Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MHC loci affecting cervical cancer risk: distinguishing the effects of HLA-DQB1 and non-HLA genes TNF, LTA, TAP1 and TAP2

Abstract

Cervical cancer has been associated with specific human leukocyte antigen (HLA) haplotypes/alleles and with polymorphisms at the nearby non-HLA loci TNF, LTA, TAP1 and TAP2. Distinguishing effects of individual loci in the major histocompatibility complex (MHC) region are difficult due to the complex linkage disequilibrium (LD) pattern characterized by high LD, punctuated by recombination hot spots. We have evaluated the association of polymorphism at HLA class II DQB1 and the TNF, LTA, TAP1 and TAP2 genes with cervical cancer risk, using 1306 familial cases and 288 controls. DQB1 was strongly associated; alleles *0301, *0402 and *0602 increased cancer susceptibility, whereas *0501 and *0603 decreased susceptibility. Among the non-HLA loci, association was only detected for the TAP2 665 polymorphism, and interallelic disequilibrium analysis indicated that this could be due to LD with DQB1. As the TAP2 665 association was seen predominantly in non-carriers of DQB1 susceptibility alleles, we hypothesized that TAP2 665 may have an effect not attributable to LD with DQB1. However, a logistic regression analysis suggested that TAP2 665 was strongly influenced by LD with DQB1. Our results emphasize the importance of large sample sizes and underscore the necessity of examining both HLA and non-HLA loci in the MHC to assign association to the correct locus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Parkin DM . Global cancer statistics in the year 2000. Lancet Oncol 2001; 2: 533–543.

    Article  CAS  Google Scholar 

  2. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999; 189: 12–19.

    Article  CAS  Google Scholar 

  3. Magnusson PK, Sparen P, Gyllensten UB . Genetic link to cervical tumours. Nature 1999; 400: 29–30.

    Article  CAS  Google Scholar 

  4. Engelmark M, Beskow A, Magnusson J, Erlich H, Gyllensten U . Affected sib-pair analysis of the contribution of HLA class I and class II loci to development of cervical cancer. Hum Mol Genet 2004; 13: 1951–1958.

    Article  CAS  Google Scholar 

  5. Hildesheim A, Wang SS . Host and viral genetics and risk of cervical cancer: a review. Virus Res 2002; 89: 229–240.

    Article  CAS  Google Scholar 

  6. Sanjeevi CB, Hjelmstrom P, Hallmans G, Wiklund F, Lenner P, Angstrom T et al. Different HLA-DR-DQ haplotypes are associated with cervical intraepithelial neoplasia among human papillomavirus type-16 seropositive and seronegative Swedish women. Int J Cancer 1996; 68: 409–414.

    Article  CAS  Google Scholar 

  7. Beskow AH, Josefsson AM, Gyllensten UB . HLA class II alleles associated with infection by HPV16 in cervical cancer in situ. Int J Cancer 2001; 93: 817–822.

    Article  CAS  Google Scholar 

  8. Ghaderi M, Wallin KL, Wiklund F, Zake LN, Hallmans G, Lenner P et al. Risk of invasive cervical cancer associated with polymorphic HLA DR/DQ haplotypes. Int J Cancer 2002; 100: 698–701.

    Article  CAS  Google Scholar 

  9. Szlosarek P, Charles KA, Balkwill FR . Tumour necrosis factor-alpha as a tumour promoter. Eur J Cancer 2006; 42: 745–750.

    Article  CAS  Google Scholar 

  10. Tjiong MY, van der Vange N, ter Schegget JS, Burger MP, ten Kate FW, Out TA . Cytokines in cervicovaginal washing fluid from patients with cervical neoplasia. Cytokine 2001; 14: 357–360.

    Article  CAS  Google Scholar 

  11. Azar KK, Tani M, Yasuda H, Sakai A, Inoue M, Sasagawa T . Increased secretion patterns of interleukin-10 and tumor necrosis factor-alpha in cervical squamous intraepithelial lesions. Hum Pathol 2004; 35: 1376–1384.

    Article  CAS  Google Scholar 

  12. Gaiotti D, Chung J, Iglesias M, Nees M, Baker PD, Evans CH et al. Tumor necrosis factor-alpha promotes human papillomavirus (HPV) E6/E7 RNA expression and cyclin-dependent kinase activity in HPV-immortalized keratinocytes by a ras-dependent pathway. Mol Carcinog 2000; 27: 97–109.

    Article  CAS  Google Scholar 

  13. Kyo S, Inoue M, Hayasaka N, Inoue T, Yutsudo M, Tanizawa O et al. Regulation of early gene expression of human papillomavirus type 16 by inflammatory cytokines. Virology 1994; 200: 130–139.

