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Abstract

Angiogenesis is a complex biological phenomenon 
crucial for a correct embryonic development and for 
post-natal growth. In adult life, it is a tightly regulated 
process confined to the uterus and ovary during the dif-
ferent phases of the menstrual cycle and to the heart 
and skeletal muscles after prolonged and sustained 
physical exercise. Conversly, angiogenesis is one of 
the major pathological changes associated with sev-
eral complex diseases like cancer, atherosclerosis, ar-
thritis, diabetic retinopathy and age-related macular 
degeneration. Among the several molecular players in-
volved in angiogenesis, some members of VEGF fam-
ily, VEGF-A, VEGF-B and placenta growth factor 
(PlGF), and the related receptors VEGF receptor 1 
(VEGFR-1, also known as Flt-1) and VEGF receptor 2 
(VEGFR-2, also known as Flk-1 in mice and KDR in hu-
man) have a decisive role. In this review, we describe 
the discovery and molecular characteristics of PlGF, 
and discuss the biological role of this growth factor in 
physiological and pathological conditions.
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PlGF gene and protein

Placenta growth factor (PlGF) has been the 
second member of VEGF family discovered. The 
name refers to placenta since it was cloned from a 
human placental cDNA library (Maglione et al., 1991). 
The human plgf gene mapped to chromosome 
14q24, whereas mouse gene is located on 
chromosome 12qD. Both genes are formed by 
seven exons spanning 13.7 kb in human and 10.4 kb 
in mouse, excluding the upstream and downstream 
regulatory sequences (Maglione et al., 1993a; DiPalma 
et al., 1996).
     Like the others members of VEGF family (Ferrara 
et al., 2003; Takahashi and Shibuya, 2005), different 
isoforms due to alternative splicing are encoded by 
human plgf gene. It encodes four isoforms, PlGF 1-4 
(Maglione et al., 1993a; Cao et al., 1997; Yang et 
al., 2003), composed by 131, 152, 203 and 224 
amino acids after the removal of signal peptide (18 
amino acids residues in length), respectively. 
     The primary difference between the four isoforms 
is that PlGF-1 and PlGF-3 are non-heparin binding 
diffusible isoforms while PlGF-2 and PlGF-4 have 
additional (highly basic 21 amino acids) heparin 
binding domains (Hauser and Weich, 1993; Maglione 
et al., 1993a; Yang et al., 2003). Conversely, mouse 
plgf gene encodes for the single isoform PlGF-2, 
able to bind heparin and composed by 140 amino 
acids in its mature form (DiPalma et al., 1996).
     PlGF is secreted as a glycosylated homodimer. 
The most well-known structural feature of PlGF is 
due to six cysteine residues of each monomer that 
are engaged to form three intra-chain disulfide 
bonds, generating a particular three-dimensional 
structure known as cystine-knot motif. Two other 
cysteine residues of each monomer are engaged 
to form two inter-chain disulfide bonds necessary for 
the formation of the homodimer. Each homodimer 
shows two cystine-knot motif located at the opposite 
poles of the molecule. Despite the human PlGF 
shows only 42% amino acid sequence identity with 
the most active member of VEGF family, the VEGF-A, 
its three-dimensional structure elucidated at 2.0 Ǻ  
resolution and compared with that of VEGF-A has 
evidenced a remarkable topological identity between 
the two proteins (Muller et al., 1997; Iyer et al., 2001). 
     The PlGF-1 dimer consists of two α-helices and 
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Figure 1. Schematic representation of binding properties of PlGF iso-
forms and PlGF/VEGF heterodimer. The possible dimers formed by PlGF 
monomer (gray) are represented. In the case of PlGF isoforms 2 and 4, 
the heparin-binding domain is represented by additional filled oval. For 
the heterodimer, the VEGF moiety is in orange. For VEGF receptors 
(green VEGFR-1, yellow VEGFR-2) the seven Ig-like domains are repre-
sented as half ovals, whereas filled rectangles represent the intracellular 
TK domains. The extracellular Neuropilins receptor 1 and 2 domains are 
represented as vertical ovals (domains ai, a2), square (b1, b2) and an 
horizontal oval (domain c) (Mamluk et al., 2002). Heparan sulfate is rep-
resented in red.

