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Abstract

Phosphatase and tensin homologue deleted on chro-
mosome 10 (PTEN) is a tumor suppressor. Although it 
is well known to have various physiological roles in 
cancer, its inhibitory effect on inflammation remains 
poorly understood. In the present study, a human 
PTEN gene was fused with PEP-1 peptide in a bacterial 
expression vector to produce a genetic in-frame 
PEP-1-PTEN fusion protein. The expressed and puri-
fied PEP-1-PTEN fusion protein were transduced effi-
ciently into macrophage Raw 264.7 cells in a time- and 
dose- dependent manner when added exogenously in 
culture media. Once inside the cells, the transduced 
PEP-1-PTEN protein was stable for 24 h. Transduced 
PEP-1-PTEN fusion protein inhibited the LPS-induced 

cyclooxygenase 2 (COX-2) and iNOS expression levels 
in a dose-dependent manner. Furthermore, trans-
duced PEP-1-PTEN fusion protein inhibited the activa-
tion of NF-κB induced by LPS. These results suggest 
that the PEP-1-PTEN fusion protein can be used in pro-
tein therapy for inflammatory disorders.

Keywords: cyclooxygenase 2; inflammation; lip-
opolysaccharides; nitric oxide; PTEN phosphohydro-
lase 

Introduction

Phosphatase and tensin homologue deleted on 
chromosome 10 (PTEN), also named MMAC-1 
(mutated multiple advanced cancers) or TEP-1 
(TGF-β-regulated and epithelial cell-enriched pho-
sphatase) was identified as a new tumor suppr-
essor gene involved in a wide variety of human 
cancers located at 10q23 (Li et al., 1997; Steck et 
al., 1997). PTEN is well known to play a key role in 
suppressing cancer, cell migration, survival and 
apoptosis (Yamada and Araki, 2001). PTEN is a 
major negative regulator of the phosphatidylino-
sitol 3-kinase (PI3K) and serine/theronine protein 
kinase (Akt) signaling pathway by catalyzing de-
gradation of the phosphatidylinositol-3,4,5-tripho-
sphate (PIP3) to PI-4,5-diphosphate (Vazquez and 
Sellers, 2000).  
    Prostaglandins (PGs) are potent proinflammatory 
mediators derived form arachidonic acid meta-
bolism by cyclooxygenase (COXs), and play an im-
portant role in modulating a number of pathophy-
siological conditions, including inflammatory and 
allergic immune response (Tilly et al., 2001). The 
two isoforms of COX enzymes have been well 
studied. COX-1 is constitutively expressed and plays 
an important role in maintaining the normal physio-
logical function of cells. COX-2 is markedly indu-
ced by a number of stimuli including cytokines 
during the inflammatory response (Smith and 
Dewitt, 1990; Carey et al., 2003; Vancheri et al., 
2004). 
    LPS is the main component of endotoxin and is 
formed by a phosphoglycolipid that is covalently 
linked to a hydrophilic heteropolysaccharide 
(Rietschel et al., 1994). LPS arrests macrophage 
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proliferation and activates them to produce pro- 
inflammatory factors, which play important roles in 
the immune response (Adams and Hamilton, 1984; 
Morrison and Ryan, 1987). Eosinophils act as 
effectors in the inflammatory reactions of allergic 
diseases such as asthma, allergic rhinitis, and 
atopic dermatitis (AD), as well as in the chronic 
development of allergic inflammation (Fugihara et 
al., 2002; Gleich, 2000; Wong et al., 2002). Kwak 
et al. (2003) demonstrated that administration of an 
adenovirus gene transfer vector expressing a 
PTEN cDNA inhibitors reduced the inflammation 
and airway hyper-responsiveness in a murine 
model of allergic asthma. Although there has been 
increased interest in the role of PTEN in cellular 
function particularly in inflammations, the under-
lying mechanisms still need to be established.
    Several small regions of proteins, called protein 
transduction domains (PTDs), have been developed 
to allow the delivery of exogenous protein into 
living cells. Up to the present, many researchers 
have demonstrated the successful delivery of 
full-length Tat fusion proteins by protein transduc-
tion technology (Wadia and Dowdy, 2002). We 
successfully transduced Tat-SOD directly into 
insulin-producing RINm-5F and pancreatic islet 
cells and transduced Tat-SOD by increased radical 
scavenger activity in the pancreas (Eum et al., 
2002, 2004a). Recently, we showed that Tat-pyridoxal 
kinase (Tat-PK) and Tat-pyridoxal oxidase (Tat-PO) 
fusion protein were efficiently transduced into 
PC12 cells and catalytically active in the cells (Kim 
et al., 2005, 2006). Also, we transduced PEP-1- 
SOD and PEP-1-CCS into neuronal cells and 
across the blood-brain barrier which efficiently pro-
tected against ischemic insults. Also, Tat-α-synu-
clein fusion protein protects against oxidative stress 
in vitro and in vivo (Eum et al., 2004b; Choi et al., 
2005, 2006a,b). 
    In the present study, we designed the PEP-1- 
PTEN fusion protein by genetic in-frame 
transduction and showed that the PEP-1-PTEN 
fusion protein can be directly transduced into 
macrophage Raw 264.7 cells, as well as inhibit 
levels of iNOS and COX-2 mRNA and protein in 
LPS-induced cells. Therefore, we suggest that 
PEP-1-PTEN fusion protein could be useful as a 
potential therapeutic agent for inflammatory di-
seases.

