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SUMMARY 

With the increasing availability of geograpbically 
referenced data in health research the time is ripe to 
review the use of particular geographical and spatial 
analysis techniques in ophthalmic research. Analysis of 
the geographical distribution of ocular diseases, 
particularly in Britain, has not had a high profile, but 
there are certain diseases, such as congenital eye 
malformations in children, where such analysis meth· 
ods are particularly appropriate. We review the data 
requirements and then a variety of analytical techni· 
ques, some of which partition geographical space into 
areal units (such as counties or electoral wards), others 
of which treat space as continuous. We conclude with 
some comments on software that is available for such 
analyses. 

Geographical epidemiology refers to the description 
and analysis of disease incidence in space. While the 
simple mapping of disease has a long and rich history 
(see, for example, Haggett and Cliff1), the subject has 
been given fresh impetus in recent years, for two 
reasons. One reason is the increasing availability of 
health data that contain some form of 'spatial 
referencing'; a postcode, for example. The second 
motivation comes from the wish to see whether 
disease incidence shows any evidence towards 
'clustering' or geographical aggregation, since this 
might give some aetiological clues. The most well
known example of this comes from the epidemiology 
of childhood cancer, especially the leukaemias and 
lymphomas, where both clusterini and the possible 
location of 'clusters' in the vicinity of nuclear 
installations (see, for example, Bithell and Stone3) 
have been subject to intensive research effort. Below, 
we review both data requirements and analytical 
methods for the detection of clusters and clustering. 
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In doing so we are adopting a 'spatial analysis' 
perspective; this means that we want to give 
prominence to the geographical configuration of 
the objects of study. In particular, we need to 
recognise that analysis of data in a spatial context 
does not simply mean applying standard, non-spatial 
statistical techniques. Typically, such techniques 
assume that observations constitute independent 
pieces of evidence. However, in studies where the 
observations are geographically located, we need to 
allow for the fact that disease incidence is likely to be 
spatially correlated; the incidence of ocular disease in 
one area, for example, will be broadly similar to that 
in nearby areas, but probably less similar to that in 
more distant areas. This kind of 'spatial correlation' 
(also known as 'autocorrelation') arises in many 
studies of the geographical incidence of disease; 
there is no reason to believe that eye disease is likely 
to behave differently. 

SPATIAL DATABASES IN GEOGRAPHICAL 
EPIDEMIOLOGY 

Before considering methods that can be brought to 
bear on the spatial analysis of ocular disease, we first 
consider the 'material' required; we pay less atten
tion to the databases on disease (which will typically 
include diagnostic categories, age, gender, as well as 
treatment and so on), concentrating more on the 
data requirements for a spatial analysis. However, we 
first discuss the specific problem that has motivated 
the present review, and that brings a team of 
geographers, statisticians and ophthalmic surgeons 
together. 

A Geographical Database on Anophthalmos and 
Microphthalmos 

Our subsequent discussion of methods is motivated 
by a long-standing interest in geographical variations 
in the incidence of the rare conditions anophthalmos 
and microphthalmos. (The incidence of the former is 
0.30 per 10 000 births in France; 0.60 in north-east 
Italy: see Stoll et al.4 and Clementi et al.s respec-
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tively). This interest was itself generated, in part, by 
anecdotal reports in newspapers (from 1986) of 
possibly elevated levels of the conditions around 
incinerators in Scotland and South Wales. Although 
Government reports6,7 suggested that there were no 
problems, the South Wales report was based on 
suspect data (see Gatrell and Lovett8 for a review). 
We considered it worth while to assemble our own 
database, comprising: names and addresses of cases; 
date of birth; gender; ophthalmic history 
(anophthalmos or microphthalmos, unilateral or 
bilateral, presence of other ocular abnormalities); 
family history of ocular abnormalities; maternal 
history during pregnancy, and any illness during 
pregnancy; and current management. A proforma 
was distributed to consultant ophthalmic surgeons in 
Britain and details of cases made available by them 
have been entered into a database. 

