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Abstract

Purpose Autosomal-dominant optic atrophy
(ADOA), often associated with mutations in
the OPA1 gene (chromosome 3q28-q29) is
rarely reported in Asia. Our aim was to
identify and describe this condition in an
Asian population in Singapore.
Patients and methods Preliminary cross-
sectional study at the Singapore National Eye
Centre, including patients with clinical
suspicion of ADOA, who subsequently
underwent genetic testing by direct
sequencing of the OPA1 gene.
Results Among 12 patients (10 families) with
clinically suspected ADOA, 7 patients
(5 families) from 3 different ethnic origins
(Chinese, Indian, and Malay) carried a
heterozygous pathogenic variant in the OPA1
gene. The OPA1 mutations were located on
exons 8, 9, 11, and 17: c.869G4A
(p.Arg290Glu), c.892A4G (p.Ser298Gly),
c.1140G4A (splicing mutation), and
c.1669C4T (p.Arg557*), respectively. One
splicing mutation (c.871-1G4A) was
identified in intron 8. We also identified a
novel mutation causing optic atrophy and
deafness (c.892A4G (p.Ser298Gly)). Among
the phenotypic features, colour pupillometry
disclosed a dissociation between low vision
and preserved pupillary light reflex
in ADOA.
Conclusion We report the first cases of
genetically confirmed OPA1-related ADOA from
Singapore, including a novel mutation causing
‘ADOA plus’ syndrome. Further epidemiological
studies are needed in order to determine the
prevalence of ADOA in South-East Asia.
Eye (2017) 31, 475–480; doi:10.1038/eye.2016.255;
published online 18 November 2016

Introduction

Autosomal-dominant optic atrophy (ADOA) is
the most common inherited optic neuropathy,

characterized by bilateral visual loss, typically
occurring in early childhood, associated with
central or cecocentral visual field defects, colour
vision deficits, and temporal or diffuse pallor of
the optic disc.1,2 OPA1 mutations are responsible
for about 60–80% of genetically confirmed
ADOA cases.3–5 To date, the locus-specific
database dedicated to OPA1 (http://opa1.
mitodyn.org/), under our curation, has listed a
total of 377 OPA1 gene variants, of which 65%
are considered pathogenic.6,7 The OPA1 gene,
localized on 3q28-q29, has 30 coding exons
including three alternative exons. It encodes a
mitochondrial dynamin-related GTPase critical
to mitochondrial function.3,4 Despite the
reported autosomal-dominant inheritance, there
is incomplete penetrance of the condition8 and
almost half of the OPA1 mutations have been
detected in apparently sporadic cases with no
demonstrable family history.9 As a result of
the wide spectrum of mutations, there is
considerable inter and intrafamilial variability in
the ADOA phenotype ranging from minimal to
significant visual loss to severe phenotypes
affecting young adults with systemic
associations such as sensorineural deafness,
ataxia, external ophthalmoplegia, peripheral
neuropathy, and myopathy, also known as the
ADOA 'plus' phenotypes.10 Severe syndromes
affecting young children, due to recessive OPA1
inheritance, were also recently reported.5,11,12

Although ADOA is an ubiquitous
condition,13–18 several studies have reported its
possibly lower incidence in Asia.19,20 Our aim
was to investigate, for the first time, its
occurrence in the multiethnic population of
Singapore.

Materials and methods

Patients with unexplained optic neuropathies,
clinically suggestive of ADOA, seen at Singapore
National Eye Centre (January 2013 to August
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2014) were genetically tested for OPA1 mutations.
Inclusion criteria were: bilateral visual loss,
dyschromatopsia, optic disc pallor or atrophy, and visual
field loss, irrespective of the presence of ophthalmic
family history. Other causes of optic neuropathies were
ruled out in all included patients. The study was
approved by our central institutional review board ethics
committee.
A blood sample was taken from 12 included patients

after informed consent. The 30 coding OPA1 exons and
the exon–intron junctions were sequenced using Sanger
technique. The OPA1 variants are described according to
the isoform 1 (RefSeq: NM_015560.2). Phenotyping of
genetically confirmed carriers included monocular
chromatic pupillometry, described in detail elsewhere.21

In brief, one eye of each subject was exposed to blue
(469 nm) and red (631 nm) light (order of light exposure
randomized) of gradually increasing intensity from 6.8 to
13.8 log photons/cm2/s1 at the level of the cornea, over
2 min, preceded and followed by 1 min of darkness. The
dark pupil diameter before light exposure was used to
convert the rest of the pupillary constriction data into
constriction ratio. The pupillary constriction during the
light exposure was binned in bins of 0.5 log units between
7 and 14 log photons/cm2/s1, generating 14 data points
per light exposure recording. Pupillometry results were
compared with those of 54 healthy control subjects that
underwent the same protocol.

