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Abstract

The main treatment available for restoration of

the corneal endothelium is keratoplasty. This

procedure is faced with several difficulties,

including the shortage of donor tissue, post-

surgical complications associated with the use

of drugs to prevent immune rejection, and a

significant increase in the occurrence of glau-

coma. Recently, surgical procedures such as

Descemet’s stripping endothelial keratoplasty

have focused on the transplant of corneal

endothelium, yielding better visual results but

still facing the need for donor tissue. The

emergent strategies in the field of cell biology

and tissue cultivation of corneal endothelial

cells aim at the production of transplantable

endothelial cell sheets. Cell therapy focuses on

the culture of corneal endothelial cells

retrieved from the donor, in the donor’s

cornea, followed by transplantation into the

recipient. Recently, research has focused on

overcoming the challenge of harvesting

human corneal endothelial cells and the

generation of new biomembranes to be used

as cell scaffolds in surgical procedures. The

use of corneal endothelial precursors from the

peripheral cornea has also demonstrated to be

effective and represents a valuable tool for

reducing the risk of rejection in allogeneic

transplants. Several animal model reports also

support the use of adult stem cells as therapy

for corneal diseases. Current results represent

important progresses in the development of

new strategies based on alternative sources of

tissue for the treatment of corneal endothe-

liopathies. Different databases were used to

search literature: PubMed, Google Books,

MD Consult, Google Scholar, Gene Cards, and

NCBI Books. The main search terms used

were: ‘cornea AND embryology AND tran-

scription factors’, ‘human endothelial kerato-

plasty AND risk factors’, ‘(cornea OR corneal)

AND (endothelium OR endothelial) AND cell

culture’, ‘mesenchymal stem cells AND cell

therapy’, ‘mesenchymal stem cells AND

cornea’, and ‘stem cells AND (cornea OR

corneal) AND (endothelial OR endothelium)’.
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Introduction

The cornea is a transparent avascular tissue that

in conjunction with the sclera forms the outer

portion of the eye. It is a connective tissue that

acts as the primary barrier against infection and

mechanical damage to the internal structures of

the eye. Along with the tear film on the ocular

surface, it accounts for more than two-thirds of

the total refractive power of the eye. It is

organized into three cell layers: epithelium,

stroma, and endothelium, and two interfaces:

Bowman’s layer and Descemet’s membrane.1

The epithelium provides a biodefense system on

the anterior surface of the eye, helps to keep the

corneal surface optically smooth, and provides a

barrier to external biological agents and

chemical damage. Bowman’s layer serves as an

interface between the epithelium and the stroma

and consists of randomly arranged collagen

fibers and proteoglycan types I and III. The

stroma constitutes about 90% of the thickness of

the cornea and is composed of extracellular

matrix, keratinocytes, and nerve fibers. It

provides structural strength, shape, stability,

and transparency to the cornea. The

endothelium is a thin monolayer of polygonal

cells covering the posterior surface of

Descemet’s membrane and is in contact with the
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aqueous humor (Figure 1). The main function is to

regulate the hydration state through an active ATP and

biocarbonate-dependent pump; thereby providing

transparency to the cornea, which allows the eye to

perform its visual functions.2 It is also an important

system for the passage of nutrients and waste removal

through simple diffusion, facilitated diffusion, and

active transport mechanisms.3

The corneal endothelium is the cell layer with the

lowest mitotic activity.4 Given the importance of its

function, damage to the endothelium is potentially more

serious than that to the other corneal layers and can

result in cell loss and irreversible damage to the

endothelial cytoskeleton, that ultimately affecting visual

function.5 The main treatment for this condition is

corneal transplant. Nevertheless, given the difficulty

obtaining donor tissue, the development of novel

strategies has focused on the use of cultured corneal

endothelial cells, corneal endothelial stem cells, and stem

cells of extra-ocular origin. In this article, we describe the

corneal endothelium’s embryology and physiology, the

main conditions that affects it and the cell therapies

currently under development.

