142.

    Article  CAS  Google Scholar 

  14. Ramos S, Lopez de Castro JA . HLA-B27 and the pathogenesis of spondyloarthropathies. Tissue Antigens 2002; 60: 191–205.

    Article  CAS  Google Scholar 

  15. Brown MA, Kennedy LG, MacGregor AJ, Darke C, Duncan E, Shatford JL et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum 1997; 40: 1823–1828.

    Article  CAS  Google Scholar 

  16. Reveille JD, Ball EJ, Khan MA . HLA-B27 and genetic predisposing factors in spondyloarthropathies. Curr Opin Rheumatol 2001; 13: 265–272.

    Article  CAS  Google Scholar 

  17. Wright AF, Carothers AD, Pirastu M . Population choice in mapping genes for complex diseases. Nat Genet 1999; 23: 397–404.

    Article  CAS  Google Scholar 

  18. Lampis R, Morelli L, Congia M, Macis MD, Mulargia A, Loddo M et al. The inter-regional distribution of HLA class II haplotypes indicates the suitability of the Sardinian population for case–control association studies in complex diseases. Hum Mol Genet 2000; 9: 2959–2965.

    Article  CAS  Google Scholar 

  19. Fiorillo MT, Cauli A, Carcassi C, Bitti PP, Vacca A, Passiu G et al. Two distinctive HLA haplotypes harbor the B27 alleles negatively or positively associated with ankylosing spondylitis in Sardinia: implications for disease pathogenesis. Arthritis Rheum 2003; 48: 1385–1389.

    Article  CAS  Google Scholar 

  20. Paladini F, Cauli A, Punzi L, Taccari E, Lapadula G, Scarpa R et al. Distribution of HLA-B27 subtypes in Sardinia and Continental Italy and their association with spondyloarthropathies. Arthritis Rheum 2005; 52: 3319–3321.

    Article  CAS  Google Scholar 

  21. Cascino I, Paladini F, Belfiore F, Cauli A, Angelini C, Fiorillo MT et al. Identification of previously unrecognized predisposing factors for ankylosing spondylitis from analysis of HLA-B27 extended haplotypes in Sardinia. Arthritis Rheum 2007; 56: 2640–2651.

    Article  CAS  Google Scholar 

  22. Hulsmeyer M, Fiorillo MT, Bettosini F, Sorrentino R, Saenger W, Ziegler A et al. Dual HLA-B27 subtype-dependent conformation of a self-peptide. J Exp Med 2004; 199: 271–281.

    Article  Google Scholar 

  23. Fiorillo MT, Maragno M, Butler R, Dupuis ML, Sorrentino R . CD8(+) T cell autoreactivity to an HLA-B27 restricted self-epitope correlates with ankylosing spondylitis. J Clin Invest 2000; 106: 47–53.

    Article  CAS  Google Scholar 

  24. Epstein MP, Allen AS, Satten GA . A simple and improved correction for population stratification in case–control studies. Am J Hum Gen 2007; 80: 921–930.

    Article  CAS  Google Scholar 

  25. Schirru E, Corona V, Usai-Satta P, Scarpa M, Cucca F, De Virgiliis S et al. Decline of lactase activity and C/T-13910 variant in Sardinian childhood. J Pediatr Gastroenterol Nutr 2007; 45: 503–506.

    Article  CAS  Google Scholar 

  26. Delgado M, Ganea D . Vasoactive intestinal peptide inhibits IL-8 production in human monocytes by down-regulating nuclear factor kappaB-dependent transcriptional activity. Biochem Biophys Res Commun 2003; 302: 275–283.

    Article  CAS  Google Scholar 

  27. Delgado M, Martinez C, Pozo D, Calvo JR, Leceta J, Ganea D et al. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activation polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNF-alpha and IL-6. J Immunol 1999; 162: 1200–1205.

    CAS  PubMed  Google Scholar 

  28. Persson E, Lerner UH . The neuropeptide VIP potentiates IL-6 production induced by pro-inflammatory osteotropic cytokines in calvarial osteoblasts and the osteoblastic cell line MC3T3-E1. Biochem Biophys Res Commun 2005; 335: 705–711.