Results

Patient 1 A 27-year-old Malay man, with a family
history of poor vision, was evaluated for unexplained
poor vision and recent, bilateral hearing loss. He admitted
having poor vision since primary school as well as a
family history of poor childhood vision (in a second-
degree relative). Best corrected visual acuity (BCVA) was
6/45 OU and colour vision was 13/15 on Ishihara plates
OU. Fundoscopy disclosed bilateral temporal disc pallor
and normal appearance of the retina. MRI brain was
normal. Genetic testing revealed a novel pathogenic
heterozygous missense variant c.892A4G (p.Ser298Gly)
in exon 9 of OPA1 gene.

Patient 2 A 28-year-old Indian male with a family
history of unexplained, poor vision, was evaluated for
longstanding visual loss. His BCVA was 6/24 RE and
6/30 LE, and fundoscopy disclosed pale, cupped discs.
Work-up for toxic, nutritional, and compressive causes of
optic atrophy (including MRI brain and anterior visual
pathway) was negative. Genetic testing disclosed a
pathogenic missense pathogenic variant c.869G4A
(p.Arg290Glu) in exon 8 of OPA1.4

Patient 3 A 70-year-old male Chinese patient with no
significant ophthalmic family history had unexplained
visual loss since his youth. BCVA was 6/120 in both eyes,
associated with bilaterally pale, cupped discs; the
remainder of the neuro-ophthalmic examination was
normal. A dedicated CT of brain, orbits, and pituitary
fossa ruled out compression of the afferent pathways and
the remainder of the evaluation did not disclose a
nutritional, toxic, inflammatory, or infectious cause of this
bilateral optic neuropathy. Genetic testing disclosed a
pathogenic splicing variant in the intron 8 of the OPA1
gene (c.871-1G4A).22

Patient 4 A 24-year-old Chinese man with a family
history of visual loss presented unexplained bilateral
progressive visual loss since childhood. BCVA was 6/45
OU, and fundoscopy revealed bilateral temporal disc
pallor. Genetic testing revealed a pathogenic
heterozygous non sense variant in the exon 17 of the
OPA1 gene (c.1669C4T (p.Arg557*)).22

Patients 5, 6, and 7 This family, originally from
Myanmar, was composed of three affected male patients:
two brothers (patients 5 and 6) and their father (patient 7).
No other family members were affected. The proband,
age 25, (patient 5), was independently, initially diagnosed
with Leber’s hereditary optic neuropathy (LHON) in a
context of poor, unexplained visual loss (6/60 OU),
and a mitochondrial point mutation (m.11253T4C
(p.Ile165Thr)) in the MT-ND4 gene.23 At that time, no
nuclear DNA testing was performed. His brother
(patient 6), also suffered of unexplained visual loss,
thought to be related to LHON. The LHON diagnosis
was later challenged, when the father, age 61 (patient 7),
was evaluated for longstanding visual loss (6/45 OU)
and centrocaecal scotomas. Genetic testing in all three
patients disclosed a pathogenic, heterozygous
c.1140G4A splicing variant in exon 11 of OPA1
gene. This mutation is responsible for exon 11 skipping
and has been previously reported to be pathogenic
in ADOA.24

Humphrey visual fields were variably abnormal in all
included patients (Table 1). Chromatic pupillometry was
performed in five of the seven subjects with genetically
confirmed ADOA and compared with those obtained in
54 healthy control subjects. Dose–response curves for
pupillary constriction were generated for controls and
patients with ADOA for both blue 469 nm light and red
631 nm light. The mean constriction amplitude of pupils,
both to blue and red light, at each point of the curve was
comparable in the ADOA group and in the healthy
control group (Figure 1).
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Discussion

This is the first report of genetically confirmed ADOA in
Singapore and in South-East Asia. ADOA is rare in Asia,
occurring in only 6.3% of the Chinese patients with
hereditary optic neuropathies.20 This is in contrast to a
European study, which reported 30% positivity for OPA1

mutations in 980 patients from France and Spain with
suspected hereditary optic neuropathy.9 It is not clear
though, whether ADOA is less prevalent in Asia, or
merely less frequently detected, due to unfamiliarity with
the condition. Indeed, milder phenotypes and limited
access to genetic testing may explain, partly, the reduced