. Data have been received for 176 children born 
since 1970, but are in some cases incomplete. We 
have therefore not yet commenced any detailed 
statistical or geographical analyses. Indeed, in the 
wake of further newspaper reports (dating from 
1993) suggesting 'clustering' of cases in rural areas 
and speculating on associations with pesticide 
exposure, we are now pooling our data with those 
from other sources in a collaborative study with the 
Environmental Epidemiology Unit at the London 
School of Hygiene and Tropical Medicine. 

We note that the methods outlined below are to be 
used when we are as confident as possible in the 
completeness of case ascertainment. The methods 
are robust if the missing cases are randomly 
distributed geographically; but, of course, if there 
are geographical biases, such as under-reporting in 
one or more regions, then any evidence of geogra
phical aggregations, or departures from randomness 
in spatial distribution, may well be entirely spurious. 
We simply make the point that we must ensure that 
we have adequate data in advance of analysis. 

Geographical Data-handling 

In Britain and North America, as well as in parts of 
Europe, it is possible to make use of the postal 
address of patients for geographical analysis. In 
Britain and Canada, for example, the 'unit postcode' 
is a collection of alphanumeric characters (e.g. BB2 
6HG in Britain, L8S 4K1 in Canada), while in the 
USA the so-called Zip-code (a set of five digits, 
though currently being extended to nine) is used for 
address purposes. Gazetteers are available to link 
these postal codes to geographically defined, and 
mappable, locations. These are street blocks in North 
America. But in Britain there is available a machine
readable file, known as the Central Postcode 
Directory, which links each of the approximately 
1.8 million unit postcodes to both an Ordnance 

Survey grid reference and an electoral ward.9 The 
grid reference has a resolution of 100 m in England 
and Wales, 10 m in Scotland. Thus, given a database 
on eye disease in Britain, one that contains full unit 
postcodes, it is a simple matter to obtain precise 
locational information. A unit postcode does not 
identify the unique street address, since it is shared 
with, on average, about 15 households. But clearly it 
is more than adequate for most epidemiological 
purposes! The way in which such information has 
been used in health research, and the accuracy of the 
Central Postcode Directory, has been discussed 
elsewhere.lO 

Given that we have obtained a set of grid 
references for disease cases, how do we proceed? 
There are essentially two strategies. Either we 
conduct analyses on the grid references themselves 
(which may be displayed in map form as a 'point 
pattern', or collection of dots, each of which 
represents a grid-referenced case); or, we aggregate 
the individual events to form a count of the number 
of cases within fixed areal units. Such areal units 
might be electoral wards, Health Districts, or 
whatever the analyst decides is appropriate. There 
are advantages and disadvantages with both 
approaches. If we treat the point pattern itself we 
avoid well-known problems of dealing with areal 
units of arbitrary size and shape; the boundaries of 
these are drawn with no reference to local health or 
environment, and were a different set of areal units 
to be used any resulting maps and/or analyses would 
inevitably differ. However, simply mapping a point 
pattern on its own, for instance to detect 'clusters' of 
health events, is of little or no value, since we need to 
know something about the underlying distribution of 
population at risk. As we shall see below, this is not 
an impossible task. Adopting an areal unit perspec
tive, especially for zones such as electoral wards, 
means that it is relatively straightforward to obtain 
denominators (populations at risk) from the decen
nial Census; moreover, it then becomes possible to 
relate measures of disease incidence (standardised, 
where appropriate, for age and gender) to socio
economic data, such as measures of social depriva
tion, themselves derived from the Census. (See Dale 
and Marshll for details of the UK 1991 Census and 
its geographical relevance.) 