    Article  CAS  Google Scholar 

  29. Wang HY, Jiang XM, Ganea D . The neuropeptides VIP and PACAP inhibit IL-2 transcription by decreasing c-Jun and increasing JunB expression in T cells. J Neuroimmunol 2000; 104: 68–78.

    Article  CAS  Google Scholar 

  30. Fabricius D, O'Dorisio MS, Blackwell S, Jahrsdorfer B . plasmacytoid dendritic cell function: inhibition of IFN-alpha secretion and modulation of immune phenotype by vasoactive intestinal peptide. J Immunol 2006; 177: 5920–5927.

    Article  CAS  Google Scholar 

  31. Foster N, Lea SR, Preshaw PM, Taylor JJ . Vasoactive intestinal peptide inhibits up-regulation of human monocyte TLR2 and TLR4 by LPS and differentiation of monocytes to macrophages. J Leukoc Biol 2007; 81: 893–903.

    Article  CAS  Google Scholar 

  32. Pei L . Molecular cloning of a novel transcriptional repressor protein of the rat type 1 vasoactive intestinal peptide receptor gene. J Biol Chem 1998; 273: 19902–19908.

    Article  CAS  Google Scholar 

  33. Dorsam G, Goetzl EJ . Vasoactive intestinal peptide receptor-1 (VPAC-1) is a novel gene target of the hemolymphopoietic transcription factor Ikaros. J Biol Chem 2002; 277: 13488–13493.

    Article  CAS  Google Scholar 

  34. Delgado M, Robledo G, Rueda B, Varela N, O'Valle F, Hernandez-Cortes P et al. Genetic association of vasoactive intestinal peptide receptor with rheumatoid arthritis. Arthritis Rheum 2008; 58: 1010–1019.

    Article  CAS  Google Scholar 

  35. Barreau C, Paillard L, Osborne HB . Free in PMC AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 2005; 33: 7138–7150.

    Article  CAS  Google Scholar 

  36. Fialcowitz EJ, Brewer BY, Keenan BP, Wilson GMJ . A hairpin-like structure within an AU-rich mRNA-destabilizing element regulates trans-factor binding selectivity and mRNA decay kinetics. J Biol Chem 2005; 280: 22406–22417.

    Article  CAS  Google Scholar 

  37. Conne B, Stutz A, Vassalli JD . The 3′ untranslated region of messenger RNA: A molecular ‘hotspot’ for pathology? Nat Med 2000; 6: 637–641.

    Article  CAS  Google Scholar 

  38. Khabar KS . The AU-rich transcriptome: more than interferons and cytokines, and its role in disease. J Interferon Cytokine Res 2005; 25: 1–10.

    Article  CAS  Google Scholar 

  39. Mathieu A, Cauli A, Fiorillo MT, Sorrentino R . HLA-B27 and ankylosing spondylitis geographic distribution versus malaria endemic: casual or causal liaison? Ann Rheum Dis 2008; 67: 138–140.

    Article  CAS  Google Scholar 

  40. Sotgiu S, Sannella AR, Conti B, Arru G, Fois ML, Sanna A et al. Multiple sclerosis and anti-Plasmodium falciparum innate immune response. J Neuroimmunol 2007; 185: 201–207.

    Article  CAS  Google Scholar 

  41. Freson K, Hashimoto H, Thys C, Wittevrongel C, Danloy S, Morita Y et al. The pituitary adenylate cyclase-activating polypeptide is a physiological inhibitor of platelet activation. J Clin Invest 2004; 113: 905–912.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients for their cooperation and Federica Lucantoni for technical assistance. A special thank to Dr Kathleen Freson for providing the anti-VIPR1 polyclonal antibody. This work has been partially supported by Fondazione Cenci-Bolognetti, ‘Sapienza’ University of Rome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Sorrentino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paladini, F., Cocco, E., Cauli, A. et al. A functional polymorphism of the vasoactive intestinal peptide receptor 1 gene correlates with the presence of HLA-B *2705 in Sardinia. Genes Immun 9, 659–667 (2008). https://doi.org/10.1038/gene.2008.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.60

Keywords

This article is cited by

Search

Quick links