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Abstract

Gangliosides have been suggested to play important 
roles in various functions such as adhesion, cell differ-
entiation, growth control, and signaling. Mouse fol-
licular development, ovulation, and luteinization dur-
ing the estrous cycle are regulated by several hor-
mones and cell-cell interactions. In addition, sperma-
togenesis in seminiferous tubules of adult testes is al-
so regulated by several hormones, including fol-
licle-stimulating hormone (FSH) and luteinizing hor-
mone (LH) and cell-cell interactions. The regulation of 
these processes by hormones and cell-cell inter-
actions provides evidence for the importance of sur-
face membrane components, including gangliosides. 
During preimplantation embryo development, a mam-
malian embryo undergoes a series of cleavage divi-
sions whereby a zygote is converted into a blastocyst 
that is sufficiently competent to be implanted in the ma-

ternal uterus and continue its development. Mouse em-
bryonic stem (mES) cells are pluripotent cells derived 
from mouse embryo, specifically, from the inner cell 
mass of blastocysts. Differentiated neuronal cells are 
derived from mES cells through the formation of em-
bryonic bodies (EBs). EBs recapitulate many aspects 
of lineage-specific differentiation and temporal and 
spatial gene expression patterns during early 
embryogenesis. Previous studies on ganglioside ex-
pression during mouse embryonic development 
(including during in vitro fertilization, ovulation, sper-
matogenesis, and embryogenesis) reported that gan-
gliosides were expressed in both undifferentiated and 
differentiated (or differentiating) mES cells. In this re-
view, we summarize some of the advances in our un-
derstanding of the functional roles of gangliosides 
during the stages of mouse embryonic development, 
including ovulation, spermatogenesis, and embryo-
genesis, focusing on undifferentiated and differ-
entiated mES cells (neuronal cells).
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Introduction

Glycosphingolipids (GSLs) can be subdivided into 
neutral GSLs and acidic GSLs. Acidic GSLs con-
taining sialic acid residue(s) in their carbohydrate 
moiety are referred to as gangliosides. Gangliosides 
are key signaling molecules in biological pro-
cesses, including cellular adhesion and receptor 
signal transduction (Huwiler et al., 2000). They are 
widely found in the plasma membranes of all 
vertebrate tissues and are particularly abundant in 
the central nervous system (CNS) (Svennerholm, 
1980; Yu et al., 2004). Complement-induced neuron 
degeneration and the phenotypes of genetically 
engineered mice lacking gangliosides, i.e., mice 
with a double knockout in GM2/GD2 synthase and 
GD3 synthase (Ohmi et al., 2009), clearly demon-
strate that gangliosides have a wide variety of 
functional roles (Proia, 2003). Clinically, GSLs play 
important roles in the pathogenesis of certain 
neuropathies such as Guillain-Barré syndrome, a 
disorder caused by an autoimmune response to 
cell surface gangliosides (Kaida et al., 2009), and 
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Figure 1. Metabolic pathways of ganglioside synthesis involving transferase enzymes. 

autosomal recessive infantile-onset symptomatic 
epilepsy syndrome, a disorder caused by a non-
sense mutation in GM3 synthase (Simpson et al., 
2004). Recently, it has also been suggested that 
gangliosides initiate the aggregation of amyloid-β 
peptide and contribute to the onset of Alzheimer’s 
disease (Matsuzaki et al., 2010). 
    The morphology of mammalian ovaries drama-
tically changes during the estrous cycle; throughout 
corpus luteum formation, and in all stages of 
follicular development, including the formation of 
primary, secondary, and Graafian follicle (Erickson, 
1978). In the murine ovary, oocytes are shed from 
a mature Graafian follicle during the process of 
ovarian maturation at a precise time, after the 
onset of a LH surge. One function of the corpus 
luteum is to secrete progesterone, a hormone that 
is important for controlling the length of the estrous 
cycle and maintaining pregnancy, if implantation 
and fertilization occur (Galway et al., 1990). Folli-
cular development, ovulation, and luteinization are 
regulated by several hormones and cell-cell inter-
actions, which indicate the importance of surface 
membrane components, including gangliosides, during 
the estrous cycle. Nagai and Hoshi (1975) showed 
that sea urchin eggs have very high ganglioside 
content, and they demonstrated the euplastic distri-
bution of gangliosides and the changes that occur 
after fertilization. 
    Spermatogenesis has been studied extensively 
in mammalian testis (Fawcett, 1975). Mammalian 
spermatozoa are produced by a process known as 
spermatogenesis that occurs in the seminiferous 
tubules, coiled tubes that are located in the testes. 