seven β-strands per monomer, which are covalently 
linked by two inter-chain disulphide bonds in an 
anti-parallel fashion. Structural and mutagenesis 
analyses (Errico et al., 2004) indicated that two 
negatively charged residues located in the β3-β4 
loop (Asp72 and Glu73) are critical for receptor 
binding. Other residues crucial for receptor 
recognition are located in the N-terminal α-helix as 
well as on the β6 strand. The mutation of one 
(Asn84) of the two glycosylated residues of PlGF 
determines reduced binding activity indicating that, 
unlike in VEGF-A, glycosylation plays an important 
role in receptor binding.
     The pro-angiogenic activity of VEGF family 
members is exerted through the binding and 
activation of two tyrosine kinase (TK) receptors, 
which were initially identified as receptors for 
VEGF-A: VEGFR-1 (de Vries et al., 1992) and 
VEGFR-2 (Terman et al., 1992). These receptors 
consist of seven extracellular Ig-like domains, a 
transmembrane domain and an intracellular TK 
domain. The binding of ligands induces receptor 
dimerization and phosphorylation. Despite the 
three-dimensional similarity with VEGF-A, PlGF 
has the property to bind exclusively VEGFR-1 
receptor (Park et al., 1994), with high affinity 
compared to VEGF-A and to VEGF-B, the other 
members of the family able to specifically bind 
VEGFR-1 (Olofsson et al., 1998). The minimal 
receptor domain required for the binding of 
VEGF-A, VEGF-B and PlGF is the Ig-like domain 
two, as well documented by co-crystal three- 
dimensional studies (Wiesmann et al., 1997; 
Christinger et al., 2004; Iyer et al., 2010). It is 
relevant to highlight that for PlGF binding to 
VEGFR-1, the Ig-like domain 3 plays an important 
role. As for VEGF-A (Keyt et al., 1996), VEGFR-1 
domains 2 and 3 are necessary and sufficient for 
the binding of PlGF with near-native affinity. 
However, whereas the deletion of domain 3 causes 
a 50-fold decrease in VEGF binding, the effect on 
PlGF is more consistent resulting in about 500-fold 
reduction of binding of PlGF to the domain 2 
(Davis-Smyth et al., 1998). 
     Despite the specificity of binding to VEGFR-1, 
PlGF may indirectly activate also VEGFR-2 in 
alternative ways. One possibility is represented by 
the ability of PlGF to bind VEGFR-1 displacing 
VEGF-A from this receptor and making VEGF-A 
available for the binding to VEGFR-2 (Carmeliet et 
al., 2001). Moreover, if coexpressed in the same 
cell, PlGF and VEGF-A may generate heterodimer 
form (DiSalvo et al., 1995) that is able to bind and 
activate VEGFR-1 but also to induce VEGFR- 
1/VEGFR-2 dimerization, if both receptors are 
expressed on cell surface (Tarallo et al., 2010). In 

addition, it has been reported that once PlGF has 
activated VEGFR-1 receptor, VEGFR-2 may be 
activated by transphosphorylation mechanism 
(Autiero et al., 2003).
     Furthermore, like other isoforms of VEGF family 
members able to bind heparin, PlGF-2 is able to 
bind the two coreceptors Neuropilin 1 and 2 (NRP1 
and NRP2), discovered as coreceptors of class 3 
semaphorins, via the recognition of their b1b2 
domain (Migdal et al., 1998; Mamluk et al., 2002; 
Gaur et al., 2009). The interactions of PlGF isoforms 
and PlGF/VEGF-A heterodimer with receptors are 
summarized in Figure 1.