Ideally, we would prefer the 'continuous space' 
approach of point pattern analysis, especially if we 
have other attribute data available for the indivi
duals. Given such data it then becomes possible to 
conduct analyses at the individual level, rather than 
an aggregate, ecological level. 12 Such analyses can be 
both spatial, as reviewed below, as well as the 
conventional and powerful, but non-spatial, regres
sion-based analyses.D 

Before leaving this brief discussion of geographical 
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data-handling we draw attention to the burgeoning 
field of Geographical Information Systems (GIS), 
since this provides a natural environment within 
which to embed such geographical databases, and 
within which to perform spatial analysis. A GIS is a 
set of computerised tools for the collection, storage, 
integration, analysis and display of spatially refer
enced data.14 It becomes especially powerful when 
there is more than one database to be explored. For 
instance, we might wish to examine the relationship 
between dise'lse and environment. This would 
require construction of databases on disease inci
dence (geographically referenced), on Census vari
ables (measures of age-sex structure and socio
economic status, for example), and on air or water 
quality, for example. Postcodes and grid references 
provide the geographical link that binds these 
databases together in an integrated framework, 
while the GIS provides the structural framework 
within which such links may be constructed. We refer 
below to some proprietary GIS products, but note 
here that they are versatile and can, in general, 
handle data input derived from non-spatial database 
management systems, such as ORACLE, dBase, 
INGRES, and so on. The size of such databases is 
not a serious issue; tens of thousands of individual 
records of disease can readily be handled.lO 

ANALYTICAL TECHNIQUES 
We now consider some of the analytical techniques 
that spatial analysts find useful in applications of 
geographical epidemiology. The treatment is inevi
tably brief, but references are given to more detailed 
accounts; in particular, a useful starting point is 
Bailey and Gatrell,15 which also provides software 
with which to gain familiarity with the approaches we 
outline. 

Area-Based Approaches 

In this section we give a brief overview of some of 
the methods that may be brought to bear on a spatial 
analysis of eye disease if data are analysed by areal 
unit. Useful additional, and more detailed, descrip
tions are provided elsewhere.1,15,16 

Given data on counts of disease incidence by area 
it is appropriate to derive rates by dividing these 
counts by the population at risk, age-sex standar
dised where necessary. Such rates may be mapped in 
order to detect, visually, evidence of spatial pattern. 
However, there are a number of problems and issues 
that arise. Among these, we consider first the 
assessment of pattern; and second the 'stability' of 
the estimated rates. But we should also recognise 
that fundamental cartographic issues arise in the 
visual representation of areal data; for example, the 
number of class intervals used to display the 
incidence rates, as well as the particular class 
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interval scheme. These decisions can have profound 
implications for the 'message' conveyed by the map. 

One question that arises in exploratory spatial data 
analysis is whether the spatial arrangement of rates 
shows departure from randomness. In other words, is 
the collection of rates that are mapped simply one of 
a number of permutations of values that could arise 
on a purely random basis, or is there a tendency for 
high rates to be 'clustered' near other high rates 
while areas with low rates are adjacent to areas also 
with low rates? Our visual perception is 'trained' to 
look for pattern and we need methods that can 
determine whether this is genuine or spurious. The 
methods that are used to detect departures from 
randomness are called autocorrelation (or spatial 
correlation) tests. There is a variety of indices that 
can summarise this, ranging from Moran's I coeffi
cient for spatially continuous data (such as the 
incidence rates we might be using), to indices based 
on the ranked values or a simple classification of 
rates into above and below average. Such methods 
are described in full in Cliff and Ord17 and have been 
used extensively in cancer epidemiology (see, for 
example, Walter18). 