These seminiferous tubules contain 2 types of somatic 
cells, myoid or smooth muscle-like cells and Sertoli 
cells, as well as 5 other types of germ cells: sper-
matogonia, primary and secondary spermatocytes, 
spermatids, and spermatozoa. Spermatogenesis in 
the seminiferous tubules of adult testes is regul-
ated by several hormones, including FSH and LH, 
and by cell-cell interactions. 
    Embryonic stem (ES) cells are derived from the 
inner cell mass of mammalian embryos and are 
defined as undifferentiated cells endowed with a 
high potential for proliferation and the capacity to 
differentiate into progeny through self-renewal with 
the retention of pluripotency or multipotency (Smith, 
2001). This self-renewal capacity is regulated by a 
set of transcription factors including Oct4, Nanog, 
and Sox2 (Niwa, 2007). Recently, genome-wide 
chromatin immunoprecipitation (ChIP) analyses in 
mouse ES (mES) cells have identified the genomic 
binding sites for Oct4 and a number of other mES 
cell transcription factors (Chen et al., 2008; Kim et 
al., 2008b; Sridharan et al., 2009). ES cells are 
important not only biologically but also clinically. 
These cells can act as reservoirs for the formation 
of tissues and organs during development and for 
the replacement of cells lost during normal cell 
turnover that occurs in adulthood. They can also 
be used in cell replacement therapy for a variety of 
disorders and injuries. Cell surface molecules that 
can be used as markers for the identification and 
isolation of stem cells are essential for basic bio-
logical study and clinical use of ES cells. Glyco-
lipids on the cell surface can serve as marker mole-
cules (Yanagisawa and Yu, 2007). To date, many 
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Developmental
stages Cells Gangliosides References

Sertoliccells GM3 Stern et al., 2000
Jung et al., 2001

Sperm GM1 Trevino et al., 2001
Shadan et al., 2004

Spermatogenesis Selevaraj et al., 2006
Primary follicle GM3, GM1, GD1a, GD1b, GT1b,GM2, GD3 Hottori & Horiuch, 1992

Choo et al., 1995, 1999
Kim et al., 2006
Kwak et al., 2003

Secondary follicle GM3, GM1, GD1a, GD1b,GD3,GM2 Choo et al., 1995, 1999
Ovary maturation Kim et al., 2006

Kwak et al., 2003
Graafian follicle GM3, GM1, GM2, GT1b,GD1a, Choo et al., 1995, 1999

Kim et al., 2006
Kwak et al., 2003

Uterus Uterus GT1b, GD1a, GM1, GD1b Kim et al., 2006
Fertilization GM3 Kwak et al., 2003
2-cell GM3, GT1b Kwak et al., 2003

Kim et al., 2008a
4-cell GM3, GT1b Kwak et al., 2003

Kim et al., 2008a
Morula(32-cell) GM3, GT1b Kwak et al., 2003

Kim et al., 2008a
Early embryogenesis Blastocyst GM3, GT1b Kwak et al., 2003

Kim et al., 2008a
E9 GM3, GM1,GD1a, GT1b Ji et al., 2000
E11 GM3, GM1, GD1a, GM2, GT1b, GD3 Ji et al., 2000

Yu et al., 1998
E12 GD3, GM3, GT1b, GM2, GM1, GD1a, GD1b, GQ1b Ji et al., 2000

Yu et al., 1998
Bouvier& Seyfried, 1989

E13 GD3, GM3, GT1b, GM2, GM1, GD1a, GD1b, GQ1b Ji et al., 2000
Yu et al., 1988

E14 GD3, GM3, GM2, GM1, GD1a, GT1b Nakamukote et al., 2007
Bouvier & Seyfried, 1989