PlGF expression

PIGF is highly expressed in placenta throughout all 
stages of gestation. It has been proposed to 
control trophoblast growth and differentiation 
(Maglione et al., 1993a; Khaliq et al., 1996), thus 
suggesting a role for the protein during invasion of 
the trophoblast into the maternal decidua (Vuorela 
et al., 1997). 
     Immunohistochemistry analyses revealed the 
presence of PlGF in the vasculosyncytial membrane 
and in the media of large blood vessels of the 
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placenta. In situ hybridization analysis showed the 
presence of PlGF in the villous trophoblast while in 
this context VEGF-A is expressed in cells of 
mesenchymal origin within the chorionic plate, thus 
not in placenta cells (Khaliq et al., 1996; Vuorela et 
al., 1997).
     PlGF is expressed during early embryonic 
development. Indeed, transcripts encoding mouse 
PlGF were abundant in trophoblastic giant cells 
associated with the parietal yolk sac at early 
stages of embryogenesis suggesting a role to 
coordinate vascularization in the deciduum and 
placenta during early embryogenesis (Achen et al., 
1997). In addition PlGF is expressed at a low level 
in several other organs including the heart, lung, 
thyroid, skeletal muscle, and adipose tissue under 
normal physiological conditions (Viglietto et al., 
1995; Persico et al., 1999; Voros et al., 2005).
     At cellular level, the expression of PlGF was 
demonstrated in endothelial cells (Hauser and 
Weich, 1993; Yonekura et al., 1999), in thyroid 
cells (Viglietto et al., 1995), in immortalized or in 
transformed mouse embryonic fibroblasts and in 
NIH 3T3 cells (Carmeliet et al., 2001). Differently 
from VEGF-A, PlGF is expressed only in a limited 
number of tumor-derived cell lines (Persico et al., 
1999; Cao, 2009).
     Due to the main role that the hypoxic stimulus 
has in the upregulation of many pro-angiogenic 
factors when neo-vessels formation is required, 
studies to unveil the modulation of PlGF expression 
at molecular level have been executed mainly in 
hypoxic conditions. The main effectors of hypoxic 
stimulus are the transcriptional factors known as 
hypoxia inducible factors (HIFs) (Semenza, 1999). 
Although some reports indicated an upregulation of 
PlGF in cells exposed to hypoxia, the analysis of 
promoter/ enhancer region of PlGF did not show 
hypoxia responsive element (HRE) sequence, as 
observed for VEGF-A and VEGFR-1 receptor 
(Green et al., 2001; Oura et al., 2003; Selvaraj et 
al., 2003). 
     In this region, the presence of many putative 
recognition sequences for metal transcription factor 
1 (MTF-1) and for NF-κB were observed. Indeed, 
the involvement of MTF-1 in immortalized/Ras- 
transformed mouse embryonic fibroblast and in 
NIH 3T3 cells (Green et al., 2001), and the 
involvement of NF-κB in human embryonic kidney 
293 cells (Cramer et al., 2005), has been 
demonstrated in the modulation of PlGF expression 
in hypoxic condition. However overexpression of 
HIF-1α in endothelial cells (Yamakawa et al., 2003) 
or in primary cardiac and vascular cells (Kelly et 
al., 2003) positively influences the expression of 
PlGF. These results indicated that HIFs might have 

a role in the mechanism of control of PlGF 
expression. Therefore, further studies are needed 
to definitively clarify the molecular basis of 
hypoxia-induced PlGF expression. Moreover, PlGF 
expression was shown to be modulated by the 
forkhead/winged helix transcription factor FoxD1 
(BF-2) in the developing kidney stroma due to a 
conserved HNF3b binding site identified on PlGF 
promoter region (Zhang et al., 2003).
     Finally, PlGF expression is also controlled at a 
post-transcriptional level with a mechanism already 
described for other growth factors and for many 
oncogenes (Kozak, 1987; Parkin et al., 1988; 
Muller and Witte, 1989; Arrick et al., 1991). The 5’ 
untraslated region of PlGF mRNA contains a small 
open reading frame potentially coding for a peptide 
of 13/15 amino acids in human and five amino acids 
in mouse, whose deletion or mutation of potential 
initiator codons, substantially increase PlGF 
expression (Maglione et al., 1993b).

