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Survive or thrive: tradeoff strategy for cellular
senescence

Sang Chul Park

Aging-dependent cellular behaviors toward extrinsic stress are characterized by the confined localization of certain molecules to

either nuclear or perinuclear regions. Although most growth factors can activate downstream signaling in aging cells, they do not

in fact have any impact on the cells because the signals cannot reach their genetic targets in the nucleus. For the same reason,

varying apoptotic stress factors cannot stimulate the apoptotic pathway in senescent cells. Thus, the operation of a functional

nuclear barrier in an aging-dependent manner has been investigated. To elucidate the mechanism for this process, the

housekeeping transcription factor Sp1 was identified as a general regulator of nucleocytoplasmic trafficking (NCT) genes,

including various nucleoporins, importins, exportins and Ran GTPase cycle-related genes. Interestingly, the posttranslational

modification of Sp1 is readily influenced by extrinsic stress, including oxidative and metabolic stress. The decrease in SP1

O-GlcNAcylation under oxidative stress or during replicative senescence makes it susceptible to proteosomal degradation,

resulting in defective NCT functions and leading to nuclear barrier formation. The operation of the nuclear barrier in aging

provides a fundamental mechanism for cellular protection against stress and promotes survival at the expense of growth via

stress-sensitive transcriptional control.
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INTRODUCTION

Among the several characteristic features of senescent cells,
including morphologic enlargement, senescence-associated
β-galactosidase activity, reduced response to growth factors,
increased apoptotic resistance and changes in gene expression,
altered cellular responsiveness might be the most effective way
to understand the phenotypic behaviors of senescent cells.1–4

Cellular responsiveness can be classified into three different
categories. The first category is the metabolic response to
nutrient supply and utilization. The metabolic response should
be maintained intact for homeostasis regardless of age. The
second category is the stress response against a variety of toxic
stress. All cells and organisms are confronted with toxic or
apoptotic stress. However, it is generally accepted that stress
responses are attenuated with the age of the cell or organism.
The third category is the mitogenic response. In aging, it is
well known that responses to growth factors are distinctively
reduced or even blocked. Responsiveness to stress and
mitogenic factors is more attenuated or damaged than the
metabolic response in aging cells and organisms.3 Therefore, it
might be intriguing to elucidate the mechanism underlying
these aging-dependent changes in cellular responsiveness.

REDUCED RESPONSIVENESS TO GROWTH FACTORS:

BARRIER TO THRIVE

To determine cellular responsiveness, many aspects of its
signaling system, such as ligand and receptor quantity,
ligand-receptor affinity, downstream signaling cascades, intra-
cellular networks, and signal translocation, transcriptional
control, chromatin remodeling, and posttranscriptional status,
should be assessed.4 Growth factors stimulate their respective
receptors and subsequently activate downstream signals.
However, senescent cells, in general, have a reduced efficiency
of response to external growth factors.5–7 Senescent cells
exhibit downregulation of mitogenic response toward EGF,
despite questionable changes in the amounts of ligands or
receptors.2,4,6,8 However, it has recently been shown that the
functional recovery of senescent cells, especially with regard to
the mitogenic response, could be induced to some extent
simply through the adjustment of clathrin-dependent or
-independent receptor-mediated endocytosis.9

The major component of caveolae is caveolin-1, which is
abundant in terminally differentiated cell types and which is
located at the sites where signaling molecules are
concentrated.10–13 Caveolae, the subcellular compartments for

Well Aging Research Center, Department of New Biology, DGIST, Daegu, Korea
Correspondence: Professor SC Park, Department of New Biology, Well Aging Research Center, DGIST, 333 Joongangdae-ro, Hyeonpoong-myeon,
Dalsung-gun, Daegu 42988, Korea.
E-mail: blueocean2016@dgist.ac.kr
Received 2 December 2016; revised 6 February 2017; accepted 16 February 2017