One problem with using incidence rates, standar
dised or otherwise, is particularly pronounced if we 
are interested in spatial variation in disease incidence 
among small areas. This is because the populations 
forming the denominators, and the counts of cases 
themselves, will often be small, especially in rural 
areas. The rates may thus be inherently variable or 
'unstable'. For example, if we are mapping measures 
of relative risk (i.e. observed divided by expected 
numbers of case, where the expected numbers are 
based on region-wide incidence rates and the 
age-sex composition of the small areas) and we 
have an expected number of cases in a particular 
area of, say, 0.5, then observed counts of 0, 1, 2 or 3 
cases will generate relative risks (or standardised 
ratios if we multiply by 100 as is conventional) of 0, 
200, 400 and 600 respectively! We need some way of 
taking into account the 'reliability' of the estimated 
expected number of cases. One possibility is to use 
Poisson probabilities,19 where we estimate and map 
the probability of getting a count that is more 
extreme than that observed, under the assumption 
that the count in each area is Poisson distributed. 
Low probabilities indicate that an area's rate is 
unusually high or low. However, statisticians are 
wary of this approach, since it assumes an indepen
dence of values among different areal units; as we 
have noted, some spatial dependence is to be 
expected in areal data. 

An alternative that is gaining widespread accep
tance in geographical epidemiology is to use what are 
called 'empirical Bayes estimates'. We do not have 
space to describe these in great detail (see chapter 8 
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of Bailey and Gatre1l15 for a full account, and 
chapters in Elliott et al. 199216). Briefly, however, 
such methods allow us to estimate the true incidence 
in an area as a weighted sum of both the observed 
incidence rate in an area and the mean rate in all 
areas (or a local neighbourhood of the zone in 
question). The issue then becomes one of trying to 
estimate the weights. The idea is to make these 
weights a function of the population at risk in an 
area. If the population is quite large (and therefore 
the estimate of disease risk is quite reliable) then the 
'raw' incidence rate is given a high weight. 
Conversely, if the population is small (and hence 
we cannot be too confident in our estimate of 
incidence) we give it less weight and give more 
weight instead to the 'global' mean; in other words, 
we 'shrink' the estimate of incidence so that it is 
closer to the mean for all areas. Details of how to 
obtain these weights, and use of such estimates in 
geotraphical epidemiology, are given in Elliott et 
al.1 and chapter 8 of Bailey and Gatrell.15 

These methods have yet to be widely applied in 
the epidemiology of eye disease. However, Gatrell 
and Lovett8 took published data from the Office of 
Population Censuses and Surveys on the incidence of 
congenital eye malformations (specifically, anoph
thalmos and microphthalmos) by Health Authority 
in England and Wales and estimated Poisson 
probabilities for 1983-1985. This highlighted a few 
areas of significantly elevated incidence. However, 
we should caution that the data are far from perfect 
in a diagnostic sense, and that the number of areas 
deemed significant is no more than would be 
expected on a chance basis; that is, if we conduct 
say 200 Poisson tests we would expect to observe 10 
'significant' probabilities at the 0.05 level purely on a 
random basis. Moreover, we would prefer, of course, 
to be working with individual-level data rather than 
data for quite large areal units. 

Point-Based Approaches 

We commented earlier that there are some advan
tages to adopting an approach that treats the disease 
cases as point 'events' rather than aggregating them 
to areal units of arbitrary size and shape. Of course, if 
data are only provided as counts or incidence rates 
by areal unit we have no choice in the matter; 
however, it is obviously preferable to work with 
individual-level data if at all possible. This avoids the 
problem of so-called modifiable areal units, as well as 
the risk of committing the 'ecological fallacy', where 
inferences about individuals are made from aggre
gate data. 

As noted above, simple 'dot mapping' the cases of 
disease is of little value, despite the fact that some 
epidemiologists have recently 'discovered' the idea! 2o 

If we were to map the distribution of population (or 

households) as points we would observe pattern or 
'clustering', simply because people arrange them
selves in clustered settlements. If we wish to detect 
disease clustering, we shall need some way of 
filtering out this natural tendency of the population 
at risk to cluster. For example, if we wish to see 
whether children with leukaemia are 'clustered', or 
are clustered around nuclear installations, we shall 
require to know something about the distribution of 
children as a whole. 

