Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic variation in nitric oxide synthase 2A (NOS2A) and risk for multiple sclerosis

Abstract

Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system with a strong genetic component. Variation in the major histocompatibility complex on chromosome 6p21, specifically the HLA-DRB1*15 haplotype, is the strongest genetic factor for MS, yet it is estimated to account for only a portion of risk for the disease. Previous evidence has implicated the nitric oxide synthase gene (NOS2A) encoding inducible NOS on chromosome 17q11 as a potential MS susceptibility gene. To determine whether variation in the NOS2A gene contributes to MS risk, we investigated a total of 50 polymorphisms within or flanking the locus for evidence of association using a comprehensive analytical strategy. A total of 6265 members from 1858 well-characterized MS families were utilized. No evidence for overtransmission of any individual single-nucleotide polymorphism allele or haplotype to the MS-affected individuals was observed. Furthermore, different transmission rates were not observed in either DRB1*15-positive or DRB1*15-negative family subgroups, or when extreme clinical outcomes characterizing disease progression were examined. The very largest study of NOS2A variation in MS, to date, excludes even a modest role for this locus in susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Giovannoni G, Heales SJ, Land JM, Thompson EJ . The potential role of nitric oxide in multiple sclerosis. Mult Scler 1998; 4: 212–216.

    Article  CAS  PubMed  Google Scholar 

  2. Garthwaite G, Goodwin DA, Batchelor AM, Leeming K, Garthwaite J . Nitric oxide toxicity in CNS white matter: an in vitro study using rat optic nerve. Neuroscience 2002; 109: 145–155.

    Article  CAS  PubMed  Google Scholar 

  3. Acar G, Idiman F, Idiman E, Kirkali G, Cakmakçi H, Ozakbaş S. et al. Nitric oxide as an activity marker in multiple sclerosis. J Neurol 2003; 250: 588–592.

    Article  CAS  PubMed  Google Scholar 

  4. Bo L, Dawson TM, Wesselingh S, Mörk S, Choi S, Kong PA et al. Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol 1994; 36: 778–786.

    Article  CAS  PubMed  Google Scholar 

  5. Nathan C . Inducible nitric oxide synthase: what difference does it make? J Clin Invest 1997; 100: 2417–2423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gavrilyuk V, Horvath P, Weinberg G, Feinstein DL . A 27-bp region of the inducible nitric oxide synthase promoter regulates expression in glial cells. J Neurochem 2001; 78: 129–140.

    Article  CAS  PubMed  Google Scholar 

  7. Hill KE, Zollinger LV, Watt HE, Carlson NG, Rose JW . Inducible nitric oxide synthase in chronic active multiple sclerosis plaques: distribution, cellular expression and association with myelin damage. J Neuroimmunol 2004; 151: 171–179.

    Article  CAS  PubMed  Google Scholar 

  8. Lassmann H . Brain damage when multiple sclerosis is diagnosed clinically. Lancet 2003; 361: 1317–1318.

    Article  PubMed  Google Scholar 

  9. Cross AH . Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice. J Clin Invest 1994; 93: 2684–2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brenner T, Brocke S, Szafer F, Sobel RA, Parkinson JF, Perez DH et al. Inhibition of nitric oxide synthase for treatment of experimental autoimmune encephalomyelitis. J Immunol 1997; 158: 2940–2946.

    CAS  PubMed  Google Scholar 

  11. Oksenberg JR, Barcellos LF . Multiple sclerosis genetics: leaving no stone unturned. Genes Immun 2005; 6: 375–387.

    Article  CAS  PubMed  Google Scholar 

  12. Johannesen J, Pie A, Pociot F, Kristiansen OP, Karlsen AE, Nerup J et al. Linkage of the human inducible nitric oxide synthase gene to type 1 diabetes. J Clin Endocrinol Metab 2001; 86: 2792–2796.

    CAS  PubMed  Google Scholar 

  13. Warpeha KM, Xu W, Liu L, Charles IG, Patterson CC, Ah-Fat F et al. Genotyping and functional analysis of a polymorphic (CCTTT)(n) repeat of NOS2A in diabetic retinopathy. FASEB J 1999; 13: 1825–1832.

    Article  CAS  PubMed  Google Scholar 

  14. Xu W, Humphries S, Tomita M, Okuyama T, Matsuki M, Burgner D et al. Survey of the allelic frequency of a NOS2A promoter microsatellite in human populations: assessment of the NOS2A gene and predisposition to infectious disease. Nitric Oxide 2000; 4: 379–383.

    Article  CAS  PubMed  Google Scholar 

  15. Morris BJ, Glenn CL, Wilcken DE, Wang XL . Influence of an inducible nitric oxide synthase promoter variant on clinical variables in patients with coronary artery disease. Clin Sci (Lond) 2001; 100: 551–556.