E15 GM3,GM1,GD1a,GD3 Ji et al., 2000
Late embryogenesis Yu et al., 1988

E16 GD1a, GD3, GM3 Nakamukote et al., 2007

Table 1. Gangliosides expression in the Spermatogenesis, Ovarian maturation and Uterus of mousse

glycolipids expressed on pluripotent stem cells, 
multipotent stem cells, and cancer stem cells have 
been identified by biochemical and immunological 
analyses. Some of these cells have been shown to 
be excellent stem cell biomarkers. In this review, 
we will describe the gangliosides expressed during 
mouse ovulation, spermatogenesis, and embryo-
genesis, as well as in stem cells, and discuss their 
availability as biomarkers for the identification of 
mES cells and their differentiation. Figure 1 shows 
the metabolic pathways for ganglioside production 
in the mouse. A complete list of gangliosides 

expressed in spermatogenesis, ovarian maturation, 
and embryogenesis is shown in Table 1. The various 
gangliosides expressed in germ cells of the mouse 
ovary are given in Table 2. Ganglioside expression 
in mES cells, embryonic bodies (EBs) and differen-
tiated neuronal cells of mES cells is described in 
Table 3. 

Gangliosides 

Gangliosides, sialic acid-containing GSLs, are believed 
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Follicle Germ cells Gangliosides References
Ovarian maturation Primary Interstitial cells GM3, GM1, GD1a, GD1b Choo et al., 1995, 1999

Kim et al., 2006
Kwak et al., 2003

Theca cells GM3, GM1, GD1a Choo et al., 1995, 1999
Kim et al., 2006
Kwak et al., 2003

Granulosa cells GM3 Choo et al., 1995, 1999
Kim et al., 2006

Oocytes GM3 (diabetic mouse) GD1a Choo et al., 1995, 1999
Kwak et al., 2003

Secondary Theca cells GM3, GM1, GD1a Choo et al., 1995, 1999
Kim et al., 2006
Kwak et al., 2003

Granulosa cells
Oocytes

Graafian Theca cells GM3, GM1, GD1a Choo et al., 1995, 1999
Kim et al., 2006
Kwak et al., 2003

Granulosa cells GM3 Choo et al., 1995, 1999
Kim et al., 2006

Table 2. The expression of gangliosides in germ cells of the mouse ovary

Mouse embryonic stem cells (mEScells) Embryonic body (EBs) Neuronal cells
Blastocyst-derived
Undifferentiated mouse stem cells

Differentiated embryonic body from
 mouse embryonic stem cells

Differentiated Neuronal cells from
 mouse embryonic body (mES cells)
 by retinoic acid (RA)

Gangliosides GM3, GM1, GD3 GM3, GD3, GT1b, GM2 GT1b, GM1, GD3, GD1a, GQ1b, GM3
References Kwak et al., 2006

Lee et al., 2007
Kwak et al., 2006
Lee et al., 2007
Jung et al., 2009

Ferrari et al., 1983
Kawai et al., 1998
Osanai et al., 2003
Kwak et al., 2006
Lee et al., 2007
Jung et al., 2009

Table 3. The expression of gangliosides in mES cells, Ebs, and differentiated neuronal cells

to be involved in the development, differentiation, 
and function of the nervous system in vertebrates 
(Schengrund, 1990). While most gangliosides reside 
in the outer leaflet of the cell membrane, where 
they are crucial for the maintenance of membrane 
structure and organization, a small percentage 
(10%) is located in the mitochondria and endo-
plasmic reticulum (ER). The biosynthesis of gang-
liosides occurs in the ER and the Golgi complex 
and is mediated by the action of membrane-bound 