Embryology

The embryological origins of the major structures of the

eye are diverse. The central part of the cornea, including

the endothelium, is derived from neural crest cells.

The retina and the epithelial layers of the iris and ciliary

body are derived from the anterior neural plate, the lens

from surface ectoderm, and the corneal epithelium

from epidermal ectoderm.6,7

The cornea is formed as a result of the last series of

major inductive events during eye development at B5–6

weeks of human gestation, when the surface ectoderm

interacts with the lens vesicle (Figure 2). When they are

completely apart, the space between them is filled with

perinuclear mesenchyme cells, from the neural crest. The

mesenchyme then condenses and forms several layers

Figure 1 Electron micrograph of corneal endothelium under-
lying Descemet’s membrane of the human cornea (with
permission of Cell Image Library CIL: 10944* http://creative-
commons.org/licenses/by-nc-nd/3.0/legalcode).
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separated by extracellular matrix. The cells closer to the

lens become the corneal endothelium and the surface

ectoderm on the anterior surface, becomes the corneal

epithelium.6,7 Around the 78 mm stage, the endothelial

cells become flattened and tightly connected to one

another by tight junctions. Immediately anterior to this

layer there is a homogeneous acellular layer, which

becomes Descemet’s membrane. By the 120 and 165 mm

stages of development, the endothelial monolayer is of

uniform thickness spans the entire posterior corneal

surface and fuses with the cells of the trabecular

meshwork. The endothelial cells stay arrested in

the G1-phase of mitosis.8

The mechanisms of neural crest cell migration

are not fully understood. It is the coordinated action of

transcription factors and inductive signals that mediate

the proper development of the periocular mesenchyme.

Some of the transcription factors involved in these events

are: Foxc1, Foxc2, Lmx1b, Pax6, Pitx2, RARb, RARg,
RXRa, Six3, and Smad2.9–12

Pax6 is a known master gene involved in ocular

development. It is required for the development of all

layers of the cornea.10 In mice, it is regulated by Six3

and Lmx1b, and together with Sox2, acts on the surface

ectoderm to regulate the expression of crystalline

genes.13,14 Molecules like FGF2, TGFb1, TGFb2, and

Bmp7 are also involved in regulating expression of Pax6.

FGF2 participates in the process of invagination of the

optic vesicle; together with Bmp7, it regulates the

optimal level of Pax6 expression.13,15 Bmp7 indirectly

controls the Sox2 signal in the lens ectoderm, which

either upregulates or downregulates Pax6 expression.16

TGFb1 and TGFb2 have been shown to increase the

expression of Foxc1 and Pitx2,17,18 which are required for

the development of the ocular anterior segment.19–21

It has been proposed that the TGF-b subfamily members

initiate a supporting mechanism to regulate Pax6

function and transcription.22 In the corneal endothelium,

TGFb1 and TGFb2 modulate cell proliferation, cell

morphology, and collagen expression.23,24

In the mouse head mesenchyme, retinoic acid receptor

heterodimers RXRa/RARb and RXRa/RARg regulate the

expression of Foxc1 and Pitx2, and control the extent

of cell death during remodeling of periocular

mesenchyme.25 Together, Pax6, Lmx1b, and Pitx2 have

a key role in the maintenance of corneal endothelium

integrity.13

Although there has been significant progress in the

understanding of human eye development during

embryogenesis, further research is needed to clarify the

mechanisms by which expression of these (and other)

transcription factors lead to the proper development of

corneal endothelium and other structures of the eye’s

anterior segment.