Table 1 Summary of included patients

Underlying genetic mutation, references of first report of the mutation,4,22,24 patient's age at diagnosis and at onset, ethnicity, visual acuity, visual fields
(pattern SD-PSD), and mean deviation (MD).
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prevalence of the disease in Asia. It has nevertheless been
suggested that screening for OPA1 mutation is needed in
Chinese populations suspected with hereditary optic
neuropathies.25

Our patients encompassed all major ethnic groups in
Singapore, including Chinese, Indian, and Malay,
presenting with classical clinical findings. Phenotypically,
our patients had similar findings with those disclosed in
Caucasian ADOA populations, that is, early onset of a
slowly progressive optic neuropathy. The pupillometry
results were also similar to those reported in Caucasian
cohorts.26 It has been postulated that the ipRGCs
expressing melanopsin, mediating blue light responses,
are relatively resistant to the intracellular metabolic
dysfunction induced by the various genetic defects in
mitochondrial optic neuropathies.27 In all five patients
tested among our group, there was no significant

difference in the pupil responses to red and blue light,
when compared with healthy controls, suggesting
resistance of ipRGCS in ADOA.
The detected mutations were classical, spanning across

exons 8, 9, 11, and 17 and in intron 8.6 We also report an
ADOA ‘plus’ patient due to a novel missense mutation
c.892A4G (p.Ser298Gly) in exon 9, not previously
reported.6,7,28 This variant is predicted by the state of the
art in silico methods to be disease causing with high
confidence; (1) the substituted nucleic acid is highly
conserved29 (phyloP score: 4.88) leading to the
substitution of a serine amino acid, which is highly
conserved in the eight species aligned30 in this study
(Figure 2), (2) the main prediction tools for predicting
damaging effects of missense mutations predict this
mutation to affect the protein function with high
confidence31–33 (Mutation Taster probability: 0.99;

Figure 1 Colour pupillometry in genetically confirmed ADOA patients. Dose–response curves for pupillary constriction are shown for
controls (n= 54, filled circles) and patients with ADOA (n= 5, open circles), who were exposed to blue 469 nm light (a, left, blue trace)
and red 631 nm light (b, right, red trace). There was no significant difference of the pupil responses in ADOA patients, compared with
controls. Pupil diameter is expressed as a percentage of the dark pupil measured prior to each light exposure. The mean± SEM is shown
in the graphs.

Figure 2 Evolutionary conservation analysis of the OPA1 p.(Ser298Gly) mutation (patient id #1). Eight species were aligned using the
multiple sequence alignment tool CLUSTAL Omega30 (version 1.2.2) to analyze the evolutionary conservation of the OPA1 proteins.
Sequences of Caenorhabditis elegans (CAA87771.3), Drosophila melanogaster (NP_610941.1), Danio rerio (NP_001007299.1), Gallus gallus
(NP_001034398.1), Mus musculus (NP_001186106.1), Bos taurus (NP_001179890.1 2), Pan troglodytes (XP_003310226.1), and Homo sapiens
(NP_056375.2) were retrieved from GenBank.
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PolyPhen-2 probability: 1.00; SIFT score: 0.00, with
sequences used for prediction diverse enough), (3) we
submitted the first report of this variant in the reference
OPA1 locus-specific database6,7 (DB-ID: OPA1_00306),
and this mutation is unknown in the catalog of genome
variations34 and both in exome35,36 or genome37 databases
of healthy individuals.
One family (patients 5, 6, and 7) was carrying a

pathogenic, heterozygous OPA1 mutation, c.1140G4A.
Interestingly, one of the affected male members in this
family (patient 5) was also carrying the mitochondrial
DNA variant m.11253T4C, detected by an initial, limited
genetic work-up. The m.11253T4C variant is currently
referenced both as a polymorphism and as a candidate
LHON mutation in the Mitomap reference database,
indicating that the pathogenic status of this variant is not
definitive. It is, therefore, well possible that a synergistic
effect might have played a role, between the OPA1 and
the mtDNA variant, given also that patient 5 had a lower
visual acuity than his affected father.
In conclusion, we report here the first seven cases of

genetically confirmed ADOA, in a multiethnic population
from Singapore. Although ADOAmay be a rare condition
in Asia, it should be part of the differential diagnosis in
unexplained optic neuropathies, even in the absence of
family history.

Summary

What was known before
K ADOA is well known in the western world. There are very

few reports of genetically confirmed ADOA from Asia/
Singapore.

What this study adds
K First case series of genetically confirmed ADOA from

Singapore with report of a novel mutation causing ADOA
plus phenotype and genetic analysis to support its
pathogenicity.
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