Note that we have in fact asked two separate 
questions, both of which might be of interest in an 
ocular epidemiological context. First, we might want 
to ascertain whether cases of eye disease show any 
tendency towards clustering; do they tend to occur 
together more than we might expect on the basis of 
population distribution? Second, we might want to 
identify the locations of 'clusters', or perhaps to 
determine whether there is an elevated risk of eye 
disease in the vicinity of possible pollution sources 
(which might themselves be point locations, such as 
the incinerators mentioned above, or perhaps linear 
features such as major roads or rivers). Fortunately, 
methods �re available to solve both problems21 and 
from the substantial literature we comment briefly on 
two recent techniques. 

It should be clear from the above remarks that if 
we wish to detect spatial clustering in a point pattern 
that displays disease incidence we need another point 
pattern as a 'benchmark'; in other words, along with 
a set of cases we need a set of controls. Given a single 
point pattern, there is a variety of methods available 
to determine the presence or absence of randomness. 
Most of these are known as 'second-order' methods, 
assessing whether the density of points in one small 
region is correlated with the density in a neighbour
ing region. From a practical point of view, assessment 
of spatial pattern is based on measuring distances 
between point events; intuition suggests that a 
clustered pattern should show an excess of short 
distances, while a dispersed pattern would be 
characterised by many longer distances. Formally, 
statisticians use the so-called K function22 to 
describe this spatial structure. This is defined as the 
expected number of point events within a fixed 
distance of an arbitrarily chosen event, scaled by the 
overall density of point events. Details of its 
estimation are given elsewhere.15,22 However, for a 
bivariate point pattern, comprising cases and con
trols, we need to estimate separate K functions for 
each class of point. The estimated K functions may 
then be subtracted and the result plotted as a 
function of distance; if the cases are clustered, over 
and above that of background population (reflected 
in the distribution of controls) then this will be 
displayed graphically by peaks' in the plot. This 
method, due to Diggle and Chetwynd,23 has been 



362 

used in other epidemiological applications;24 for a 
related approach see Cuzick and Edwards.25 Once 
case ascertainment is complete, or without obvious 
bias, it can be put to good effect in studying the 
research problem mentioned earlier: that of whether 
there is clustering of eye malformations over and 
above that of births in general. 

We might, in addition, have further information on 
the temporal ordering of cases; for example, the date 
of notification. This information can also be used 
analytically, in studies of space-time clustering.15,26 
Here, interest centres on whether cases that are 
'close' together in space, are also 'close' together in 
time. This is particularly important if we suspect that 
some infective mechanism is at work. Several 
attempts have been made, for example, to see 
whether Burkitt's lymphoma in parts of tropical 
Africa exhibits space-time clustering (e.g. Siemia
tycki et al.27), since there are grounds for believing 
that infection with the Epstein-Barr virus plays a 
role in aetiology?8 

If we wish to detect the locations of clusters, as 
opposed to clustering as an overall phenomenon, we 
need other methods. By 'cluster' we mean a localised 
aggregation of cases. We might undertake a purely 
inductive approach to the problem, screening 
different parts of a study region for evidence of 
such aggregations. This is the approach advocated by 
Openshaw29 and refined by Besag and Newell?O 
Alternatively, we might have some a priori hypoth
esis that there is raised incidence of eye disease, or an 
increased relative risk, in the vicinity of a suspected 
point or linear source of pollution. In this case we 
need methods that will evaluate the research 
hypothesis against the null hypothesis of no elevated 
risk. For example, Diggle3 (see also Diggle21 and 
chapter 4 in Bailey and Gatrell15) has devised a 
model to relate the intensity of disease incidence to 
both background population and proximity to a 
suspected point source of pollution; this allows the 
proximity effect to be quantified. A more recent 
approach, which allows other explanatory variables 
(covariates) to be incorporated into the model, is 
outlined in Diggle and Rowlingson?2 Such methods 
could be put to good effect in any test of the 
hypothesis that the incidence of anophthalmos and/ 
or microphthalmos is elevated around existing or 
closed high-temperature incinerators. 