Corneal endothelium physiology

The corneal endothelium consists of a 4-mm thick

monolayer of polygonal, mostly hexagonal cells. In the

adult, the average cell density is B3000 cells/mm2 and

the percentage of hexagonal cells is about 75%.26,27

The density of corneal endothelial cells and their surface

changes throughout life are noted in Figure 3. From the

second to the eighth decade, the cell density declines to

about 2600 cells/mm2 and the percentage of hexagonal

cells decreases to B60%. The central endothelial cell

density decreases at an average rate of 0.6% per year.28,29

To preserve ocular transparency, endothelial cell density

must remain above a critical level, usually between

400 and 500 cells/mm2.30 Adjacent cells communicate

through gap junctions and tight junctions, whereas the

basal surface is adhered to Descemet’s membrane

by hemidesmosomes.31,32 Tight junctions (ZO-1) are

supramolecular assemblies, that form intercellular

junctions, and are found close to the apical domains of

the endothelial cells. This allows the endothelium to

function as a barrier, forming resistance to the

permeability of solutes and fluid through paracellular

transport routes.30,33

There are integral proteins in the cellular membrane,

the aquaporins (AQP), which with the Naþ/Kþ
ATPase pump participate in the fluid movement across

the endothelium and function as water selective

channels. The isoform AQP-1 is expressed by the corneal

endothelial cells and the lens epithelium.34,35

Corneal endothelial cells secrete collagen type VIII,36

an important component of Descemet’s membrane that is

actively produced during cellular differentiation and

proliferation, as well as during postnatal development

and in vitro cell culture.37 Collagen VIII is suggested to be

partially responsible for the correct assembly of

Descemet’s membrane to ensure corneal stability.38

Endothelial cells contain numerous mitochondria and

the Golgi complex, indicating that they are metabolically

Figure 3 Changes in corneal endothelial cell density and size
throughout life.
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active and secretory.39 This is related to the Naþ/

Kþ -ATP pump and Descemet’s membrane secretion,

respectively. The former is a major function of the corneal

endothelium and is driven by ionic gradients located in

the basolateral side of the membrane.3 An osmotic

gradient of sodium is present between the aqueous

humor and the stroma and results in the influx of sodium

ions from the aqueous humor and in an efflux of

potassium ions in the opposite direction. Carbon dioxide

also diffuses into the cytoplasm of the endothelial cells

and in combination with water, bicarbonate ions are

produced in a reaction catalyzed by carbonic anhydrase.

The bicarbonate ions then diffuse or are transported into

the aqueous humor. Coupled with the movement of

bicarbonate ions there is a efflux of water across the

endothelial cells into the aqueous humor.2 As a result

of this activity, the stroma maintains a water content

of B78%.40

A characteristic of the neural crest origin of the corneal

endothelial cells is the expression of neuron-specific

enolase (NSE).41 Although NSE is found in several

tissues like smooth muscle cells, heart, and kidney, it can

be used as a diagnostic tool for the identification of this

cell type. A new monoclonal antibody has been

generated (9.3.E) as a specific marker for human corneal

endothelial cells (HCECs) that recognizes a protein

mainly accumulated in the cell membrane and is

useful for differentiating corneal endothelial cells from

other cell types, especially corneal keratocytes.42

HCECs do not have a significant capacity for in vivo

regeneration, thus making them unable to replace dead

or damaged cells.30,43 This occurs because HCECs are

arrested in the G1-phase of the cell cycle. Three

mechanisms have been identified that contribute to this:

(1) cell–cell contact-dependent inhibition, (2) lack of

effective growth factor stimulation, and (3) TGF-b2

suppression of S-phase.

To maintain proper structure and function, endothelial

cells respond to minor damage with stretching and

centripetal migration into the injured area;44 however, an

increase in cell size (polymegathism) and variation in cell

shape (pleomorphism) correlates to the reduced ability

of the cells to hydrate the cornea.45,46 Endothelial cell

density can be significantly decreased as a result of

trauma, refractive surgery, previous penetrating, or

endothelial keratoplasty or stress caused by disorders

such as diabetes, glaucoma, or endothelial

dystrophies.47–49 When endothelial cell density decreases

significantly, from the average of 3000 to nearly

1000 cells/mm2 (as in Fuchs’ dystrophy) their function is

compromised, corneal transparency is lost and

surgery is required.50

There are promising therapies for corneal endothelium

repair and wound healing, including the arrest of cell

loss, endothelial cell transplantation, and stimulation

of fluid secretion by the remaining endothelial cells.3,51

Nevertheless, keratoplasty remains the main treatment to

repair this layer.48,50 The complications associated with

this make the treatment of endotheliopathies a challenge

for current and future research.