glycosyltransferases and sialyltransferases, which 
catalyze the transfer of sugar nucleotide donors to 
sphingolipid acceptors (Huwiler et al., 2000; Kolter 
et al., 2002). Complex gangliosides that are more 
glycosylated are built by the stepwise addition of 
sugar nucleotides to LacCer. In particular, specific 
sialyltransferases generate viability gangliosides; 
the predominant gangliosides are simple, like GM3 
and GD3, while the more complex ones are GM1, 
GD1a, GD1b, and GT1b (Figure 1). The diverse 
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and heterogeneous molecular structures of ganglioside 
carbohydrate chains are important characteristics. 
Ganglio-series GSLs that have 0, 1, 2, and 3 sialic 
acid residue(s) linked to the inner galactose residues 
in their carbohydrate moieties are classified as a-, 
b-, and c-series gangliosides. The gangliosides 
that have a NeuAca2-6GalNAc structure are referred 
to as a-series gangliosides (Nakamura et al., 
1988). Gangliosides play important roles in a large 
variety of biological processes, including cell-cell 
interaction, adhesion, cell differentiation, growth 
control, receptor function, and induction of inflam-
matory responses (Ji et al., 1999; Lee et al., 2010). 
Ganglioside GM3 has the simplest carbohydrate 
structure and is known to be involved in signal 
transduction (Hakomori et al., 1998), modulation of 
cell proliferation (Hakomori, 1990), induction of 
HL-60 differentiation (Nojiri et al., 1986), mainten-
ance of fibroblast morphology, and integrin- mediated 
cell adhesion (Kojima et al., 1996). Studies have 
reported that there are drastic changes in the 
expression patterns and levels of gangliosides 
during embryonic development. The changes occur 
in the gangliosides themselves (Yu et al., 1988; 
Bouvier and Seyfried, 1989), as well as in the 
glycosyltransferases and glycosidases (Ishii et al., 
2007) that regulate ganglioside synthesis. Other 
recent studies based on analyses in genetically 
engineered animals, have demonstrated that gang-
liosides mainly play roles in the maintenance and 
repair of nervous tissues (Furukawa et al., 2007; 
Kittaka et al., 2008). This implies that gangliosides 
can be useful as stage-specific marker molecules 
in developing cells, including embryogenesis and 
stem cells (Yanagisawa and Yu, 2007). 

Gangliosides in mouse ovulation and 

spermatogenesis

Gangliosides, which are GSLs with 1 or more sialic 
acid residues, are cell-type specific and expressed 
mainly in the plasma membrane (Kim et al., 2006). 
Gangliosides are a large group of sialized GSLs, 
which are widely expressed in mammalian cells 
(Furukawa, 1998), that function in cell differentiation, 
cell growth, and transmembrane signaling (Hakomori, 
1981; Choo, 1999). During preimplantation embryo 
development, the mouse embryo undergoes a 
series of cleavage divisions, whereby a zygote is 
converted to a blastocyst that is sufficiently com-
petent for uterine implantation and continued 
development (Table 1). The ganglioside GM3 was 
found to be distributed predominantly in the Sertoli 
cells of murine seminiferous tubules (Jung et al., 
2001). The germ cells of female mice are known to 