    Article  CAS  Google Scholar 

  16. Kun JF, Mordmüller B, Perkins DJ, May J, Mercereau-Puijalon O, Alpers M et al. Nitric oxide synthase 2 (Lambarene) (G-954C), increased nitric oxide production, and protection against malaria. J Infect Dis 2001; 184: 330–336.

    Article  CAS  PubMed  Google Scholar 

  17. Hobbs MR, Udhayakumar V, Levesque MC, Booth J, Roberts JM, Tkachuk AN et al. A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection from severe malaria in Tanzanian and Kenyan children. Lancet 2002; 360: 1468–1475.

    Article  CAS  PubMed  Google Scholar 

  18. Hancock DB, Martin ER, Fujiwara K, Stacy MA, Scott BL, Stajich JM et al. NOS2A and the modulating effect of cigarette smoking in Parkinson′s disease. Ann Neurol 2006; 60: 366–373.

    Article  CAS  PubMed  Google Scholar 

  19. Levecque C, Elbaz A, Clavel J, Richard F, Vidal JS, Amouyel P et al. Association between Parkinson′s disease and polymorphisms in the nNOS and iNOS genes in a community-based case–control study. Hum Mol Genet 2003; 12: 79–86.

    Article  CAS  PubMed  Google Scholar 

  20. Barcellos LF, Begovich AB, Reynolds RL, Caillier SJ, Brassat D, Schmidt S et al. Linkage and association with the NOS2A locus on chromosome 17q11 in multiple sclerosis. Ann Neurol 2004; 55: 793–800.

    Article  CAS  PubMed  Google Scholar 

  21. Bugeja MJ . An investigation of NOS2A promoter polymorphisms in Australian multiple sclerosis patients. Eur J Hum Genet 2005; 13: 815–822.

    Article  CAS  PubMed  Google Scholar 

  22. Manna I, Liguori M, Valentino P, Condino F, La Russa A, Clodomiro A et al. Preliminary evidences of a NOS2A protective effect from relapsing-remitting multiple sclerosis. J Neurol Sci 2008; 264: 112–117.

    Article  CAS  PubMed  Google Scholar 

  23. Blanco Y, Yague J, Graus F, Saiz A . No association of inducible nitric oxide synthase gene (NOS2A) to multiple sclerosis. J Neurol 2003; 250: 598–600.

    Article  CAS  PubMed  Google Scholar 

  24. Tajouri L, Martin V, Ovcaric M, Curtain RP, Lea RA, Csurhes P et al. Investigation of an inducible nitric oxide synthase gene (NOS2A) polymorphism in a multiple sclerosis population. Brain Res Bull 2004; 64: 9–13.

    Article  CAS  PubMed  Google Scholar 

  25. Modin H, Dai Y, Masterman T, Svejgaard A, S?rensen PS, Oturai A et al. No linkage or association of the nitric oxide synthase genes to multiple sclerosis. J Neuroimmunol 2001; 119: 95–100.

    Article  CAS  PubMed  Google Scholar 

  26. Xu W, Charles IG, Liu L, Moncada S, Emson P . Molecular cloning and structural organization of the human inducible nitric oxide synthase gene (NOS2). Biochem Biophys Res Commun 1996; 219: 784–788.

    Article  CAS  PubMed  Google Scholar 

  27. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  PubMed  Google Scholar 

  28. Ebers GC, Kukay K, Bulman DE, Sadovnick AD, Rice G, Anderson C et al. A full genome search in multiple sclerosis. Nat Genet 1996; 13: 472–476.

    Article  CAS  PubMed  Google Scholar 

  29. Haines JL, Ter-Minassian M, Bazyk A, Gusella JF, Kim DJ, Terwedow H et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatibility complex. The Multiple Sclerosis Genetics Group. Nat Genet 1996; 13: 469–471.

    Article  CAS  PubMed  Google Scholar 

  30. Sawcer S, Jones HB, Feakes R, Gray J, Smaldon N, Chataway J et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Gen 1996; 13: 464–468.

    Article  CAS  Google Scholar 

  31. International Multiple Sclerosis Genetics Consortium. A high-density screen for linkage in multiple sclerosis. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Am J Hum Genet 2005; 77: 454–467.

  32. Barcellos LF, Sawcer S, Ramsay PP, Baranzini SE, Thomson G, Briggs F et al. Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Hum Mol Genet 2006; 15: 2813–2824.

    Article  CAS  PubMed  Google Scholar 

  33. Lincoln MR, Montpetit A, Cader MZ, Saarela J, Dyment DA, Tiislar M et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet 2005; 37: 1108–1112.