Clinical conditions of corneal endothelium and

current treatments

Corneal blindness represents the fourth leading cause

of blindness worldwide (5.1%) and is a major cause of

visual impairment after cataracts, glaucoma, and

age-related macular degeneration.52 Ocular trauma and

corneal ulceration are also major causes of corneal

blindness53,54 and may result in 1.5–2.0 million new cases

of monocular blindness every year.55 Given the difficulty

of treating corneal blindness, public health prevention

programs are the most effective options in terms of cost

to reduce the number of cases worldwide. In fact, the

main current treatment is keratoplasty; however, the

access to this surgery is very difficult owing to lack

of donors.56,57

Corneal endothelial diseases that require corneal

transplant include: Fuchs’ dystrophy, bullous

pseudophakic keratopathy, posterior polymorphous

dystrophy, congenital hereditary endothelial dystrophy,

iridocorneal endothelial syndrome, and some

intermediate forms. The use of contact lenses and the

effects of surgical procedures can also affect the

endothelial tissue to a lesser extent.48,58–60 Fuchs’

dystrophy affects B4% of the population over 40 years.

It is the major indication for penetrating keratoplasty in

the United States, which accounts for 10–25% of all

corneal transplants of different types. This is a significant

number considering that the annual number of corneal

transplants in the United States is more than 32 000.61

This disease is characterized by the presence of deposits

on and thickening of Descemet’s membrane, as well as

changes in the shape, and size of the endothelial cells.

The cornea progressively and slowly becomes opaque,

causing blurred vision.62

Although penetrating keratoplasty has been the

standard procedure for most diseases of the cornea, the

outcomes are not usually expected due to several factors,

including the risk of immune-mediated graft rejection,

and a significant increase in the prevalence of glaucoma

following transplantation, as concluded by Allouch et al63

and Valdez-Garcı́a et al.64 Therefore, an ideal strategy

would be to replace only the damaged layer.

In the last several years there have been breakthroughs

in the field of corneal endothelial transplantation, such as

the development of endothelial keratoplasty and

Descemet’s stripping endothelial keratoplasty (DSAEK)
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techniques. In 2005, only 4.5% of the donor corneas were

used for endothelial keratoplasty. By 2007, this number

increased to 50%.51 Nevertheless, the main problem with

endothelial keratoplasty is a postoperative cell loss

comparable to or higher than that observed with

penetrating keratoplasty.65 It has been documented that

endothelial cell density decreases B49% 24 months post-

surgery and that cell loss can be higher in patients with

previous glaucoma surgery. Neither donor age nor initial

cell density proved to have significant influence on

endothelial cell loss. The most promising strategy by

which postoperative cell loss can be reduced effectively

is the strict and adequate lowering of intraocular

pressure.66 Techniques such as Descemet’s membrane

endothelial keratoplasty and Descemet’s membrane

automated endothelial keratoplasty were developed,

offering better visual results, with less scarring and less

optical stromal aberrations. These procedures opened the

possibility to replace the corneal endothelium with

endothelium reconstructed by bioengineering.67

However, clinically available procedures with artificial

corneas have limitations such as inflammation of the

retroprosthetic membrane and development of

glaucoma, and are reserved for high-risk patients.68,69

The limited availability of donor corneas and the

current issues in surgical procedures require the

development of new methods in the field of tissue

engineering in order to improve corneal endothelial cell

survival and increase corneal endothelial cell density.

The emergent strategies in the field of cell biology and

tissue cultivation of corneal endothelial cells aim at the

production of transplantable endothelial cell sheets.