Experimental & Molecular Medicine (2017) 49, e342; doi:10.1038/emm.2017.94
& 2017 KSBMB. All rights reserved 2092-6413/17

www.nature.com/emm

http://dx.doi.org/10.1038/emm.2017.94
mailto:blueocean2016@dgist.ac.kr
http://dx.doi.org/10.1038/emm.2017.94
http://www.nature.com/emm


storing and regulating signaling molecules, facilitate crosstalk
between signaling cascades. The interaction of caveolin-1
with signaling molecules, such as G protein alpha-subunits,
H-Ras, Src-family tyrosine kinases, PKC isoforms, EGFR,
Neu and eNOS, is mediated via its membrane-proximal region,
which is called the caveolin-scaffolding domain.14–17 The
targeted downregulation of caveolin-1 is sufficient to drive
the transformation of cells and to activate the Erk kinase
cascade. Co-expression of EGFR with caveolin-1 results in the
suppression of signal transduction from the cytoplasm to the
nucleus in vivo.18 Senescent human diploid fibroblasts (HDFs)
have an elevated level of caveolin-1, which colocalized with
EGFR.5 Overexpression of caveolin-1 reduced the activation of
Erk-1/2 after EGF stimulation, suggesting a direct role for
caveolin-1 in EGF signaling, followed by the induction of
premature cellular senescence of murine fibroblasts.4,19 By
contrast, downregulation of caveolin-1 led to the restoration
of basal p-Erk levels and Erk activation in response to EGF
stimulation with the downstream activation of Elk phosphor-
ylation in senescent HDFs. The activation of Erk signaling by
its phosphorylation through PP1 and PP2A is also affected by
caveolin-1.20 Cell cycle arrest by caveolin-1 is controlled by the
p53/p21Waf1-dependent pathway.21 These results suggest
the possibility of modulating the aging phenotype by the
adjustment of the level of caveolin-1 in senescent cells.5

Furthermore, caveolin-1 is linked to the focal adhesion
complex via integrins in the membrane, which implicates it
in the control of focal adhesion and the adhesion signaling
cascade.22–24 The formation of focal adhesion and actin stress
fibers is relatively higher in senescent cells, and they are
anchored to the membrane via interaction with caveolin-1.
Therefore, the process of restoring the shape of senescent
cells in order for them to resemble young cells by adjusting
focal adhesion complexes via the control of caveolin-1 could
be activated.5,25,26

The restoration of the senescent phenotype to a functionally
active and young state by adjusting the caveolin-1 status
illustrates the significant value of the membrane signaling
system in aging.27 Therefore, it has been speculated that the
aging process can be initiated and modulated at the membrane
by a membrane-associated signal switch system. These data led
to the emergence of the gate theory of aging, in which the
fundamental role of a membrane switch system has been
emphasized.5,28 The gate theory of aging strongly suggests
the possibility of restoration of the young phenotype in
senescent cells by modulating the signaling system on the cell
membrane. This novel hypothesis changes the conventional
idea of aging as an irreversible and inevitable process into that
of a flexible and plastic process.3,29

ENHANCED RESISTANCE TO APOPTOTIC STRESS:

STRATEGY TO SURVIVE

Resistance to age-dependent apoptosis has been reported both
in vitro and in vivo.30,31 Apoptosis in many physiological
and pathological processes of aging and of age-related diseases
is intimately connected to MAPKs and the serine/threonine

kinases that phosphorylate specific substrates, respectively.
ERK1 and ERK2 are well-characterized MAPKs that
are activated mainly in response to growth stimuli, while
JNKs and p38-MAPK are activated in response to a variety
of stressors, including DNA damage, heat shock, ischemia,
inflammatory cytokines, UV radiation and oxidative stress.32–37

The phosphorylation of MAPKs can be controlled in an
agonist-specific manner.38–40 Hydrogen peroxide, an inducer
of apoptosis, promotes an increase in ERK phosphorylation.41

Staurosporine, a strong inducer of caspase 3-dependent
apoptosis, activates p38 phosphorylation.42 However, most of
the signaling molecules can execute their respective functions
only after their entry into the nucleus. Thus, it can be
speculated that apoptotic resistance in senescent cells might
be closely linked to defects of the apoptotic signals that prevent
entry into nuclei.3