Role of PlGF in angiogenesis

The first evidence of PlGF as pro-angiogenic factor 
was reported in 1997. Ziche et al. (1997a) demon-
strated that PlGF-1 induced a dose-dependent 
angiogenic response in the rabbit cornea and in 
the chick embryo chorioallantoic membrane. 
Subsequently, the generation and the analysis of 
plgf knock out mouse model have had a central 
role to unveil the biological functions of PlGF. 
Despite the high level of expression in placenta, 
the absence of PlGF did not compromise the 
normal embryonic development of the mice. Indeed, 
plgf null mice born at a Mendelian frequency are 
healthy and fertile (Carmeliet et al., 2001). PlGF is 
also dispensable for physiological angiogenesis 
induced in the heart and muscle by exercise 
(Gigante et al., 2004). This indicates that PlGF is 
redundant for vascular development and 
physiological vessel maintenance in healthy adults. 
However, in the adult, the knock out of plgf impairs 
angiogenesis and arteriogenesis during pathological 
conditions such as tumor growth, heart, limb and 
ocular ischemia, (Carmeliet et al., 2001; Luttun et 
al., 2002; Pipp et al., 2003; Rakic et al., 2003). 
Another mouse model, the double knock out for 
plgf and enodothelial nitric oxide synthase (eNos), 
has further evidenced the importance of PlGF in 
pathological angiogenesis. eNOS and its final 
by-product nitric oxide (NO) represent a downstream 
target for the angiogenic response elicited by 
VEGF-A (Papapetropoulos et al., 1997; Ziche et 
al., 1997b). eNos -/- mice, like plgf -/-, showed a 
reduced neo-angiogenesis in pathological conditions 
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(Murohara et al., 1998). The mouse carrying the 
combined deletion of the two genes showed, in 
mild hind limb ischemia model, a heterogeneous 
ischemic phenotype ranging from cyanosis of 
finger-tip to self-amputation and increased death 
rate occurring in 47% of the animals undergoing 
the surgical procedure. 
     This model has represented the first experimental 
animal model of defective angiogenesis that allows 
individuating a functional link between PlGF and 
eNOS (Gigante et al., 2006). These experiments of 
loss-of-function clearly indicated that the activity of 
PlGF seems to be confined to the pathological 
conditions. 
     The involvement of PlGF in stimulating angio-
genesis was also confirmed in gain-of-function 
studies. Transgenic mice overexpressing plgf in 
skin under the control of keratin-14 promoter showed 
a substantial increase in number, branching and 
size of dermal blood vessels, with a significant 
increase of mature smooth muscle-coated vessels, 
together with enhanced vascular leakiness (Odorisio 
et al., 2002). Accordingly, adenovirus-mediated 
PlGF transfer in the ischemic heart and limb was 
able to elicit a strong angiogenic response, giving 
rise to numerous larger vessels, with an efficacy 
almost comparable to that of VEGF-A (Luttun et 
al., 2002). The same approach of delivery in 
xenograft tumors did not show an increase in terms 
of tumor volume and vessel density but generated 
an increase in terms of vessel lumen, inflammatory 
infiltrate and vessel maturation (Tarallo et al., 
2010). Delivery of recombinant PlGF homodimer or 
PlGF/VEGF-A heterodimer significantly promoted 
angiogenesis in ischemic conditions (Luttun et al., 
2002; Autiero et al., 2003).
     Gain and loss of function experiments have 
clearly indicated that PlGF promotes pathological 
angiogenesis acting at different levels. Indeed, it 
may directly stimulate vessel growth by acting on 
the growth, migration and survival of endothelial 
cells (Ziche et al., 1997a; Carmeliet et al., 2001; 
Adini et al., 2002; Fischer et al., 2007) and vessel 
maturation, by increasing the proliferation and 
recruitment of smooth-muscle cells and supporting 
the proliferation of fibroblasts (Yonekura et al., 
1999; Bellik et al., 2005). Moreover PlGF is crucial 
for the recruitment and maturation of bone marrow- 
derived progenitors involved in angiogenic process 
(Hattori et al., 2002; Rafii et al., 2003) and to promote 
differentiation and activation of monocyte-macrophage 
lineage that are able to further support the 
angiogenic stimulus (Clauss et al., 1996; Scholz et 
al., 2003; Selvaraj et al., 2003). 
     The wide spectrum of paracrine action of PlGF 
is directly correlated to the expression of VEGFR-1 

receptor on many cell lineages (Fischer et al., 2008). 
The specific role of PlGF in pathological conditions 
was further confirmed by the observation that 
during pathological angiogenesis cells having a 
role in this biological phenomenon, like endothelial 
cells (Yonekura et al., 1999; Ponticelli et al., 2008; 
Tarallo et al., 2010), smooth muscle cells (Yonekura 
et al., 1999), fibroblasts (Green et al., 2001), bone- 
marrow progenitors (Lyden et al., 2001; Hattori et 
al., 2002), over-express or start to express PlGF. 
Since these cells also express VEGFR-1 receptor, 
PlGF exerts also autocrine activity to sustain 
angiogenesis.