Materials and Methods

Materials

Restriction endonuclease and T4 DNA ligase were 
purchased from Promega Co. (Madison, WI). Oligo-

nucleotides were synthesized from Gibco BRL 
custom primers (Grand Island, NY). Ni2+-nitrilotri- 
acetic acid sepharose superflow was purchased 
from Qiagen (Valencia, CA). Isopropyl-β-D-thioga-
lactoside (IPTG) was obtained from Duchefa Co. 
(Haarlem, Netherlands). Plasmid pET-15b and 
Escherichia coli strain BL21 (DE3) were obtained 
from Novagen (Hilden, Germany). A human PTEN 
cDNA fragment was isolated using the PCR tech-
nique. Primary antibodies against histidine, COX-2, 
actin (Santa Cruz, CA) and phosphor-IκBα, total 
IκBα (Cell signaling Technology, Beverly, MA) were 
obtained commercially. All other chemicals and 
reagents were of the highest analytical grade 
available. 

Cloning and purification of PEP-1-PTEN fusion 
proteins

The PEP-1 expression vector was constructed to 
express the PEP-1 peptides (KETWWETWWTEW-
SQPKKKRKV) as a fusion with human PTEN. 
First, two oligonucleotides (top strand) 5'-TATGAA-
A G A A A C C T G G T G G G A A A C C T G G T G G A 
CCGAATGGTCTCAGCCGAAAAAAAAACGTAAA
GTGC-3' and (bottom strand) 5'-TCGABCACT-
TTACGTTTTTTTTTCGGCTGAGACCATTCGGTC
CACCAGGTTTCCCACCAGGTTTCTTTCC-3' were 
synthesized and annealed to generate a double- 
stranded oligonucleotide encoding the PEP-1 pep-
tides. The double-stranded oligonucleotide was 
directly ligated into a NdeI-XhoI digested pET-15b 
vector. Second, on the basis of the cDNA sequence 
of human PTEN, two primers were synthesized. 
The sense primer, 5'-CTCGAGATGGCAGCCATC-
ATCAAAGAGATC-3' contains an XhoI site, and the 
antisense primer, 5'-GGATCCTCAGACTTTTGTA-
ATTTGTGTATG-3', contains a BamHI restriction site. 
The resulting PCR products were digested with XhoI 
and BamHI, eluted (Invitek, Berlin, Germany), liga-
ted into a TA-cloning vector (Promega, Madison, 
WI) and a pPEP-1 vector using T4 DNA ligase 
(Takaka, Otsu, Shiga, Japan), and cloned in E. coli 
BL21 (DE3) cells. 
    To produce the PEP-1-PTEN fusion protein, the 
plasmid was transformed into E. coli BL21 cells. 
The transformed bacterial cells were grown in 100 
ml of LB media at 37oC to a D600 value of 0.5-1.0 
and induced with 0.5 mM IPTG at 37oC for 3-4 h. 
Harvested cells were lysed by sonication at 4oC in 
a binding buffer containing 5 mM imidazole, 500 
mM NaCl, 20 mM Tris-HCl (pH 7.9). After centri-
fugation, the supernatant was immediately loaded 
onto a Ni2+-nitrilotriacetic acid Sepharose affinity 
column (Qiagen, Valencia, CA). After the column 
was washed with 10 volumes of a binding buffer 
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and 6 volumes of a washing buffer (35 mM 
imidazole, 500 mM NaCl, and 20 mM Tris-HCl, pH 
7.9), the fusion protein was eluted with an eluting 
buffer (0.5 M imidazole, 500 mM NaCl, 20 mM 
Tris-HCl, pH 7.9). The fusion proteins were com-
bined and the salts were removed using PD10 
column chromatography (Amersham, Braunschweig, 
Germany). Then, the purified PEP-1-PTEN fusion 
proteins were further purified by chromatography 
on Superose 6 FPLC column. The protein concen-
tration was estimated by the Bradford procedure 
using BSA as a standard (Bradford, 1976).