In mammalian cells, the ratio of proapoptotic proteins and
anti-apoptotic Bcl-2 family members is important in determin-
ing whether and when apoptosis is triggered.43,44 The levels of
Bcl-xL and Bax were comparable in young and senescent
HDFs, but Bak, Bok, Bik, and PUMA were present at lower
levels in senescent HDFs than in young HDFs.3,40 These data
imply that the lower level of expression of the proapoptotic
genes might be related to the failure of the signaling molecules
to trigger their expression, thereby desensitizing the senescent
cells to apoptotic stimuli. By contrast, the stable expression of
anti-apoptotic Bcl-2 in senescent cells despite apoptotic stress
might be related to the phosphorylation status of CREB due to
the inactivation of protein phophatase-2A (PP2A), as well
as the inhibition of the apoptotic signal transduction
into the nucleus.40 Moreover, the senescence-dependent
nuclear accumulation of actin, gelsolin45,46 and major vault
protein (MVP)38 strongly support the specific localizing
mechanism of the signal to either the cytosol or the nucleus.
Therefore, we hypothesized that senescence-dependent defects
in intracellular signaling, especially in nucleocytoplasmic traf-
ficking, might provide a mechanism for cellular resistance to
extrinsic stress.3

DEFECTIVE NUCLEOCYTOPLASMIC TRAFFICKING:

FROM FLEXIBILITY TO FIXATION

Many signaling molecules and transcription factors need to
enter the nucleus to exert their respective effects. For example,
EGF stimulation induces the entry of p-ERK into the nucleus,
which results in the activation of the transcription factor AP1,
triggering cell cycle progression.5,47 The apoptotic response is
a well-programmed process that also requires the entry of
intracellular signaling molecules into the nucleus. Therefore, it
is natural to assume that the lack of responsiveness to both
apoptotic stress and growth factors in senescence is related
to the inefficiency of nucleocytoplasmic trafficking in the
senescent cells. Nucleocytoplasmic trafficking is a highly
sophisticated process that involves many component proteins.
Nucleoporins are the major components of nuclear pore
complexes (NPCs), often used as markers for NPCs.48,49 NPCs
allow the passive diffusion of ions and small molecules, and
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facilitate the active transport of macromolecules. The cargo
molecules usually have short sequence elements called
nuclear localization sequences and nuclear export sequences.
Karyopherin α binds to the nuclear localization sequences
of cargo molecules, while karyopherin β binds to both
karyopherin α and nucleoporins.50,51 Ran plays an important
role in the import and export of cargoes, and is present in two
distinct forms: GTP-bound Ran and GDP-bound Ran. The
nucleotide state of Ran is regulated by Ran GTP-GDP exchange
factor (RanGEF or RCC1) and Ran GTPase-activating
protein (RanGAP).52,53

The initial observation of aging-dependent nuclear accumu-
lation of actin46 and gelsolin,45 as well as the perinuclear
accumulation of many signaling molecules in response to a
variety of apoptotic and mitotic stress conditions,39,40,54,55

implied that the nuclear translocation of activated signaling
molecules might be inhibited by a certain barrier at the nuclear
membrane, as shown by the perinuclear confinement of
p-ERK1/2 and the p50 subunit of NF-kB in response to
growth stimuli or LPS in senescent fibroblasts.3,55 However,
the activation of these signaling molecules is apparently not
impaired, as illustrated by the efficient phosphorylation and
activation of ERK1/2 via its interaction with PKCα or PP1 and
PP2A in senescent cells.56–58 These findings assert that
the signaling molecules cannot be distributed properly to
the nucleus by simple activation but that they need the
proper operation of the nucleocytoplasmic trafficking system
under senescent conditions.

This nucleocytoplasmic trafficking system operates
physiologically in response to external stimuli. In young and
healthy cells, this system is readily influenced by either growth
stimuli or nutritional condition. When the cellular energy state
is low, the AMPK pathway is activated, resulting in the import
of biomolecules into the nucleus. By contrast, when the cell
receives growth stimuli, the PI3K signaling cascade is activated,
leading to the export of biomolecules out of the nucleus,
as demonstrated by GAPDH (glyceraldehyde 3-phosphate
dehydrogenase).59 These data illustrate the plastic nature
of nuclear translocation in cellular homeostasis. However,
the operation of this trafficking system is strictly controlled
in the senescent state.3

Many studies have been carried out on the structural and
functional aspects of the nuclear trafficking system, as it is one
of the essential features of metazoan life.60 Concerning the
study of nuclear trafficking in aging, though the nature of its
suppression and the reduction of NPC components have been
acknowledged, the underlying mechanism for its loss of
function remains unclear and disputed.61 The oxidative
stress-dependent loss of nuclear trafficking by the oxidation
of NPC components has previously been illustrated.62–64

Furthermore, aging-dependent leakage of the nuclear
membrane has been suggested for the functional deterioration
of nuclear trafficking.65,66 However, these reports are still
unable to explain the aging-dependent dynamics of the nuclear
trafficking system and the mechanistic regulation of functional

hyporesponsiveness of senescent cells toward both growth and
death-inducing stress.