    Article  CAS  Google Scholar 

  14. Vieira KB, Goldstein DJ, Villa LL . Tumor necrosis factor alpha interferes with the cell cycle of normal and papillomavirus-immortalized human keratinocytes. Cancer Res 1996; 56: 2452–2457.

    CAS  PubMed  Google Scholar 

  15. Woodworth CD, McMullin E, Iglesias M, Plowman GD . Interleukin 1 alpha and tumor necrosis factor alpha stimulate autocrine amphiregulin expression and proliferation of human papillomavirus-immortalized and carcinoma-derived cervical epithelial cells. Proc Natl Acad Sci USA 1995; 92: 2840–2844.

    Article  CAS  Google Scholar 

  16. Calhoun ES, McGovern RM, Janney CA, Cerhan JR, Iturria SJ, Smith DI et al. Host genetic polymorphism analysis in cervical cancer. Clin Chem 2002; 48: 1218–1224.

    CAS  PubMed  Google Scholar 

  17. Deshpande A, Nolan JP, White PS, Valdez YE, Hunt WC, Peyton CL et al. TNF-alpha promoter polymorphisms and susceptibility to human papillomavirus 16-associated cervical cancer. J Infect Dis 2005; 191: 969–976.

    Article  CAS  Google Scholar 

  18. Duarte I, Santos A, Sousa H, Catarino R, Pinto D, Matos A et al. G-308A TNF-alpha polymorphism is associated with an increased risk of invasive cervical cancer. Biochem Biophys Res Commun 2005; 334: 588–592.

    Article  CAS  Google Scholar 

  19. Ghaderi M, Nikitina L, Peacock CS, Hjelmstrom P, Hallmans G, Wiklund F et al. Tumor necrosis factor a-11 and DR15-DQ6 (B*0602) haplotype increase the risk for cervical intraepithelial neoplasia in human papillomavirus 16 seropositive women in Northern Sweden. Cancer Epidemiol Biomarkers Prev 2000; 9: 1067–1070.

    CAS  PubMed  Google Scholar 

  20. Ghaderi M, Nikitina Zake L, Wallin K, Wiklund F, Hallmans G, Lenner P et al. Tumor necrosis factor A and MHC class I chain related gene A (MIC-A) polymorphisms in Swedish patients with cervical cancer. Hum Immunol 2001; 62: 1153–1158.

    Article  CAS  Google Scholar 

  21. Gostout BS, Poland GA, Calhoun ES, Sohni YR, Giuntoli II RL, McGovern RM et al. TAP1, TAP2, and HLA-DR2 alleles are predictors of cervical cancer risk. Gynecol Oncol 2003; 88: 326–332.

    Article  CAS  Google Scholar 

  22. Govan VA, Constant D, Hoffman M, Williamson AL . The allelic distribution of −308 tumor necrosis factor-alpha gene polymorphism in South African women with cervical cancer and control women. BMC Cancer 2006; 6: 24.

    Article  Google Scholar 

  23. Jang WH, Yang YI, Yea SS, Lee YJ, Chun JH, Kim HI et al. The −238 tumor necrosis factor-alpha promoter polymorphism is associated with decreased susceptibility to cancers. Cancer Lett 2001; 166: 41–46.

    Article  CAS  Google Scholar 

  24. Kirkpatrick A, Bidwell J, van den Brule AJ, Meijer CJ, Pawade J, Glew S . TNFalpha polymorphism frequencies in HPV-associated cervical dysplasia. Gynecol Oncol 2004; 92: 675–679.

    Article  CAS  Google Scholar 

  25. Stanczuk GA, Sibanda EN, Tswana SA, Bergstrom S . Polymorphism at the −308-promoter position of the tumor necrosis factor-alpha (TNF-alpha) gene and cervical cancer. Int J Gynecol Cancer 2003; 13: 148–153.

    CAS  PubMed  Google Scholar 

  26. Niwa Y, Hirose K, Matsuo K, Tajima K, Ikoma Y, Nakanishi T et al. Lymphotoxin-alpha polymorphism and the risk of cervical cancer in Japanese subjects. Cancer Lett 2005; 218: 63–68.

    Article  CAS  Google Scholar 

  27. Jackson DG, Capra JD . TAP2 association with insulin-dependent diabetes mellitus is secondary to HLA-DQB1. Hum Immunol 1995; 43: 57–65.

    Article  CAS  Google Scholar 

  28. Powis SH, Tonks S, Mockridge I, Kelly AP, Bodmer JG, Trowsdale J . Alleles and haplotypes of the MHC-encoded ABC transporters TAP1 and TAP2. Immunogenetics 1993; 37: 373–380.