express GM1 in the cytoplasm (Kanai et al., 1990). 
FSH and insulin together were reported to enhance 
GM3 production by cultured immature granulosa 
cells, while LH expression in granulosa cells was 
reported to be decreased by the addition of GM3 
(Hattori and Horiuchi, 1992). Choo et al. (1995) 
observed that theca cells of primary follicles in 
adult rat ovaries were positive, and that granulosa 
cells of Graafian follicles express GM3 just before 
ovulation (Tables 1 and 2). GM1, GM3, GD1a, and 
GD1b were found to be expressed in interstitial 
cells during ovarian maturation in mouse (Choo et 
al., 1995, 1999; Kim et al., 2006, Table 2). Kim et 
al. (2008a) investigated whether the expression of 
ganglioside GT1b was regulated during early 
embryonic development or the survival of frozen- 
thawed embryos (Tables 1 and 2). Kwak et al. 
(2003) reported that GM3 expression was increased 
in diabetic db/db mice during ovarian maturation (in 
primary and Graafian follicle). Mouse ovaries contain 
at least 5 different ganglioside components, in-
cluding GM3, GM1, GD1a, and GT1b, and the 
uteruses of diabetic mice exhibited significant 
changes in the expression of major gangliosides. 
For example, in the uteruses of mice with strepto-
zotocin (STZ)-induced diabetes, the expression of 
gangliosides such as GD1a and GT1b was reduced 
as expected; however, other gangliosides, including 
GM1 and GM2, were increased, as was GD3 ex-
pression (Kim et al., 2006). In contrast, in the 
uteruses of db/db diabetic mice there was a 
significant increase in gangliosides, including GM1 
and GD1a, and a significant increase in GD3 ex-
pression (Kim et al., 2006). Expression of 
ganglioside GT1b gradually increased during 
embryogenesis, but was not present in TUNEL- 
positive, apoptotic embryos (Fujino et al., 1996). 
    Several studies have previously reported on the 
localization of GM1 in sperm; however, the results 
vary widely between and within species (Table 1). 
For example, in mouse, it has been suggested that 
GM1 localizes to the testes and that this localiza-
tion does not change with capacitation (Trevino et 
al., 2001). In another study, GM1 was localized to 
the midpiece, and then moved to the head during 
capacitation (Shadan et al., 2004). The localization 
and movement of GM1 in murine sperm is impor-
tant for several reasons (Table 1). For example, it 
provides evidence for the existence of membrane 
sub-domains in living cells, which is still a matter of 
some controversy (Munro, 2003). Standing in con-
trast to reports on the segregation of GM1 in live 
sperm (Selvaraj et al., 2006) are studies suggesting 
that there is no barrier to the lateral diffusion of 
lipids in mature spermatozoa (Mackie et al., 2001).
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Gangliosides in mouse embryonic 

development 

In one study using diabetic mice, GM3 expression 
decreased during early embryonic development, 
including during in vitro fertilization and early 
embryogenesis (morula and blastocyst) (Kwak et 
al., 2003, Table 1). However, in general, synthesis 
of the hemato-series gangliosides GM3 and GD3 
predominates during early embryogenesis of verte-
brate animals, whereas the synthesis of the more 
complex gangliosides, such as GM1, GD1a, GD1b, 
and GT1b, predominates at later embryogenic 
stages (Yu et al., 1988; Comiskey and Warner, 2007). 
Ganglioside GM3 was synthesized by mST3GalV, 
and the expression and regulation of mST3GalV 
(CMP-NeuAc: lactosylceramide alpha-2, 3-sialyl-
transferase) activity is central to the production of 
almost all gangliosides. Spatial and temporal ex-
pression of mST3GalV mRNA (GM3) during mouse 
embryogenesis [on embryonic (E) days E9, E11, 
E13, and E15] was demonstrated by in situ hybridi-
zation with digoxigenin-labeled RNA probes (Ji et 
al., 2000, Table 1). All tissue samples obtained on 
E9 and E11 were observed to have the same level 
of mST3GalV mRNA expression. On E13, mST3GalV 
mRNA was expressed in various neural and 
non-neural tissues and in the telencephalon, while 
on E15, strong expression of mST3Gal V was 
observed in the liver (Ji et al., 2000). Bouvier and 
Seyfried (1989) observed that the predominant 
gangliosides in E12 mouse embryos were GD3 
(51% of total sialic distribution), GM3 (19%), and 
GT1b (9.6%); other gangliosides occurred in much 
lower amounts (GM2 (2.6%), GM1 (1.6%), GD1a 
(3.7%), GD1b (6.3%), and GQ1b (4.5%)). Similar 
distributions were observed in both neural and 
non-neural embryonic structures, suggesting that 
undifferentiated embryonic cells in mice express 
GM3 and GD3 as the major ganglioside species 
(Bouvier and Seyfried, 1989). However, little is 
known about the expression of GT1b in pre- 
implantation embryos. Ngamukote et al. (2007) 
reported that GD3 was a predominant ganglioside 
in E12 and E14 brains during embryogenesis. After 
E16, the concentration of GD3 and GM3 markedly 
decreased, and the concentration of a-series 
gangliosides, including GD1a, increased (Ngamukote 
et al., 2007). Yamamoto and Mohanan (2003) 
reported that ganglioside GT1b inhibits mitochondrial 
DNA damage in the brain during embryonic 
development. GD3-expressing cells sorted from 
embryonic, postnatal, and adult mouse brains were 
shown to have high proliferative potential, the ability 
to self-renew, marker expression, and multipotency 
for differentiation into neurons, astrocytes, or 

oligodendrocytes. 