It is worth commenting that the approaches 
discussed in this section make some rather crude 
assumptions about human behaviour and mobility. 
We have assumed that 'exposure' is adequately 
summarised by address at diagnosis. This will be 
acceptable for diseases with a short latency period, 
but in other cases, particularly for older populations, 
we shall need to recognise that people have 
individual migration histories and that address at 
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diagnosis may disguise exposures in earlier residen
tial and occupational environments. The same issue 
can arise in younger popUlations; for example, when 
considering the possible link between retinoblastoma 
in children and nuclear radiation it was important to 
recognise that cases were occurring in children whose 
mothers had been resident in Seascale, west Cumbria 
(the site of the Sellafield nuclear reprocessing planti:

' even though the children had been born elsewhere. 3 

SOFTW ARE ENVIRONMENTS 
We now review briefly what software is available to 
perform some of these geographical analyses. First, 
note that standard statistical packages, such as 
SPSSx, MINIT AB or BMDP, are not appropriate 
since they have no facilities for recognising the 
inherently spatial nature of the data, and allowing for 
this in the analysis. In addition, most of these 
common packages have little or no facility for 
viewing the data in map form. There are numerous 
packages available for producing computer-drawn 
maps, and if the object is simply to draw maps, one of 
these will suffice. However, we have stressed in this 
paper the need for spatial analysis and not simply 
mapping; ideally, we would like a software tool that 
allows us: to visualise (e.g. draw maps and graphs of) 
data; to explore such data (e.g. by deriving new 
pictures of our data, or alternative spatial represen
tations); and perhaps to model our data (using spatial 
statistical models). What facilities are currently 
available? We discuss three possible approaches 
and give some details of software availability in the 
Appendix. 

As noted earlier, a variety of commercial Geo
graphical Information Systems (GIS) have emerged 
in the last 10 years that are of enormous value in 
handling spatially referenced data, especially where 
the data are voluminous. Some of these systems, such 
as IDRISI,34 are reasonably easy to use; others, such 
as ARC/INFO,35 are more demanding, containing 
several hundreds of functions. Increasingly, however, 
the systems are using menu structures for interacting 
with the software; the days of entering lengthy 
commands from the keyboard are fast disappearing. 
Unfortunately, while some progress is being made, 
historically these systems have been weak on spatial 
analysis; their real strength has lain in linking 
together large, often disparate, data sets. Thus, for 
example, such systems would allow one to place a 
'buffer zone' around a water course, and to overlay 
point data on, for example, 'river blindness' in order 
to see whether there is any association between 
disease incidence and proximity to water. But if one 
wanted to go beyond this to test any hypotheses 
more formally, such systems have been of little value. 
While the situation is changing,36 there is still much 
that remains to be done. 
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In the absence of spatial analytical power within 
GIS, a second possibility is to exploit those statistical 
software environments that do allow some spatial 
analysis. Of these, S-Plus is of particular interest, 
some work having been done on embedding the 
point-based approaches outlined earlier into the 
system?7 S-Plus contains the usual facilities for 
exploratory data analysis and modelling that are to 
be expected of any statistical package, but also high
level functions to perform other tasks, together with 
excellent graphics. It includes a programming 
language that can be used to link some fundamental 
operations into more complex tasks, which then 
become new functions. The suite of procedures, 
known as 'SPLANCS', for point pattern analysis37 is 
just such an example. It offers plots of point maps, 
spatially smoothed estimates of intensity (density), 
methods (such as the K function estimation men
tioned above) for the description and estimation of 
spatial structure in point patterns and tests for space
time clustering, among other options. It provides a 
flexible and very valuable environment within which 
to perform the point-based methods outlined above. 

