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Abstract

Visual function improves with oxygen
inhalation in people with diabetes even in
the absence of visible retinopathy. Rods
consume the most oxygen in the retina due
to the high metabolic activity required to
maintain the dark current. Therefore, Arden
hypothesized that in diabetes where oxygen
supply may also be affected due to the
changes in retinal vasculature, prevention of
dark adaptation may be a viable option to
prevent or decrease the rate of progression of
diabetic retinopathy. Animal experiments
have proven that the absence of rods
decreases the development of retinal
neovascularisation. The same principle
applies to panretinal photocoagulation, an
established treatment for proliferative
diabetic retinopathy. Recently, a few clinical
studies have also shown that preventing dark
adaptation by suppressing rods with 500-nm
light source at night decreases the rate of
progression of early diabetic retinopathy and
maculopathy in the short-term. We await the
results of a large two-year multi-centre trial
(CLEOPATRA trial) to evaluate the long-term
effects of decreasing dark adaptation by
applying a 500-nm light source as a mask
over eyes with non-central diabetic macular
oedema.
Eye (2016) 30, 189–192; doi:10.1038/eye.2015.254;
published online 11 December 2015

Diabetic retinopathy (DR) is a degenerative
neurovascular complication of diabetes
mellitus.1 Numerous aspects of its pathogenesis
have been explored, in the past, and
various factors/pathways have been identified
to be involved but the focus has been on
microvascular changes in the inner retina.2

In 1998, Arden et al hypothesized that the rod
system in the outer retina may be a major
contributor to the development and progression

of DR due to the relative hypoxia induced by
increased oxygen consumption during dark
adaptation, and that this hypoxia, by
upregulating vascular endothelial growth
factor (VEGF), could provoke the microvascular
changes.3 He postulated that preventing
dark adaptation by illuminating the retina with
507-nm light during night might reduce the risk
of progression of DR.4,5 However, establishing
causal links between this hypothesis and the
ultimate neuronal and microvascular changes
have been challenging, especially because it
seems just too simple a concept to accept.
Interest in this hypothesis has re-ignited.6 The
aim of this review is to discuss the available
evidence on this hypothesis.

Are rods involved in the development and
progression of DR?

Kern and Engermann compared microvascular
changes in the brain and retina in 10 diabetic
dogs.7 They observed that microvascular changes
evident in the retina were not seen in the brain
and concluded that there is a local factor in the
eye that causes these microvascular changes.
Arden then observed that people with diabetes
and retinitis pigmentosa do not develop DR
and hypothesized that rods may be the local
factors that contribute to the pathogenesis of
microvascular changes.3 This finding has been
corroborated in animal experiments. De Gooyer
et al showed that rhodopsin knockout mice
(retinitis pigmentosa model) superimposed with
diabetes showed significantly less severity of
microvascular changes and decrease gene
expression of VEGF than wild-type diabetic mice.8

What happens in dark adaptation

Light captured by visual pigments in
rod and cone cells of the retina triggers
phototransduction. In the rods, the
photoexcitation of rhodopsin activates
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transducin, hydrolyzing cGMP and in turn closure
of the cGMP-gated cation channel and the cell is
hyperpolarized. In the dark, a steady current flows into
the open channels, carried mainly by sodium ions,
constituting a ‘dark current’ that depolarizes the
photoreceptor cell. In the inner segment, there are pumps
that expel the sodium and water from the rod. This
process requires a great deal of energy. Depolarized rods
in dark also release large amounts of glutamate, their
neurotransmitter, which also increases energy utilization
and oxygen consumption. Therefore, the partial pressure
of oxygen [PO2] at the level of photoreceptors reduces to
near zero resulting in a relative hypoxia in this layer
compared with other retinal layers.9–12

Oxygen consumption by rod photoreceptors

The outer retina consists predominantly of photoreceptors
and is avascular. It derives most of its oxygen supply
from the choroidal circulation that has high PO2, whereas
15% supply is from the retinal circulation.9–12 The O2

utilization in the outer retina occurs in the photoreceptor
inner segments and the PO2 in the inner segments
approach zero in the dark in many animals due to the
extraordinarily high oxygen consumption by the
rods.11–17 Okawa et al estimated that the rod-specific
metabolic rate is 13 μmol ATP per minute per gram in
darkness. In bright light, retinal O2 consumption
decreases by 40–60% mostly due to the drop in ATP
consumption by the rods.18 In animal experiments, the
PO2 rises suddenly and briefly when the retina is
stimulated by a flash of light providing evidence of the
effect of dark current on oxygen consumption. Under
light-adapted conditions, the influx of Na+ decreases,
which decreases the metabolic demand for Na+/K+
pumping, whereas the turnover of cGMP in the outer
segment increases oxygen utilization. The net oxygen
consumption is the summation of the two opposite effects
of light on Na+/K+ pumping and cGMP turnover.9,18,19

The relative values should depend on rates of enzymatic
processes, numbers of channels and pumps, and the
geometry of the photoreceptors, so it would lead to a
difference in the net effect of light on O2 consumption in
different species.17

Therefore, in diabetes where the availability of
oxygen is already compromised, the normal dark
adaptation process that causes an outer retinal increase
in oxygen consumption may be sufficient to initiate the
hypoxic environment that triggers microvascular changes.
One may argue that the choroidal circulation is not

compromised in diabetes so the supply demand of
oxygen in the retina is not compromised. There is
sufficient evidence to suggest that choroidal blood flow is
reduced earlier than retinal blood flow in diabetic mice20

and that choroidal angiopathy is an early feature in
human diabetic eyes.21 Choroidal blood flow is also
not regulated metabolically, so systemic hypoxia leads
to decreases in choroidal PO2 and photoreceptor O2

consumption explaining why systemic hypoxia as seen in
sleep apnoea has detrimental effects on DR. In fact, more
than five episodes of decrease arterial oxygen saturation
to o90% saturated per night is enough to significantly
exacerbate the retinopathy.

