Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association of LILRA2 (ILT1, LIR7) splice site polymorphism with systemic lupus erythematosus and microscopic polyangiitis

A Corrigendum to this article was published on 22 October 2008

Abstract

Leukocyte immunoglobulin-like receptors (LILRs) are inhibitory, stimulatory or soluble receptors encoded within the leukocyte receptor complex. Some LILRs are extensively polymorphic, and exhibit evidence for balancing selection and association with disease susceptibility. LILRA2 (LIR7/ILT1) is an activating receptor highly expressed in inflammatory tissues, and is involved in granulocyte and macrophage activation. In this study, we examined the association of LILRA2 and adjacently located LILRA1 with systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and microscopic polyangiitis (MPA). Polymorphism screening detected a LILRA2 SNP (rs2241524 G>A) that disrupts splice acceptor site of intron 6. Case–control association studies on 273 Japanese SLE, 296 RA, 50 MPA and 284 healthy individuals revealed increase of genotype A/A in SLE (12.1%, odds ratio (OR) 1.82, 95% confidence interval (CI) 1.02–3.24, P=0.041) and in MPA (16.0%, OR 2.52, 95% CI 1.07–5.96, P=0.049) compared with healthy individuals (7.0%). The risk allele caused an activation of a cryptic splice acceptor site that would lead to a novel LILRA2 isoform lacking three amino acids in the linker region (Δ419–421). Flow cytometry indicated that this isoform was expressed on the surface of monocytes. These findings suggested that LILRA2 Δ419–421 isoform encoded by the splice site SNP may play a role in SLE and MPA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Borges L, Hsu ML, Fanger N, Kubin M, Cosman D . A family of human lymphoid and myeloid Ig-like receptors, some of which bind to MHC class I molecules. J Immunol 1997; 159: 5192–5196.

    CAS  PubMed  Google Scholar 

  2. Colonna M, Navarro F, Bellon T, Llano M, Garcia P, Samaridis J et al. A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J Exp Med 1997; 186: 1809–1818.

    Article  CAS  Google Scholar 

  3. Cosman D, Fanger N, Borges L, Kubin M, Chin W, Peterson L et al. A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules. Immunity 1997; 7: 273–282.

    Article  CAS  Google Scholar 

  4. Wende H, Colonna M, Ziegler A, Volz A . Organization of the leukocyte receptor cluster (LRC) on human chromosome 19q13.4. Mamm Genome 1999; 10: 154–160.

    Article  CAS  Google Scholar 

  5. Wende H, Volz A, Ziegler A . Extensive gene duplications and a large inversion characterize the human leukocyte receptor cluster. Immunogenetics 2000; 51: 703–713.

    Article  CAS  Google Scholar 

  6. Wilson MJ, Torkar M, Haude A, Milne S, Jones T, Sheer D et al. Plasticity in the organization and sequences of human KIR/ILT gene families. Proc Natl Acad Sci USA 2000; 97: 4778–4783.

    Article  CAS  Google Scholar 

  7. Lindqvist AK, Steinsson K, Johanneson B, Kristjansdottir H, Arnasson A, Grondal G et al. A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q. J Autoimmun 2000; 14: 169–178.

    Article  CAS  Google Scholar 

  8. Moser KL, Neas BR, Salmon JE, Yu H, Gray-McGuire C, Asundi N et al. Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African-American pedigrees. Proc Natl Acad Sci USA 1998; 95: 14869–14874.

    Article  CAS  Google Scholar 

  9. Kubagawa H, Burrows PD, Cooper MD . A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells. Proc Natl Acad Sci USA 1997; 94: 5261–5266.

    Article  CAS  Google Scholar 

  10. Yamashita Y, Ono M, Takai T . Inhibitory and stimulatory functions of paired Ig-like receptor (PIR) family in RBL-2H3 cells. J Immunol 1998; 161: 4042–4047.

    CAS  PubMed  Google Scholar 

  11. Ujike A, Takeda K, Nakamura A, Ebihara S, Akiyama K, Takai T . Impaired dendritic cell maturation and increased TH2 responses in PIR-B−/− mice. Nat Immunol 2002; 3: 542–548.

    Article  CAS  Google Scholar 

  12. Nakamura A, Kobayashi E, Takai T . Exacerbated graft-versus-host disease in Pirb−/− mice. Nat Immunol 2004; 5: 623–629.

    Article  CAS  Google Scholar 

  13. Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 1999; 5: 919–923.

    Article  CAS  Google Scholar 

  14. Nakajima H, Samaridis J, Angman L, Colonna M . Human myeloid cells express an activating ILT receptor (ILT1) that associates with Fc receptor γ-chain. J Immunol 1999; 162: 5–8.

    CAS  PubMed  Google Scholar 

  15. Bleharski JR, Li H, Meinken C, Graeber TG, Ochoa MT, Yamamura M et al. Use of genetic profiling in leprosy to discriminate clinical forms of the disease. Science 2003; 301: 1527–1530.

    Article  CAS  Google Scholar 

  16. Tedla N, Gibson K, McNeil HP, Cosman D, Borges L, Arm JP . The co-expression of activating and inhibitory leukocyte immunoglobulin-like receptors in rheumatoid synovium. Am J Pathol 2002; 160: 425–431.

    Article  CAS  Google Scholar 

  17. Colonna M, Samaridis J, Cella M, Angman L, Allen RL, O'Callaghan CA et al. Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules. J Immunol 1998; 160: 3096–3100.

    CAS  PubMed  Google Scholar 

  18. Shiroishi M, Tsumoto K, Amano K, Shirakihara Y, Colonna M, Braud VM et al. Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci USA 2003; 100: 8856–8861.