Transduction of PEP-1-PTEN into macrophage Raw 
264.7 cell

The murine macrophage Raw 264.7 cells were cul-
tured in DMEM containing 20 mM HEPES/NaOH 
(pH 7.4), 5 mM NaHCO3, 10% FBS and antibiotics 
(100 μg/ml streptomycin, 100 U/ml penicillin) at 
37oC under a humidified condition of 95% air and 
5% CO2. For the transduction of PEP- 1-PTEN, 
macrophage Raw 264.7 cells were grown to 
confluence on a 6-well plate. The culture medium 
was then replaced with fresh solution. After Raw 
264.7 cells were treated with various concentra-
tions of PEP-1-PTEN for 1 h, the cells were then 
treated with trypsin-EDTA and washed with PBS. 
Thereafter Raw 264.7 cells were harvested for the 
preparation of cell extracts to perform Western blot 
analysis. 
    The intracellular stability of transduced PEP-1- 
PTEN fusion protein was estimated by treating: 
after Raw 264.7 cells were treated with 3 μM native 
PEP-1-PTEN for 1 h, after which cells were washed 
and changed with a fresh culture medium to 
remove the PEP-1-PTEN that was not transduced. 
Cells were then further incubated for 48 h, followed 
by preparations of cell extracts for Western blot 
analysis. 

Western blot analysis

The transduced PEP-1-PTEN proteins on the po-
lyacrylamide gel were electrophoretically transferred 
to a nitrocellulose membrane. The membrane was 
blocked in 5% nonfat milk in Tris-buffered saline 
(TBS; 20 mM Tris, 0.2 M NaCl, pH 7.5) containing 
0.05% Tween-20 (TBST) for 2 h and was then 
incubated for 1 h at room temperature with an 
anti-histidine antibody (Santa Cruz Biotechnology, 
Santa Cruz, CA; dilution 1:400) in TBST. After 
washing, the membrane was incubated for 1 h with 
a proper secondary antibody conjugated to HRP 
diluted 1:10,000 in TBST. The membrane was 
incubated with a chemiluminescent substrate and 

exposed to Hyperfilm ECL. 

Determination of COX-2 protein expression

The macrophage Raw 264.7 cells were cultured in 
6-well plates. The cells were washed with fresh 
medium and stimulated with 1 μg/ml LPS for 24 h. 
Then, the expression of COX-2 protein levels were 
determined by Western blotting using anti-COX-2 
antibody. 

Determination of NO production

NO was measured as its stable oxidative meta-
bolite, nitrite, as described in (Misko et al., 1993). 
100 μl of the culture medium was mixed with an 
equal volume of Griess reagent (0.1% naph-
thylethylenediamine dihydrochloride and 1% sulfa-
nilamide in 5% phosphoric acid). The absorbance 
at 550 nm was measured, and the nitrite concen-
tration was determined using a curve calibrated on 
sodium nitrite standards. 

RT-PCR analysis

Total RNA was isolated from Raw 264.7 cells using 
a Trizol reagent kit (Invitrogen, Gaithersburg, MD) 
according to the manufacturer's instructions (Zhang 
et al., 2005). The RNA (2 μg) was reversibly trans-
cribed with 10,000 U of reverse transcriptase and 
0.5 μg/μl oligo-(dT) primer. PCR amplification of 
cDAN aliquots was performed with the following 
sense and antisense primers: COX-2 antisense, 
5'-TGGACGAGGTTTTTCCACCAG-3'; sense, 5'-CA-
AAGGCCTCCATTGACCAGA-3'; beta-actin anti-
sense, 5'-GGACAGTGAGGCCAGGATGG-3'; sense, 
5'-AGTGTGACG TTGACATCCGTAAAGA-3'; iNOS 
antisense, 5'-CTGTCAGAGCCTCGTGGCTTT-3'; 
sense, 5'-ATGGCTCGGGATGTGGCTAC-3'. PCR 
was performed in 50 μl of 10 mM Tris-HCl (pH 8.3), 
25 mM MgCl2, 10 mM dNTP, 100 U of Taq DNA 
polymerase, and 0.1 μM of each primer and was 
terminated by heating at 70oC for 15 min. PCR 
products were resolved on a 1% agarose gel and 
visualized with UV light in ethidium bromide.