Role of PlGF in different diseases

The study of PlGF in pathological angiogenesis 
has allowed to assign to PlGF/VEGFR-1 axis a 
central role in the activation and sustainment of the 
inflammatory switch associated with neo-angiogenesis. 
Furthermore, many other cell types express PlGF 
in pathological conditions, such as keratinocytes 
(Odorisio et al., 2006), cardiomyocytes (Luttun et 
al., 2002), retinal pigment epithelial cells (Hollborn 
et al., 2006; Miyamoto et al., 2007), bronchial 
epithelial cells (Mohammed et al., 2007) and 
tumour cells (Parr et al., 2005; Wei et al., 2005; 
Fischer et al., 2007). This upregulation is due not 
only to hypoxia but also to other stimulus including 
nitric oxide (Mohammed et al., 2007), cytokines, as 
interleukin 1 and tumour necrosis factor-α (De 
Ceuninck et al., 2004), growth factors, as 
transforming growth factor-β1 (Yao et al., 2005), 
and oncogenes (Larcher et al., 2003). VEGFR-1 is 
positively modulated by hypoxia in pathological 
conditions (Larcher et al., 2003). 
     These data have prompted to investigate 
whether PlGF has a role in other pathologies and 
once again the plgf knock out mouse has been 
crucial for these studies. Indeed it has been reported 
that PlGF plays a role also in atherosclerosis, 
cutaneous delayed-type hypersensitivity, obesity, 
cartilage and bone repair and in rheumatoid arthritis 
(Carmeliet et al., 2001; Oura et al., 2003; Lijnen et 
al., 2006; Maes et al., 2006; Yoo et al., 2009). In all 
pathological models studied, the absence of PlGF 
impaired the associated inflammation and/ or the 
angiogenesis determining a general reduction of 
pathological status. In addition, in the model of 
fracture repair it has been demonstrated that PlGF 
is able to activate also unexpected mechanisms. It 
induced proliferation and osteogenic differentiation 
of mesenchymal progenitors stimulating cartilage 
turnover as well as the remodeling of the newly 
formed bone by stimulating osteoclasts differen-
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tiation. As expected, all the cell types involved in 
these biological processes express VEGFR-1 
receptor. 

Recent insights

Two new important functions have been recently 
described for PlGF. The first concerns the polarization 
status of tumor-associated macrophages (TAM). In 
non-progressing or regressing tumors, TAMs 
present a classic M1-like macrophage activation 
program, characterized by proinflammatory activity, 
antigen presentation and tumor lysis. In malignant 
tumors, TAMs show M2-type activation that 
determines increased angiogenesis and tumor cell 
intra/extravasation and growth. In this status they 
suppress antitumor immunity by preventing 
activation of dendritic cells, CTLs, and NK cells 
(Mantovani and Sica, 2010; Qian and Pollard, 2010). 
Ronly et al. (2011) have reported that host-produced 
histidine-rich glycoprotein promotes the antitumor 
immune response and vessel normalization, effects 
known to decrease tumor growth and metastasis 
and to enhance chemotherapy, by skewing TAM 
polarization away from the M2- to M1-like phenotype. 
This effect was obtained by down-regulation of 
PlGF. Therefore PlGF is important to sustain the 
pro- angiogenic M2-type phenotype.
     The second concerns the response necessary 
for adaptive cardiac remodeling during transverse 
aortic constriction (Carnevale et al., 2011). The 
cardiac remodeling proceeds by an early adaptive 
hypertrophic response, characterized by coordinated 
cardiomyocyte growth, angiogenesis and inflam-
mation (Hunter and Chien, 1999; Frey and Olson, 
2003). The absence of PlGF entailed a dysregulation 
of cardiac remodeling that negatively affects 
muscle growth, mainly ascribable to a failure in 
establishment of adequate inflammatory response. 
At molecular level, an impaired activity of TNF-α 
converting enzyme (TACE) due to a strong 
increase of its main natural inhibitor, tissue inhibitor 
of metalloproteinases (TIMP)-3 has been observed 
(Vanhoutte and Heymans, 2010). TACE is 
essential to activate TNF-α from a membrane- 
bound form, one of the earliest inflammatory events 
in overloaded hearts (Wang et al., 2009; Ding et al., 
2010). Therefore, PlGF finely tunes a balanced 
regulation of TIMP-3/TACE axis, allowing the 
establishment of an inflammatory response 
necessary for adaptive cardiac remodeling.

Concluding remarks

PlGF is a multitasking cytokine able to stimulate 
angiogenesis by direct or indirect mechanisms 
thanks to its ability to bind and activate VEGFR-1 
receptor expressed in many cell types involved in this 
biological process. Although initially controversial 
data have been reported on the pro-angiogenic 
role of PlGF (De Falco et al., 2002; Carmeliet and 
Jain, 2011), the numerous studies of the last decade 
undoubtedly support its role in angiogenesis. 
Furthermore, these studied have clearly evidenced 
the crucial role of PlGF in modulating the 
inflammation associated not only to pathological 
angiogenesis but also to other diseases. These 
data have strongly stimulated the search for 
inhibitor of PlGF for therapeutic approaches. Once 
again controversial data have produced (Bais et al., 
2010; Van de Veire et al., 2010), nonetheless a 
neutralizing anti-PlGF antibody is now in phase two 
of clinical trials (Martinsson-Niskanen et al., 2011). 
Considering the therapeutic perspective, the 
search for a physiological function of endogenous 
PlGF still continues because the elucidation of its 
physiological role became crucial to predict the 
possible adverse affects of PlGF inhibitors.
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