Cell therapy

Currently, cell therapy is aimed at reducing the problem

of the lack of donor tissue. To repair the corneal

endothelium, cell therapy focuses on the culture of

corneal endothelial cells retrieved from the donor, in the

donor’s cornea, followed by transplantation into the

recipient. Recent reports have demonstrated that corneal

endothelial cells possess the ability to undergo mitosis in

culture using these methods. HCEC ex vivo models are

able to overcome the G1-phase and complete the cell

cycle; this occurs after the release of cell–cell junctions

and in the presence of appropriate growth factors. In fact,

it has been proven that endothelial cells from both central

and peripheral areas of the cornea proliferate in vitro70

and that they can be cultured from young and adult

donors, obtaining similar numbers of cells when

specific growth factors are used.71

To successfully engineer human corneal endothelium

from a small number of cells, the processes of isolation,

preservation and expansion are critical. Recently,

research has focused on overcoming the challenge of

harvesting HCECs. It is known that the main factors that

influence the mitotic capacity of HCECs in vitro are: the

method of culture, the nature of the growth factors

contained in the medium, and the viability of the donor

cornea. The latter is influenced by age, cell density, donor

death-to-preservation time, preservation period, overall

health of the donor, and the specific cause of death.72

The common methodology to isolate endothelial cells

involves: (1) the retrieval of the corneal endothelium,

(2) dissociation of cell junctions in paired Descemet’s

membrane/endothelial layer, and (3) culture in proper

media. Based on the method used to dissociate the cell

junctions, the procedures have been classified as

enzymatic and non-enzymatic. The first is based on the

use of enzymes such as collagenase, trypsin, or

dispase.73,74 This technique has the tendency of leading

to cellular degradation due to the incubation time

required to detach cells from the matrix, and because it

also allows for the dissociation of the collagen matrix in

which the keratocytes are located. Additionally, it

often results in contamination from the stromal cells.

To overcome this problem, magnetic cell separation

improves HCECs yield, allowing for a high separation

efficacy.75 The non-enzymatic method is based on the use

of ethylenediamine tetraacetic acid (EDTA) to release

cell–cell junctions at the same time as it promotes cell

division upon exposure to mitogens.30,70,72,76 In this

process, EDTA can also cause cell damage and

decrease cell yield.77 There is a combined method

that uses collagenase II to generate preservable HCEC

aggregates and a brief treatment with trypsin/EDTA

leading to a high proliferation rate with less cell

damage.78

The addition of several different growth factors in

the culture media has been used to promote HCEC

expansion. The use of insulin and basic fibroblastic

growth factor (bFGF) have been shown to promote

mitosis in cells from peripheral cornea but not in the

central zone.79 In another study, nerve growth factor

(NGF) along with bovine pituitary extract and epidermal

growth factor (EGF) supported the expansion of cells

from both central and peripheral areas of the cornea.72 In

addition, a recent study concluded that a culture media

that combines EGF, insulin, transferrin, bFGF, NGF, and

pituitary extract promotes proliferative capacity up to

the third passage.73

In order to replicate the monolayer of the corneal

endothelium, there have been developments to maintain

cell morphology, density, and function. Materials like

collagen, amniotic membrane, and biodegradable

polymers have successfully been used in culture media

and animal models.80–82 Porcine corneal matrix and

Descemet’s membrane have also been used as scaffolds
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for transplanted cells allowing good transparency in cat

and rat corneas, and maintaining cell properties after the

transplant.60,83 Human decellularized stromas have been

used to culture HCECs, allowing them to retain the

expression of Naþ/Kþ -ATPase and ZO-1 markers for

greater than 14 days.84 Hydrogel lens have also proved to

be useful as a carrier device to transplant corneal

endothelial cells in rabbits, maintaining graft clarity

without signs of rejection and inflammation.85 An

additional method consists of the use of

superparamagnetic microspheres incorporated into

HCECs before transplantation and their alienation after

the transplant toward a magnetic field source. This

method has allowed cell attachment to corneal stroma

without affecting cell viability or light transmittance in

an ex vivo model.86 Major advances have been reached in

this field; however, efforts in developing new scaffolds

are still focused on achieving full clarity of the

cornea after transplantation, optimizing the number

of steps needed for their production, and the

generation of new biomembranes to be used in

surgical procedures.