Electrophoretic mobility shift assay (EMSA)

Raw 264.7 cells were treated with PEP-1-PTEN for 
1 h, then nuclear extracts of the cells were pre-
pared and analyzed for NF-κB binding activity by 
EMSA as described in (Song et al., 2007). An 
NF-κB consensus oligonucleotide was used in the 
EMSA. The complementary oligonucleotide was 
annealed and end-labeled with [γ-32P] ATP using 
T4 polynucleotide kinase. EMSA was performed in 
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Figure 1. Expression and purification of PEP-1-PTEN fusion protein. A 
schematic representation of the PEP-1-PTEN fusion protein containing 
6His, PEP-1, and PTEN coding sequence (A). Protein extracts from cells 
and purified fusion proteins were analyzed by 10% SDS-PAGE (B, C) 
and subjected to Western blot analysis with an anti-rabbit polyhistidine 
antibody (D). Lanes in B are as follows: lane 1, non-induced; lane 2, in-
duced PEP-1-PTEN; lane 3, induced PTEN. Lanes in C and D are as fol-
lows: lane 1, purified PEP-1-PTEN; lane 2, purified PTEN.

Figure 2. Transduction of PEP-1-PTEN fusion proteins. (A) 3 μM 
PEP-1-PTEN were added to the culture media of Raw 264.7 cells for 
15-60 min, (B) 0.5-3 μM of PEP-1-PTEN were added to the culture me-
dia for 1 h, (C) cells were pre-treated with 3 μM PEP-1-PTEN incubated 
for 1-48 h, and analyzed by Western blot analysis. PTEN and β-actin 
were used as a control.

a total volume of 20 μl at 4oC. Five micrograms of 
nuclear extracts were equilibrated for 15 min in a 
binding buffer (10 mM Tris-HCl, pH 8.0, 75 mM 
KCl, 2.5 mM MgCl2, 0.1 mM EDTA, 10% glycerol, 
0.25 mM DTT) and 1 μg of poly dl/Dc. 32P-labeled 
oligonucleotide probe (20,000 cpm) was then 
added and the reaction was incubated on ice for 
an additional 20 min. Bound and free DNA were 
then resolved by electrophoresis in a 6% native 
polyacrylamide gel in TBE buffer (89 mM Tris-HCl, 
89 mM boric acid, and 2 mM EDTA).

Results

Construction and purification of PEP-1-PTEN
fusion protein

To generate a cell-permeable expression vector, 
PEP-1-PTEN, a human PTEN cDNA was sub-
cloned into the pET-15b plasmid that had been 
reconstructed to contain the PEP-1 peptide. The 
PEP-1-PTEN expression vector thus formed con-
tained consecutive cDNA sequences encoding 
human PTEN, PEP-1 peptide (21 amino acids) and 
six histidine residues at the amino-terminus (Figure 
1A). We also constructed the PTEN expression 
vector to produce control PTEN protein without 

PEP-1 transduction peptides.
    Following the induction of expression, the PEP- 
1-PTEN fusion proteins were purified. The fusion 
proteins were expressed in E. coli and the clarified 
cell extracts were loaded onto a Ni2+-nitrilotriacetic 
acid Sepharose affinity column under native 
conditions. A fusion protein containing fractions 
was combined and salts were removed using a 
PD10 column. A major single band was obtained 
by superpose 6 FPLC chromatography. The crude 
cell extracts obtained from E. coli and purified 
PEP-1-PTEN fusion proteins were electrophoresed 
in 10% SDS-PAGE (Figure 1B and C). The purified 
proteins were further confirmed by Western blot 
analysis using an anti-rabbit polyhistidine antibody. 
PEP-1-PTEN was detected at the corresponding 
bands in Figure 1C and D.

Transduction of PEP-1-PTEN into macrophage Raw 
264.7 cells

To evaluate the transduction ability of PEP-1-PTEN 
fusion protein, we analyzed the transduction of 
PEP-1-PTEN proteins by adding them to Raw 
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Figure 3. Effect of transduced PEP-1-PTEN on LPS-induced COX-2 pro-
tein expression. Raw 264.7 cells were pretreated with the PEP-1-PTEN 
for 1 h before incubation with LPS (1 μg/ml) for 24 h. The cells were 
lysed and the lysates were analyzed by immunoblotting using an an-
ti-COX-2 antibody. 

Figure 4. Effect of transduced PEP-1-PTEN on LPS-induced NO 
production. Raw 264.7 cells were pretreated with the PEP-1-PTEN for 1 
h before incubation with LPS (1 μg/ml) for 24 h. Nitrite levels were meas-
ured in the culture media of LPS-stimulated cells by the Griess reaction. 
Each bar represents the mean ± SEM obtained from five experiments. 
*P ＜ 0.05 and †P ＜ 0.01 versus LPS alone. The statistical analysis 
was evaluated by Student's t-test. 