Finally, we mention a package, INFO-MAP, 
written to accompany the text Interactive Spatial 
Data Analysis.15 This PC package was prepared as an 
educational aid and allows the user to create, explore 
and analyse spatial data sets of modest size (for 
example, typically fewer than 1000 areal units). It is 
written with the analysis of spatial data explicitly in 
mind, permitting the user to create maps and other 
views (graphs, histograms, scatter plots, and so on) of 
data and to perform a variety of both non-spatial 
statistical analyses (such as least squares regression 
and principal components analysis) and analyses that 
recognise the spatial relationships present in the 
data. Many of its functions are menu-driven, so that 
one simply defines the 'base file' or study region, 
together with a data file, and then selects a particular 
function. In addition, its very simple command 
language allows an extensive set of techniques to 
be implemented, such as the second-order analysis of 
spatial point patterns (K function estimation), 
autocorrelation tests, and empirical Bayes estima
tion discussed above. 

CONCLUSIONS 
In this paper we have sought to give an up-to-date 
account of the 'material and methods' that those 
working in ocular epidemiology should find appro
priate for spatial analysis. We discussed the database 
requirements, particularly the way in which geogra
phical information could be derived from postcoded 
data, but also commenting on a specific long-term 
study into the geographical incidence of anophthal
mos and microphthalmos. We argued that a 
Geographical Information Systems framework pro-

vides a natural vehicle within which to construct and 
analyse such databases. Next, we considered a 
variety of analytical techniques. First, those that are 
appropriate when data are collected by, or analysed 
within, an areal unit framework; second, those that 
may be employed when the data are to be treated as 
a spatial point pattern. In particular, the issue of 
detecting 'clustering' of disease was given promi
nence. Last, we reviewed a number of possible 
software environments that could be used as frame
works within which to use such techniques. These 
will change, of course, as new developments in 
computing come on stream; however, the principles 
and methods remain more permanent and provide a 
potentially valuable set of tools to be exploited by 
the epidemiologist interested in ocular disease. 

APPENDIX: DETAILS OF SOFTWARE 
AVAILABILITY 

Here, we give further information and addresses if 
readers wish to seek further information on some of 
the software mentioned in the paper. There are many 
other available products on the market. 

ARC/INFO 

ARC/INFO is one of the leading proprietary GIS 
systems and is available for both PC and workstation 
environments, though the latter is recommended. 
The command language is sophisticated and the 
software demanding, though 'add-ons' are available 
that aid the novice user. 

Contact: ESRI (UK), 23 Woodford Road, Watford 
WD1 1PB, UK. 

IDRISI 

IDRISI is a low-cost, PC-based, GIS that is mainly 
'raster-based', that is, suitable where data are in 
gridded form. However, 'vector', or coordinate
based data (such as those for points or irregularly 
shaped areal units) can be imported into the 
package, which offers good display and analysis 
capabilities. 

Contact: IDRISI Project, Department of Geography, 
Clark University, Worcester, MA 10160, USA. 

SPlus 

SPlus is available for the PC, but highly recom
mended is the UNIX workstation version. Splus is a 
sophisticated statistical programming environment, 
containing all the statistical analysis .functions one 
would expect, together with excellent graphics 
facilities. 

Contact: Statistical Sciences (UK), Sandfield Road, 
Oxford, UK. For details of the SPlus library 
SPLANCS contact: Professor P. Diggle, Depart-
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ment of Mathematics, Lancaster University, Lan
caster LAI 4YB, UK. 

INFO-MAP 

INFO-MAP is PC-based software designed as an 
educational aid in teaching spatial data analysis, 
comprising statistical graphics, a range of statistical, 
logical and mathematical functions, and spatial 
analysis functions, for handling several types of 
spatial data, including point patterns and areal 
data. The software is available as part of the text 
Interactive Spatial Data Analysis by Bailey and 
Gatrell,1S together with appropriate instructional 
materials. 

Contact: Longman Geoinformation, 307 Cambridge 
Science Park, Milton Road, Cambridge CB4 4ZD, 
UK. 

Key words: Ocular diseases, Spatial point patterns, Spatial 
clustering. 
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