As an alternative to cultured HCECs, the use of corneal

endothelial precursors from the peripheral cornea has

demonstrated to be effective. Corneal endothelial stem

cells are found as a sequestered niche at the junctional

region between corneal endothelium and the trabecular

meshwork, and are suggested to be a cell supply

activated during wound healing.87 For their isolation, a

sphere-forming assay method is developed, in which the

cells obtained from the corneal endothelium-Descemet’s

membrane complex are cultured under floating

conditions and generate proliferating spheres, that

produce neuronal and mesenchymal cell proteins.88,89

These corneal precursor spheres have been tested in an

animal model of bullous keratopathy, without the use of

a biocompatible carrier; they are injected directly into the

anterior chamber and by placing the eye in downgaze

enables their attachment to Descemet’s membrane and

corneal clarity can be achieved.90,91

The production of corneal endothelial grafts from the

same patient by culturing HCECs, or their precursors

represents a valuable tool for reducing the risk of

rejection in allogeneic transplants. However, the

therapeutic use of stem cells in the cornea still requires

an intact corneal stem cell compartment, which

contradicts the main indication for the transplant.

Furthermore, the amount of stem cells found in these

compartments is very low and may require prolonged

ex vivo culture to generate enough cells for a successful

transplant.92 Therefore, further research is needed to

find an alternative tissue source for corneal

endothelial reconstruction, such as cells of

extra-ocular origin.

Potential of using adult stem cells in the regeneration

of corneal endothelium

Adult stem cells, especially those found in adipose tissue,

bone marrow, and those obtained from umbilical cord

blood have been widely studied for the development of

new therapies for degenerative diseases.93 They have

self-renewal and plasticity characteristics, plus they have

an advantage over embryonic and fetal stem cells by

being easy to obtain and culture. In addition, they do not

face ethical problems, because it is feasible to obtain them

from the same patient.94

Stem cells obtained from bone marrow and adipose

tissue can differentiate into different cell types including

chondrocytes, osteocytes, myocytes, and neural cells; the

latter have been successfully obtained and used in an

animal model in our laboratory.95

Both types of adult stem cells express very similar

surface markers and genes;96 however, the procedure

required to obtain bone marrow stem cells (BMSCs) can

be uncomfortable for the patient. The amount of BMSCs

collected is often low and the proportion of stem cells

compared with the total number of nucleated cells is very

low (0.001–0.01%). Subcutaneous adipose tissue is more

abundant and often waste product in liposuction

cosmetic and therapeutic type.97,98 The ability of adult

stem cells to secrete different types of molecules with

anti-apoptotic, immunomodulatory, angiogenic,

chemoattractant, and anti-scarring properties provides

the basis for their use in regenerative medicine.99

Investigative therapies have been used in clinical trials

with some designed to treat autoimmune diseases,

including multiple sclerosis, lupus erythematosus, and

Crohn’s disease, as well as diabetes mellitus, myocardial

infarction, different types of cancer, neurological

disorders, and ocular surface diseases.93

Several animal model reports support the use of adult

stem cells as therapy for corneal diseases. In a study

made using Lum� /� mice (homozygous for disruptions

in the lumican gene that produces aberrant collagen

fibrils in the cornea), the intrastromal corneal injection of

stem cells from umbilical cord blood was followed for

3 months post treatment. The corneal transparency

returned after 12 weeks with an increase of about 10% in

stromal thickness, which was recorded after 8 weeks

with no immune rejection.100 In another study, a rabbit

model for limbal stem cell deficiency was used to

transplant bone marrow stem cells suspended in fibrin

gel.101 After 28 days, the corneas were completely

epithelialized and transplanted stem cells expressed

cytokeratin 3, a protein expressed by corneal epithelial

cells. They had secondary reactions like

neovascularization, corneal opacification, and

inflammation. However, these are short-term results and
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overall, the study provides evidence that bone marrow