DYNAMICS OF NUCLEOCYTOPLASMIC TRAFFICKING:

OPERATION OF THE NUCLEAR BARRIER

Microarray analysis revealed that most of the nucleocytoplasmic
trafficking genes, including most nucleoporin and transport
receptor genes, as well as Ran and Ran-regulating factors, were
downregulated in senescent HDFs.55 To verify the microarray
data, the expression levels of some of the selected genes were
confirmed with a semi-quantitative RT-PCR method and the
protein levels were validated by western blotting with available
antibodies.54,55 These results showing the suppression of the
nucleocytoplasmic trafficking genes and proteins in senescent
HDFs strongly support the presumed defective operation of the
nucleocytoplasmic trafficking system.3

The senescence-dependent reduction of nucleocytoplasmic
trafficking gene expression was traced to its ultimate regulator
through analysis of the upstream transcription factors for those
genes. With bioinformatics tools, all the nucleocytoplasmic
trafficking genes were subjected to promoter analysis for
putative transcription factors. Among these transcription
factors, Sp1 (specificity protein 1) was selected as the most
common and dominant transcription factor responsible for the
genetic control of the trafficking-associated genes. Further-
more, it was confirmed that most of the promoters of the
trafficking-associated genes had multiple Sp1 binding sites.3,55

However, Sp1 stability was found to be damaged in
senescent HDFs, and the DNA-binding activity of Sp1 was
reduced in aged brain and liver tissues.67,68 Sp1 protein levels
were lower in senescent cells compared with young cells and in
various tissues of aged mice compared with those from young
mice. These results additionally support the possibility of Sp1
as a good candidate for the master regulation of NCT genes,
showing that the reduced Sp1 protein levels in senescent cells
and tissues could be a common causal factor for aging-
dependent suppression of the NCT genes.55,69

To test whether Sp1 was a common regulator for the
expression of NCT genes, changes in NCT gene expression were
determined after the modulation of Sp1 expression. Knockdown
of Sp1 by si-Sp1 in young HDFs globally downregulated NCT
genes. However, some nucleoporins, transport receptors and Ran
GTPase cycle-related genes were heavily downregulated by Sp1
depletion, and the protein levels of Nup50, Nup88, Nup107,
Nup155, karyopherin α2 and RCC1 were decreased in the
Sp1-depleted HDFs.55 By contrast, Sp1 overexpression induced
a general up-regulation of the NCT genes, and the protein levels
of Nup50, Nup88, Nup107, Nup155, karyopherin α2 and RCC1
were also shown to be up-regulated. These results support the
hypothesis that Sp1 is a common, functionally active master
regulator of NCT gene expression.69 Additionally, the direct
interaction of Sp1 with the promoter regions of NCT genes was
confirmed by ChIP (chromatin immunoprecipitation) analysis
(Ryu et al., submitted).

In order to determine the functional role of Sp1, the nuclear
translocation of p-ERK1/2 was tested in response to EGF
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stimulation in either Sp1-depleted or Sp1-overexpressing cells.
The majority of p-ERK1/2 molecules were present in the
nuclear fraction after EGF stimulation in young HDFs, while
this nuclear localization was significantly attenuated in the
si-Sp1-transfected cells. On the other hand, the majority of
p-ERK1/2 was detected in the cytoplasmic fraction of senescent
cells, and Sp1 overexpression significantly facilitated their
nuclear localization.69 Furthermore, to confirm the role of
Sp1 in the modulation of nuclear translocation of the signaling
molecules, its downstream signaling was tested. Thus, the
phosphorylation status of Elk, a known substrate of ERK1/2,
and the expression of c-fos mRNA, a p-Elk target gene, were
monitored. Elk phosphorylation at Serine 383 was markedly
decreased in the Sp1-depleted cells compared with that in the
young control cells, and was accompanied by a significant
reduction of c-fos mRNA. These results strongly suggest that
Sp1 influences the nucleocytoplasmic trafficking of signaling
molecules, as well as their downstream signaling by modulating
the efficiency of NCT gene expression. These data also
strengthen the assumption that reduced Sp1 protein levels
might be a causal factor for aging-dependent hyporesponsive-
ness to extrinsic stress.69