    Article  CAS  Google Scholar 

  19. Tedla N, Bandeira-Melo C, Tassinari P, Sloane DE, Samplaski M, Cosman D et al. Activation of human eosinophils through leukocyte immunoglobulin-like receptor 7. Proc Natl Acad Sci USA 2003; 100: 1174–1179.

    Article  CAS  Google Scholar 

  20. Sloane DE, Tedla N, Awoniyi M, Macglashan Jr DW, Borges L, Austen KF et al. Leukocyte immunoglobulin-like receptors: novel innate receptors for human basophil activation and inhibition. Blood 2004; 104: 2832–2839.

    Article  CAS  Google Scholar 

  21. Huynh OA, Hampartzoumian T, Arm JP, Hunt J, Borges L, Ahern M et al. Down-regulation of leucocyte immunoglobulin-like receptor expression in the synovium of rheumatoid arthritis patients after treatment with disease-modifying anti-rheumatic drugs. Rheumatology 2007; 46: 742–751.

    Article  CAS  Google Scholar 

  22. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004; 428: 758–763.

    Article  CAS  Google Scholar 

  23. Tsuchiya N, Kyogoku C, Miyashita R, Kuroki K . Diversity of human immune system multigene families and its implication in the genetic background of rheumatic diseases. Curr Med Chem 2007; 14: 431–439.

    Article  CAS  Google Scholar 

  24. Tsuchiya N, Honda Z, Tokunaga K . Role of B cell inhibitory receptor polymorphisms in systemic lupus erythematosus: a negative times a negative makes a positive. J Hum Genet 2006; 51: 741–750.

    Article  Google Scholar 

  25. Miyashita R, Tsuchiya N, Yabe T, Kobayashi S, Hashimoto H, Ozaki S et al. Association of killer cell immunoglobulin-like receptor genotypes with microscopic polyangiitis. Arthritis Rheum 2006; 54: 992–997.

    Article  CAS  Google Scholar 

  26. Kuroki K, Tsuchiya N, Shiroishi M, Rasubala L, Yamashita Y, Matsuta K et al. Extensive polymorphisms of LILRB1 (ILT2, LIR1) and their association with HLA-DRB1 shared epitope negative rheumatoid arthritis. Hum Mol Genet 2005; 14: 2469–2480.

    Article  CAS  Google Scholar 

  27. Hirayasu K, Ohashi J, Kashiwase K, Takanashi M, Satake M, Tokunaga K et al. Long-term persistence of both functional and non-functional alleles at the leukocyte immunoglobulin-like receptor A3 (LILRA3) locus suggests balancing selection. Hum Genet 2006; 119: 436–443.

    Article  CAS  Google Scholar 

  28. Kyogoku C, Tsuchiya N . A compass that points to lupus: genetic studies on type I interferon pathway. Genes Immun 2007; 8: 445–455.

    Article  CAS  Google Scholar 

  29. Reumaux D, Duthilleul P, Roos D . Pathogenesis of diseases associated with antineutrophil cytoplasm autoantibodies. Hum Immunol 2004; 65: 1–12.

    Article  CAS  Google Scholar 

  30. Takahashi S, Fossati L, Iwamoto M, Merino R, Motta R, Kobayakawa T et al. Imbalance towards Th1 predominance is associated with acceleration of lupus-like autoimmune syndrome in MRL mice. J Clin Invest 1996; 97: 1597–1604.

    Article  CAS  Google Scholar 

  31. Ohashi J, Yamamoto S, Tsuchiya N, Hatta Y, Komata T, Matsushita M et al. Comparison of statistical power between 2 × 2 allele frequency and allele positivity tables in case-control studies of complex disease genes. Ann Hum Genet 2001; 65: 197–206.

    Article  CAS  Google Scholar 

  32. Tsuchiya N, Kobayashi S, Kawasaki A, Kyogoku C, Arimura Y, Yoshida M et al. Genetic background of Japanese patients with antineutrophil cytoplasmic antibody-associated vasculitis: association of HLA-DRB1*0901 with microscopic polyangiitis. J Rheumatol 2003; 30: 1534–1540.

    CAS  PubMed  Google Scholar 

  33. Tsuchiya N, Kobayashi S, Hashimoto H, Ozaki S, Tokunaga K . Association of HLA-DRB1*0901-DQB1*0303 haplotype with microscopic polyangiitis in Japanese. Genes Immun 2006; 7: 81–84.

    Article  CAS  Google Scholar 

  34. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315–324.

    Article  CAS  Google Scholar 

  35. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982; 25: 1271–1277.

    Article  CAS  Google Scholar 

  36. Jennette JC, Falk RJ, Andrassy K, Bacon PA, Churg J, Gross WL et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum 1994; 37: 187–192.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr Jun Ohashi (The University of Tokyo) and Dr Ryosuke Kimura (Tokai University) for their helpful suggestions. Sequence accession number: The nucleotide sequence data reported in this paper have been submitted to the DDBJ database and have been assigned the accession numbers AB375279-AB375302. This work was supported by Grant-in-Aid for Scientific Research on Priority Areas ‘Applied Genomics’ from the Ministry of Education, Culture, Sports, Science and Technology of Japan, Grant-in-Aid for Scientific Research (B) from Japan Society for the Promotion of Science (JSPS), grants from the Ministry of Health, Labour and Welfare of Japan, Takeda Science Foundation and Japan Rheumatism Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Tsuchiya.

Additional information

Conflict of interest

There is no conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamegano, K., Kuroki, K., Miyashita, R. et al. Association of LILRA2 (ILT1, LIR7) splice site polymorphism with systemic lupus erythematosus and microscopic polyangiitis. Genes Immun 9, 214–223 (2008). https://doi.org/10.1038/gene.2008.5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.5

Keywords

This article is cited by

Search

Quick links