Gangliosides in mouse embryonic stem 

cells

ES cells are pluripotent cells that are generated 
from the inner cell mass of blastocysts (Liu et al., 
2006). When mES cells are cultured with mouse 
embryonic fibroblasts and feeder cells, they 
proliferate indefinitely and retain the potential to 
differentiate into various lineages of all 3 primary 
germ layers (Martin, 1981). The stage-specific 
embryonic antigen-1 (SSEA-1) is the most well- 
known (Muramatsu and Muramatsu, 2004). The 
epitope of this antibody was later determined to be 
Lewis X antigen (Gooi et al., 1981), and it is carried 
by glycoproteins and by ganglio-, globo-, neolacto-, 
and lacto-series glycolipids (Yu and Yanagisawa, 
2007). Survival of differentiated stem cells depends 
on the inhibition of the ganglioside biosynthesis 
(Liour and Yu, 2002). On the other hand, some 
GSLs, including gangliosides, have been biochemically 
detected in mES cells. In E14 mES cells, small 
amounts of a-series gangliosides, such as GM3, 
GM1, and GD1a, were identified by thin-layer chro-
matography (Kimber et al., 1993). Differentiated 
cells derived from E14 ES cells expressed larger 
amounts of gangliosides than undifferentiated mES 
cells; a significant amount of GalNAc-GD1a was 
expressed in the differentiated cells. In TC-1 mES 
cells, only glucosylceramide and lactosylceramide 
were detected (Yamashita et al., 1999). Previously 
studies have demonstrated that b-series gangliosides 
are important in neurogenesis (Okada et al., 2002) 
and are specifically expressed during the differen-
tiation of mES cells into neuronal cells (Kwak et al., 
2006). In mES cells, GM1, GM3, and GD3 were 
found (Kwak et al., 2006; Lee et al., 2007, Table 3). 
Furthermore, GM3, GT1b, and GD3 were found in 
the EBs of J1 mES cells (Kwak et al., 2006; Lee et 
al., 2007; Jung et al., 2009, Table 3). These b- 
series gangliosides, such as GD3, GM1, and 
GT1b, can serve as differentiation markers of mES 
cells. It is not clear why the gangliosides that were 
detected in mES cells differed considerably in 
these studies. The functional roles of gangliosides 
in pluripotent stem cells have been suggested by 
the analysis of glucosylceramide synthase-knockout 
mES cells that lack all glucosylceramide-based 
gangliosides (Yamashita et al., 1999)., When gluco-
sylceramide synthase-knockout mES cells were 
injected into mice, teratomas were formed, which 
were similar to those formed by injection with 
wild-type mES cells. However, in the gluco-
sylceramide synthase-knockout teratomas, there 
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were no well-differentiated cells, such as cartilage, 
bone, smooth muscle, and glandular tissue cells, 
which were found in the wild-type mES cell-derived 
teratomas. This result indicates that gangliosides 
play an important role in embryonic development 
(Takamiya et al., 1996; Muramatsu and Muramatsu, 
2004).