MAINTENANCE OF THE NUCLEAR BARRIER IN AGING:

REQUIREMENT FOR CONTINUING STRESS

In order to identify the mechanism of downregulation of the
Sp1 protein level under senescent conditions, the Sp1 mRNA
level was determined, but no significant difference between

young HDFs and senescent HDFs was obtained, implying
the posttranslational regulation of Sp1 protein rather than its
transcriptional control. As reactive oxygen species (ROS) levels
are high in senescent HDFs,70,71 Sp1 protein levels in response
to H2O2 treatment were tested. The data demonstrated that the
Sp1 protein level was strikingly reduced by H2O2 treatment,
which was readily blocked by N-acetylcysteine (NAC), a radical
scavenger, supporting the hypothesis that the aging-related
increase in ROS could be responsible for Sp1 protein down-
regulation. In addition, to determine whether the ROS-induced
modification of the Sp1 protein was relevant for its
proteasome-mediated degradation, Sp1 protein levels were
determined with or without the proteasome inhibitor
N–Ac–Leu–Leu-norleucinal (ALLN). The H2O2-dependent
reduction of the Sp1 protein level was prevented by ALLN in
both young and senescent HDFs, suggesting that Sp1 protein
level is downregulated by ROS via proteasome-mediated
degradation during the aging process.69

Because O-GlcNAcylation has been suggested as a mechan-
ism for Sp1 stability,72 the O-GlcNAcylation status of Sp1 was
compared between young and senescent HDFs. A marked
decrease in the O-GlcNAcylation status of Sp1 was seen in
senescent cells when compared with young cells. Furthermore,
the level of O-GlcNAcylated Sp1 was significantly decreased by
H2O2 treatment in the presence of ALLN.69 These data suggest
that ROS can reduce the O-GlcNAcylation of Sp1, and can
consequently facilitate its proteasome-mediated degradation in
aging. In other words, the aging-related increase in ROS

Figure 1 Comparison of nucleocytoplasmic trafficking between young and old cells. (a) Young cell. Sp1 can activate the transcription of
NCT genes, and the nuclear pores are functioning well for both mitogenic and apoptotic signals. (b) Old cell. Sp1 is vulnerable to
degradation, resulting in defective functioning of nuclear pores, which restricts signal trafficking. GF, growth factor; AF, apoptosis-inducing
factor; TF, transcription factor; NCT, nucleocytoplasmic trafficking genes; O-GlcNAc, O-linked N-acetyl glucosamine; ub, ubiquitination;
thick arrow, high activity; thin arrow, low activity; dotted line, restricted activity.
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aggravates the hypo-O-GlcNAcylation of Sp1, followed
by its consequent degradation. The dysfunction in glucose
metabolism in senescent cells73 likely further limits the
O-GlcNAcylation of Sp1 to a low level in general by reducing
hexosamine turnover, which requires high metabolic energy.69

This mechanism of aging-dependent nuclear barrier formation
is summarized in Figure 1.

Sp1 is a transcription factor that has long been regarded
as a regulator of housekeeping genes, and it has been well
characterized for its structure and functions. Notably, its
knockout in mice causes embryonic lethality with a broad
range of phenotypic abnormalities, implicating a versatile
function in many cell types.74–76 Chromosomal mapping
studies of the human genome elucidated the presence of at
least 12 000 Sp1 binding sites.77 Sp1 is active in all cell types,
and its activity is tightly regulated in response to signaling
pathways and changing cellular conditions, which further
affects its interaction with a variety of binding partners to
regulate Sp1-dependent transcription.78,79 Considering the role
of Sp1 in a multitude of cellular pathways and processes, it is
natural to assume its association with the pathogenesis of
a number of diseases, especially cancer. Sp1 overexpression has
been observed in many cancer cell types, where the levels
of Sp1 correlate with tumor stage,76 leading to the development
of anticancer agents that inhibit the action of Sp1.80