stem cells can be used for the treatment of corneal

disorders. As an alternative, differentiated adult stem

cells into corneal endothelial cells have demonstrated

efficacy in the corneal clarity restoration in animal

models. In our experience, differentiated cells are more

likely to promote healing processes as compared with the

effect of only adult stem cells (unpublished data). In

2010, Du et al102 demonstrated that stem cells isolated

from human adipose tissue can differentiate into corneal

keratocytes. After 3 weeks in pellet culture with enriched

medium, stem cells adopted the keratocyte phenotype

and expressed keratocan and keratan sulfate. In this

study, the addition of bovine corneal extract to the

culture medium did not enhance the levels of expressed

keratocan, which suggest that differentiation relies more

on the three dimensional culture environments than on

molecular supplementation. A different study,

demonstrated the ability of endothelial progenitor

cells from bone marrow to differentiate into corneal

endothelial cells.60 In this experiment, the co-culture of

corneal endothelial cells with endothelial bone marrow

precursors for 10 days produced endothelial-like cells

and the expression of AQP-1, tight junctions, and NSE.

Moreover, differentiated cells were transplanted using

porcine corneal acellular matrix as carrier into cat’s

corneas with stripped endothelium, returning

corneal transparency after 28 days with little edema.

Recently, we reported a preliminary

over-representation analysis of the main difference in the

gene expression pattern between adipose mesenchymal

stem cells and corneal endothelial cells to set a baseline

for in vitro differentiation assays.103 In this study, we

identified 195 highly different expressed genes and their

related pathways, protein interactions, growth factors,

and biological processes. These data provide a valuable

tool for designing a more appropriate induction media.

Among the animal models used for adult stem cell

transplantation into corneal endothelium, White New

Zealand rabbit has demonstrated to be advantageous

given its resemblance with human corneal endothelium.

In a previous study, we demonstrated that rabbits older

than 6 months possess limited replicative ability to

restore corneal endothelium, making it a suitable

model of the human cornea in endothelial wound

healing studies.104

In order to be used as therapy for the regeneration of

the corneal endothelium, bioengineered tissue needs to

overcome the limits of obtaining functional cells in

enough quantities for transplantation, development of

better techniques of tissue engineering to grow an ex vivo

endothelial cell sheet, and improve the mechanisms to

slow the loss of endothelial cells following

transplantation. Current results represent important

progresses in the development of new strategies based

on alternative sources of tissue for the treatment of

corneal endotheliopathies.

Conclusion

The lack of donor tissue for corneal transplants makes

endothelium regeneration a challenge for researchers.

The recently discovered ability of corneal endothelial

cells to proliferate in vitro has opened the possibility

of regenerating the corneal endothelium through

bioengineering.

Currently, research is aimed at identifying optimal

conditions for the isolation and culture of corneal

endothelial cells and the optimal biomaterials use as

scaffolds in transplantation. Differentiation assays

should be supported by generic expression studies in

order to ensure specific cell functionality. The advances

of animal models show promising results, allowing for

recovery of cornea transparency almost entirely.

Moreover, mesenchymal stem cells obtained from

umbilical cord blood and bone marrow have shown an

ability to regenerate the endothelium in animal models.

Recently, it was demonstrated that in adipose tissue stem

cells are found in quantities greater than those found in

bone marrow, providing a more accessible source of cells.

Furthermore, the discovery of progenitor cells in the

periphery of the cornea has also shown potential for their

use in healing the endothelium. Thus, bioengineered

corneal endothelium using cells from the same patient

represent a potential new treatment to restore visual

acuity in patients with critical reduced endothelial

corneal density. This new treatment would eliminate the

main problems of corneal transplantation: lack of donors,

the possibility of immune reaction after the surgery, and

post-surgical complications such as infection and

development of glaucoma.
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