    Article  CAS  Google Scholar 

  29. McCluskey J, Rossjohn J, Purcell AW . TAP genes and immunity. Curr Opin Immunol 2004; 16: 651–659.

    Article  CAS  Google Scholar 

  30. Cromme FV, Airey J, Heemels MT, Ploegh HL, Keating PJ, Stern PL et al. Loss of transporter protein, encoded by the TAP-1 gene, is highly correlated with loss of HLA expression in cervical carcinomas. J Exp Med 1994; 179: 335–340.

    Article  CAS  Google Scholar 

  31. Fowler NL, Frazer IH . Mutations in TAP genes are common in cervical carcinomas. Gynecol Oncol 2004; 92: 914–921.

    Article  CAS  Google Scholar 

  32. Deshpande A, Wheeler CM, Hunt WC, Peyton CL, White PS, Valdez YE et al. Variation in HLA class I antigen-processing genes and susceptibility to human papillomavirus type 16-associated cervical cancer. J Infect Dis 2008; 197: 371–381.

    Article  CAS  Google Scholar 

  33. Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK et al. Gene map of the extended human MHC. Nat Rev Genet 2004; 5: 889–899.

    Article  CAS  Google Scholar 

  34. Miretti MM, Walsh EC, Ke X, Delgado M, Griffiths M, Hunt S et al. A high-resolution linkage-disequilibrium map of the human major histocompatibility complex and first generation of tag single-nucleotide polymorphisms. Am J Hum Genet 2005; 76: 634–646.

    Article  CAS  Google Scholar 

  35. Cuzick J, Terry G, Ho L, Monaghan J, Lopes A, Clarkson P et al. Association between high-risk HPV types, HLA DRB1* and DQB1* alleles and cervical cancer in British women. Br J Cancer 2000; 82: 1348–1352.

    Article  CAS  Google Scholar 

  36. Gregoire L, Lawrence WD, Kukuruga D, Eisenbrey AB, Lancaster WD . Association between HLA-DQB1 alleles and risk for cervical cancer in African-American women. Int J Cancer 1994; 57: 504–507.

    Article  CAS  Google Scholar 

  37. Odunsi K, Terry G, Ho L, Bell J, Cuzick J, Ganesan TS . Susceptibility to human papillomavirus-associated cervical intra-epithelial neoplasia is determined by specific HLA DR-DQ alleles. Int J Cancer 1996; 67: 595–602.

    Article  CAS  Google Scholar 

  38. Zoodsma M, Nolte IM, Te Meerman GJ, De Vries EG, Van der Zee AG . HLA genes and other candidate genes involved in susceptibility for (pre)neoplastic cervical disease. Int J Oncol 2005; 26: 769–784.

    CAS  PubMed  Google Scholar 

  39. Dao DD, Sierra-Torres CH, Robazetti SC, de Gomez MN, Konig R, Lema C et al. HLA-DQB1 and cervical cancer in Venezuelan women. Gynecol Oncol 2005; 96: 349–354.

    Article  CAS  Google Scholar 

  40. Montoya L, Saiz I, Rey G, Vela F, Clerici-Larradet N . Cervical carcinoma: human papillomavirus infection and HLA-associated risk factors in the Spanish population. Eur J Immunogenet 1998; 25: 329–337.

    Article  CAS  Google Scholar 

  41. Odunsi K, Terry G, Ho L, Bell J, Cuzick J, Ganesan TS . Association between HLA DQB1 * 03 and cervical intra-epithelial neoplasia. Mol Med 1995; 1: 161–171.

    Article  CAS  Google Scholar 

  42. Robinson J, Waller MJ, Parham P, de Groot N, Bontrop R, Kennedy LJ et al. IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res 2003; 31: 311–314.

    Article  CAS  Google Scholar 

  43. Ettinger RA, Papadopoulos GK, Moustakas AK, Nepom GT, Kwok WW . Allelic variation in key peptide-binding pockets discriminates between closely related diabetes-protective and diabetes-susceptible HLA-DQB1*06 alleles. J Immunol 2006; 176: 1988–1998.

    Article  CAS  Google Scholar 

  44. Siebold C, Hansen BE, Wyer JR, Harlos K, Esnouf RE, Svejgaard A et al. Crystal structure of HLA-DQ0602 that protects against type 1 diabetes and confers strong susceptibility to narcolepsy. Proc Natl Acad Sci USA 2004; 101: 1999–2004.

    Article  CAS  Google Scholar 

  45. Erlich HA, Griffith RL, Bugawan TL, Ziegler R, Alper C, Eisenbarth G . Implication of specific DQB1 alleles in genetic susceptibility and resistance by identification of IDDM siblings with novel HLA-DQB1 allele and unusual DR2 and DR1 haplotypes. Diabetes 1991; 40: 478–481.