Gangliosides in neuronal cell 
differentiation from mouse embryonic stem 

cells

Generating differentiated cell types from mES cells 
occurs through the formation of EBs. EBs recapi-
tulate many aspects of lineage-specific differen-
tiation and temporal and spatial gene expression 
patterns in early embryogenesis (Leahy et al., 
1999). Expression of GM3, GM2, and GD3 was 
detected in EBs (4+) regardless of daunorubicin 
(DNR) treatment (Lee et al., 2007). Neuronal cells 
differentiated from the J1 mES cells expressed 
GM3 after 6 days and expressed GT1b in addition 
to GM1 after 9 days (Kwak et al., 2006). It was 
reported that expression of neuronal cell markers 
and gangliosides were highly associated with 
neurite formation in a neuroblastoma cell culture 
(Simons and Toomre, 2000). In contrast, when 
b-series gangliosides were blocked, neuronal differen-
tiation from mES cells was unaffected (Furukawa 
et al., 2001). An increase in the ratio of a-series to 
b-series gangliosides occurs during the period of 
rapid axonal growth (Kawai et al., 1998). Finally, 
the expression of ganglioside GD3 synthase is 
specifically induced during neural differentiation 
from embryonic carcinoma P19 cells (Osanai et al., 
1997). Treatment with gangliosides induced neuronal 
growth factor (NGF) activity in a rat neuronal PC12 
cell line, and subsequently induced neurite formation 
(Ferrari et al., 1983). The expression of gang-
liosides was also responsible for the induction of 
neurite outgrowth in mouse neuroblastoma cells 
(Uemura et al., 1991). In mES cells, the expression 
of gangliosides was enhanced during retinoic acid 
(RA)-induced neural differentiation (Osanai et al., 
2003). Exogenous addition of ganglioside GQ1b 
induced formation of neurites in neuroblastoma 
cells (Jung et al., 2009). Induction of GD3 synthase 
in neuroblastoma cells also resulted in increased 
expression of cell differentiation with formation of 
neurites (Rosner, 1998). The absence of gang-
liosides (3 b-series), such as GD3, GD1b, and 
GT1b, caused by the disruption of GD3 synthase 
did not affect RA-induced neural differentiation in 
mES cells (Kawai et al., 1998, Table 3). Lack of 
a-series gangliosides in GM2 knockout mice 

caused only subtle abnormalities in the developing 
nervous system (Takamiya et al., 1996). Gang-
liosides such as GD3, GT1b, and GQ1b changed 
during neural differentiation, and were enhanced 
upon RA-induced neural differentiation in mES 
cells (Osanai et al., 2003). In earlier studies, it was 
suggested that gangliosides play a pivotal role in 
neuronal differentiation (Hakomori, 1990). For 
example, ganglioside GM1 is widely distributed 
throughout the peripheral nervous system and 
plays regulatory roles during the neurogenesis and 
regeneration of injured peripheral nerves, whereas 
ganglioside GT1b is expressed in the brain 
synapses (Kotani et al., 1993). Treatment of neurons 
with ganglioside GT1b for 3 days markedly en-
hances actin-rich dendrite generation (Vinson et 
al., 2001). These reports demonstrate the important 
role of gangliosides GM3, GM1, and GT1b in 
neurogenesis.

Conclusion

There is no doubt that gangliosides are worthy of 
further study in both embryonic development and 
for the clinical application of mES cells. Gang-
liosides have been shown to be useful marker 
molecules for embryonic developmental stages 
and mES cell sorting. The identification of gangliosides, 
particularly those located on the plasma mem-
brane, is becoming increasingly important due to 
their role in embryonic development and in the 
classification of specific populations of mES cells. 
As described above, specific gangliosides were 
detected at each embryonic developmental stage 
in mouse, including germ cells in testes, follicular 
maturation in ovaries, spermatogenesis, fertilization, 
embryogenesis, and in undifferentiated and differen-
tiated mES cells. Additional aspects of the func-
tional roles of gangliosides during cellular differen-
tiation and proliferation remain to be explored. 
Such information will undoubtedly stimulate progress 
in the understanding of embryonic development 
and the development of stem cell-based thera-
peutic strategies for a variety of tissue damage 
conditions and degenerative diseases. Further 
identification of the gangliosides in embryonic de-
velopment and stem cells should thoroughly 
characterize the expression of marker gangliosides 
and contribute to progress in the basic research 
and clinical applications in developmental biology 
and stem cell therapy.
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