However, the conflicting bifunctional behavior of Sp1 in cell
growth and other biological phenomena limits our under-
standing of its genuine biological role. For example,
Sp1 regulates the genes responsible for the progression of the
cell cycle and entry into S-phase, such as cyclins and MYC, as
well as growth factor signaling pathways, such as IGF1R.81,82

Sp1 also controls the transcription of cell cycle inhibitor genes,
such as p21, synergizing with p53 under conditions of cellular
stress.83,84 Moreover, the expression of telomerase subunits
required for the maintenance of telomeres and cell immortality
is also controlled by Sp1 through the Sp1 binding sites at
the hTERT promoter,85 while the interaction of SP1 with
HDACs represses hTERT expression.86 Although only a few
examples are illustrated here, Sp1 and its family members
have a broad spectrum of biological functions operating in
both pro- and anti-cell growth, which makes it difficult to
discern their genuine biological functions. However, the novel
concept of the role of Sp1 in the regulation of NCT function
provides a new breakthrough in our understanding of its
biological functions, as NCT is essential and strongly associated
with most biological phenomena, including growth, differen-
tiation, metabolism, apoptosis, cancer and senescence. More-
over, the dynamic nature of the Sp1 protein due to
posttranslational modifications, such as phosphorylation,
glycosylation, acetylation, poly (ADP-ribosyl)ation, methyla-
tion, sumoylation and oxidation,87–91 makes it sensitive to
extrinsic stress, thereby implying its value as a regulator of
biological responsiveness.

In addition, it is evident that many other transcription
factors other than Sp1, as well as many NPC components, are
also vulnerable to oxidative stress, leading to their loss of

function.62–64 However, it can be assumed that the overall
control of regulation of NPC formation by Sp1 is more
powerful and effective for the aging process than the other
individual components combined.

Taken together, it can be speculated that because Sp1 is one
of the housekeeping genes, a continuous input of stress signals,
whether metabolic or oxidative, would be required to maintain
the reduced level of Sp1 protein, finally leading to senescence.
All these data support the hypothesis that a functional nuclear
barrier of hyporesponsiveness, called the ‘Park and Lim’s
Barrier’, to external stimuli is operating in senescent cells, in
relation to the downregulation of the common transcription
factor, Sp1.3 This Sp1 status-dependent nuclear barrier
provides the mechanism of aging as a tradeoff between growth
arrest and apoptosis resistance. The vulnerable nature of Sp1
protein status that is regulated by a variety of posttranslational
modifications in response to nutritional supply and varying
stress further supports the role of Sp1 as one of the prime
determinants of the senescent phenotype. In addition, it can be
speculated that, through the adjustment of Sp1 status, the
nucleocytoplasmic trafficking defects of senescent cells can be
restored and the aging phenotype can be reversed. It has
already been shown that Sp1 overexpression can induce the
restoration of the telomere damage-dependent senescent
phenotype to a young phenotype to some extent.92 Therefore,
there is no doubt that the modulation of this barrier mechan-
ism simply via changing Sp1 status may open a new avenue for
the adjustment of nuclear trafficking in senescence, cancers and
neurodegenerative disorders.

CONCLUSION

The features of hypo-responsiveness of senescent cells either to
growth factors or to apoptotic stress are related to a functional
nuclear barrier with defective nucleocytoplasmic trafficking
resulting from the transcriptional downregulation of the
relevant genes. This barrier is important for the survival of
the aging cells at the expense of growth and provides a platform
for regulating the crosstalk between good and bad signals
from extrinsic sources. In addition, the transcription factor
Sp1 has been implicated in the regulation of this barrier,
and, through simple adjustments of Sp1 levels, the nucleocy-
toplasmic trafficking defects of senescent cells can be restored,
and consequently, the aging phenotype can be reversed.
Furthermore, it can be assumed that this mechanism may
provide new insights for novel therapeutic modalities in
cancers, neurodegenerative disorders and other aging-related
diseases by adjusting the nucleocytoplasmic trafficking status.
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