    Article  CAS  Google Scholar 

  46. Kotb M, Norrby-Teglund A, McGeer A, El-Sherbini H, Dorak MT, Khurshid A et al. An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nat Med 2002; 8: 1398–1404.

    Article  CAS  Google Scholar 

  47. Powis SJ, Deverson EV, Coadwell WJ, Ciruela A, Huskisson NS, Smith H et al. Effect of polymorphism of an MHC-linked transporter on the peptides assembled in a class I moleculed. Nature 1992; 357: 211–215.

    Article  CAS  Google Scholar 

  48. Daniel S, Caillat-Zucman S, Hammer J, Bach JF, van Endert PM . Absence of functional relevance of human transporter associated with antigen processing polymorphism for peptide selection. J Immunol 1997; 159: 2350–2357.

    CAS  PubMed  Google Scholar 

  49. Carrington M, Colonna M, Spies T, Stephens JC, Mann DL . Haplotypic variation of the transporter associated with antigen processing (TAP) genes and their extension of HLA class II region haplotypes. Immunogenetics 1993; 37: 266–273.

    Article  CAS  Google Scholar 

  50. Cullen M, Noble J, Erlich H, Thorpe K, Beck S, Klitz W et al. Characterization of recombination in the HLA class II region. Am J Hum Genet 1997; 60: 397–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cullen M, Erlich H, Klitz W, Carrington M . Molecular mapping of a recombination hotspot located in the second intron of the human TAP2 locus. Am J Hum Genet 1995; 56: 1350–1358.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Caillat-Zucman S, Daniel S, Djilali-Saiah I, Timsit J, Garchon HJ, Boitard C et al. Family study of linkage disequilibrium between TAP2 transporter and HLA class II genes. Absence of TAP2 contribution to association with insulin-dependent diabetes mellitus. Hum Immunol 1995; 44: 80–87.

    Article  CAS  Google Scholar 

  53. Zhang SL, Chabod J, Penfornis A, Reviron D, Tiberghien P, Wendling D et al. TAP1 and TAP2 gene polymorphism in rheumatoid arthritis in a population in eastern France. Eur J Immunogenet 2002; 29: 241–249.

    Article  CAS  Google Scholar 

  54. Noble JA, Valdes AM, Lane JA, Green AE, Erlich HA . Linkage disequilibrium with predisposing DR3 haplotypes accounts for apparent effects of tumor necrosis factor and lymphotoxin-alpha polymorphisms on type 1 diabetes susceptibility. Hum Immunol 2006; 67: 999–1004.

    Article  CAS  Google Scholar 

  55. Barcellos LF, Begovich AB, Reynolds RL, Caillier SJ, Brassat D, Schmidt S et al. Linkage and association with the NOS2A locus on chromosome 17q11 in multiple sclerosis. Ann Neurol 2004; 55: 793–800.

    Article  CAS  Google Scholar 

  56. Bugawan TL, Erlich HA . Rapid typing of HLA-DQB1 DNA polymorphism using nonradioactive oligonucleotide probes and amplified DNA. Immunogenetics 1991; 33: 163–170.

    Article  CAS  Google Scholar 

  57. Allen-Brady K, Wong J, Camp NJ . PedGenie: an analysis approach for genetic association testing in extended pedigrees and genealogies of arbitrary size. BMC Bioinformatics 2006; 7: 209.

    Article  Google Scholar 

  58. Curtin K, Wong J, Allen-Brady K, Camp NJ . PedGenie: meta genetic association testing in mixed family and case–control designs. BMC Bioinformatics 2007; 8: 448.

    Article  Google Scholar 

  59. Barrett JC, Fry B, Maller J, Daly MJ . HaploView: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  60. Gaunt TR, Rodriguez S, Zapata C, Day IN . MIDAS: software for analysis and visualisation of interallelic disequilibrium between multiallelic markers. BMC Bioinformatics 2006; 7: 227.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to all women who participated in this study. This work was funded by grants to UBG from the Swedish Cancer Society and the Knut and Alice Wallenberg Foundation, Sweden. PKEM acknowledges support from the Beijer Foundation, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U B Gyllensten.

Additional information

Conflict of interest

Henry Erlich is employed by Roche Molecular Systems who provided reagents for genotyping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivansson, E., Magnusson, J., Magnusson, P. et al. MHC loci affecting cervical cancer risk: distinguishing the effects of HLA-DQB1 and non-HLA genes TNF, LTA, TAP1 and TAP2. Genes Immun 9, 613–623 (2008). https://doi.org/10.1038/gene.2008.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.58

Keywords

This article is cited by

Search

Quick links