    Article  CAS  PubMed  Google Scholar 

  34. Risch N, Merikangas K . The future of genetic studies of complex human diseases. Science 1996; 273: 1516–1517.

    Article  CAS  PubMed  Google Scholar 

  35. Sawcer S . A new era in the genetic analysis of multiple sclerosis. Curr Opin Neurol 2006; 19: 237–241.

    Article  PubMed  Google Scholar 

  36. International Multiple Sclerosis Genetics Consortium. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 2007; 357: 851–862.

  37. Hernan MA, Olek MJ, Ascherio A . Cigarette smoking and incidence of multiple sclerosis. Am J Epidemiol 2001; 154: 69–74.

    Article  CAS  PubMed  Google Scholar 

  38. Hernan MA, Jick SS, Logroscino G, Olek MJ, Ascherio A, Jick H et al. Cigarette smoking and the progression of multiple sclerosis. Brain 2005; 128: 1461–1465.

    Article  PubMed  Google Scholar 

  39. Willer CJ, Dyment DA, Risch NJ, Sadovnick AD, Ebers GC . Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci USA 2003; 100: 12877–12882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hensiek AE, Seaman SR, Barcellos LF, Oturai A, Eraksoi M, Cocco E et al. Familial effects on the clinical course of multiple sclerosis. Neurology 2007; 68: 376–383.

    Article  CAS  PubMed  Google Scholar 

  41. Barcellos LF, Oksenberg JR, Green AJ, Bucher P, Rimmler JB, Schmidt S et al. Genetic basis for clinical expression in multiple sclerosis. Brain 2002; 125: 150–158.

    Article  CAS  PubMed  Google Scholar 

  42. Schmidt S, Barcellos LF, DeSombre K, Rimmler JB, Lincoln RR, Bucher P et al. Association of polymorphisms in the apolipoprotein E region with susceptibility to and progression of multiple sclerosis. Am J Hum Genet 2002; 70: 708–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hemmer B, Hartung HP . Toward the development of rational therapies in multiple sclerosis: what is on the horizon? Ann Neurol 2007; 62: 314–326.

    Article  CAS  PubMed  Google Scholar 

  44. Rizvi SA, Agius MA . Current approved options for treating patients with multiple sclerosis. Neurology 2004; 63: S8–14.

    Article  PubMed  Google Scholar 

  45. Yeo TW, De Jager PL, Gregory SG, Barcellos LF, Walton A, Goris A et al. A second major histocompatibility complex susceptibility locus for multiple sclerosis. Ann Neurol 2007; 61: 228–236.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kurtzke JF . Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983; 33: 1444–1452.

    Article  CAS  PubMed  Google Scholar 

  47. O'Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Bakker PI, Burtt NP, Graham RR, Guiducci C, Yelensky R, Drake JA et al. Transferability of tag SNPs in genetic association studies in multiple populations. Nat Genet 2006; 38: 1298–1303.

    Article  CAS  PubMed  Google Scholar 

  49. de Bakker PI, McVean G, Sabeti PC, Miretti MM, Green T, Marchini J et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet 2006; 38: 1166–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  51. Martin ER, Bass MP, Kaplan NL . Correcting for a potential bias in the pedigree disequilibrium test. Am J Hum Genet 2001; 68: 1065–1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martin ER, Monks SA, Warren LL, Kaplan NL . A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet 2000; 67: 146–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus. Am J Hum Genet 1993; 52: 506–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  PubMed  Google Scholar 

  55. Clayton D, Jones H . Transmission/disequilibrium tests for extended marker haplotypes. Am J Hum Genet 1999; 65: 1161–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen W-M, Deng H-W . A general and accurate approach for computing the statistical power of the transmission disequilibrium test for complex disease genes. Genet Epidemiol 2001; 21: 53–67.

    Article  CAS  PubMed  Google Scholar 

  57. de Bakker PI . Efficiency and power in genetic association studies. Nat Genet 2005; 37: 1217–1223.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the MS patients and their family members for participating in this study. This work was funded by grants from the National Institute of Health (R01NS049510, R01NS26799 and NS032830), National Multiple Sclerosis Society (2901C6), the Nancy Davis Foundation, the Medical Research Council (G0000648) and the Wellcome Trust (057097). We thank the International Multiple Sclerosis Genetics Consortium for providing NOS2A SNP genotypes for 930 MS trio families to include in our analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L F Barcellos.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barcellos, L., Ramsay, P., Caillier, S. et al. Genetic variation in nitric oxide synthase 2A (NOS2A) and risk for multiple sclerosis. Genes Immun 9, 493–500 (2008). https://doi.org/10.1038/gene.2008.41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.41

Keywords

This article is cited by

Search

Quick links