Evidence that oxygen supplementation improves visual
function changes and retinopathy in diabetes

Visual loss in people with diabetes begins with an
insidious reduction in night vision or the ability to see
details in low light conditions,22 suggesting that the rod
function is the first to be affected. There is also evidence
that contrast sensitivity is reduced in eyes before clinical
evidence of diabetic microvascular changes. Inspiration of
gas with an elevated fraction of O2 improves retinal and
visual function during diabetes implying that the diabetic
retina is hypoxic.23–25 Another example is panretinal
photocoagulation that causes new vessel regression by
reducing the hypoxia induced VEGF drive. The treatment
reduces the hypoxic state by decreasing the metabolic
demand of the photoreceptors and improving
oxygenation of the retina and thereby reducing VEGF
stimulation26. Similarly, oxygen therapy improves
non-central macular edema in the short term.27 Patients
with mild reduction in arterial hemoglobin saturation due
to sleep apnoea have more severe retinopathy than those
whose airways do no obstruct at night. Positive pressure
ventilation in such patients also reduces the rate of
progression of DR.28–32

Does illuminating the retina reduce the risk of
progression of retinopathy?

Trans-lid retinal illumination of one eye in 12 patients
with DR during sleep over 3 months resulted in a
reduction of tritan thresholds and a reduction in the
number hemorrhages and microaneurysms on fundus
photographs compared with the contralateral eyes.33

Furthermore, another clinical trial on 40 patients with
mild non-proliferative DR and early, untreated non-sight-
threatening diabetic macular oedema (DMO) who slept
for 6 months wearing masks that illuminated the eyelid
of one closed eye with 505-nm light over 6 months also
showed regression of the macular oedema and improved
visual function.34 The longer-term effects of this treatment
option on non-central DMO is now being evaluated in
a phase III randomised controlled single-masked
multicentre clinical trial over 2 years (CLEOPATRA
trial).35
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Can any other mechanism explain the role of rods in
diabetic retinopathy?

Oxidative stress, that is, the production of high-energy
radicals by altered action of mitochondria, is certainly
increased in diabetic retina. The photoreceptors produce a
very large majority of such radicals level and oxidative
stress increases in dark-adapted eyes again pointing out
that the dark current of the rods contribute to the
development of DR.36

Does increase illumination harm the rods?

It is unlikely that this modest increase in PO2 is harmful
to the cell even when the illumination is maintained for
long periods.37 The value of PO2 (20mmHg) found in the
vicinity of the rod mitochondria in bright light is similar
to the value measured by Linsenmeier and Braun in both
darkness and light in the inner retina of the cat.10 As the
cells of the inner retina are exposed to an oxygen tension
of about 20mmHg continuously during the life of the
organism and remain unaffected, it is unlikely that the
increase in oxygen tension caused by exposing the rods
to steady light would be deleterious. This would argue
against the notion that continuous stimulation of the rods
by real or equivalent light can produce deleteriously
elevated O2 in the outer retina and lead to cell death.

Are the cones involved in 507-nm illumination?

The oxygen consumption in the cones does not decrease
as significantly in light as is the case for rods despite the
fact that rods and cones have similar ATP expenditure
and dark current amplitude because, in bright light, a
cone will use much more ATP than a rod and the ATP
required by cones in bright light is approximately as large
as required in darkness. Furthermore, rods greatly
outnumber cones (95–5%), so that exposure to bright
steady light produces a net decrease in retinal ATP and
O2 utilization.8,9,13

One may question is the role of the mitochondria in
the cones. The mitochondrial density in foveal cone
inner segments is ∼ 60% higher than that in perifoveal
rods and the inner segments are longer in the fovea.38

The mitochondrion is the site of sequestration of oxygen
in oxidative phosphorylation pathways, which produce
high-energy phosphorylated nucleotides, especially ATP.
Mitochondrial repair has recently become of

considerable interest because this process seems to occur
when deep red light (670 nm) is used to irradiate the
retina (and other tissues). This light is absorbed to an
insignificant amount by the rods and even the cones, and
there are no pigments with an absorption spectrum that
corresponds to the observations. However, the peak of the

difference spectrum between various energy levels of
cytochrome oxidase is near this wavelength, strongly
suggesting that the efficiency of the mitochondrion can be
affected by such radiation. Kern et al have demonstrated
that 670-nm light exposure for a mere 83 s results in
resolution of non-central DMO. The details of how this
mechanism operates are unclear.36

Melanopsin and illumination of the retina

Apart from the rods and cones, there are melanopsin-
expressing intrinsically photoreceptive retinal ganglion
cells (ipRGCs). The question arises whether these cells
contribute to the effect of 507-nm light on the retina.
ipRGCs comprise only a small fraction of o5% of the
total ganglion cell population that function in circadian
entrainment and the pupillary reflex. First, the amount
of 507-nm light required is so low that ipGRCs are
unlikely to be active. Although we cannot be certain,
the maximum spectral sensitivity of ipRGCs is at ~ 480
nm.39 The ipRGCs also lack specialized photopigment-
concentrating organelles (such as rod/cone outer
segments) to maximize the probability of photon capture.
As a result, the probability of absorbing a photon is 41
million times lower than in the rods or cones for a given
area of photostimulation.

Conclusion

Over the past 20 years, the important role played by
photoreceptors in the development of retinal disease
has become apparent, and the mechamisms whereby
this occurs are now better understood. The advances in
knowledge suggest that noninvasive treatment by light
may be an important adjunct therapy in DR.
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