264.7 cells culture media at 3 μM for various pe-
riods (15-60 min), and then analyzed the trans-
duced protein levels by Western blotting. The 
intracellular concentration of transduced PEP-1- 
PTEN in cells was seen to gradually increase at 60 
min (Figure 2A). 
    The dose-dependency of the transduction of 
PEP-1-PTEN fusion proteins was further analyzed. 
Various concentrations (0.5-3 μM) of PEP-1-PTEN 
proteins were added to Raw 264.7 cells in culture 
for 60 min, and the levels of transduced proteins 
were measured by Western blotting. As shown in 
Figure 2B, the levels of transduced proteins in Raw 
264.7 cells increased in a concentration-dependent 
manner with the amount of fusion protein in the 
culture media. These results indicate that PEP- 
1-PTEN fusion proteins are transduced into Raw 
264.7 cells in a dose- and time-dependent manner. 
However, control PTEN was not transduced into 
the cells. 
    The intracellular stability of transduced PEP-1- 
PTEN into Raw 264.7 cells is shown in Figure 2C. 
The PEP-1-PTEN fusion protein was added to the 
culture media of Raw 264.7 cells at a concentration 
of 3 μM for various time periods and the resulting 
levels of transduced protein were analyzed by 
Western blotting. The intracellular level of trans-
duced PEP-1-PTEN fusion protein into cells was 
initially detected after 1 h, and then declined gra-
dually over the period of observation. However, 
significant levels of transduced PTEN protein 
persisted in the cells for 24 h. 

Effect of PEP-1-PTEN fusion protein on LPS-induced 
COX-2 expression and NO production 

Macrophage plays crucial roles in the initiation and 

maintenance of inflammation. Since the level of 
COX-2 and NO is important in addressing the 
extent of inflammation, the effect of PEP-1-PTEN 
fusion protein on the inhibition of COX-2 expre-
ssion and NO production was investigated. Raw 
264.7 cells were incubated for 24 h with LPS (1 
μg/ml) in the presence or absence of various 
concentrations (0.5-3 μM) of PEP-1-PTEN fusion 
protein. PEP-1-PTEN fusion protein suppressed 
LPS-induced COX-2 expression levels in Raw 
264.7 cells in a dose-dependent manner (Figure 
3). 
    The effect of PEP-1-PTEN fusion protein on NO 
production was examined in Raw 264.7 cells. Cells 
were stimulated with LPS (1 μg/ml) for 24 h in the 
presence or absence of various concentrations 
(0.5-3 μM) of PEP-1-PTEN fusion protein. After 
which cell culture media were collected and nitrite 
levels were determined. The exogenous PEP-1- 
PTEN fusion protein reduced NO production in a 
dose- dependent manner (Figure 4). However, the 
control PTEN protein did not suppress LPS- 
induced COX-2 expression levels in the same 
conditions and no significant cytotoxicity of PEP-1 
-PTEN fusion protein was determined in the cells 
(data not shown).
    We further examined the effects of PEP-1-PTEN 
on COX-2 and iNOS mRNA expression in LPS- 
induced cells by RT-PCR. As shown in Figure 5, 
post-treatment with PEP-1-PTEN fusion protein 
markedly inhibited LPS-induced mRNA expression 
of COX-2 and iNOS. These results suggest that 
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Figure 5. Inhibitory effect of PEP-1-PTEN on LPS-induced iNOS and 
COX-2 mRNA levels in Raw 264.7 cells. Raw 264.7 cells were pretreated 
with the PEP-1-PTEN for 1 h before incubation with LPS (1 μg/ml) for 12 
h. Total RNA was extracted. iNOS and COX-2 mRNA was analyzed by 
RT-PCR using specific primers.

Figure 6. Effect of transduced PEP-1-PTEN on LPS-induced activation 
of NF-κB in Raw 264.7 cells. Raw 264.7 cells were pretreated with the 
PEP-1-PTEN for 1 h before incubation with LPS (1 μg/ml) for 1 h and an-
alyzed for NF-κB binding by EMSA (A). Phosphorylation and degrada-
tion of IκB-α were analyzed by Western blot analysis (B). 

the inhibition of COX-2 and iNOS mRNA expre-
ssion by transduced PEP-1-PTEN fusion protein 
were responsible for the inhibition of COX-2 and 
NO production. 

Effect of PEP-1-PTEN on LPS-induced NF-κB 
activation 

As NF-κB plays critical role in the LPS-induced 
expression of iNOS and COX-2 in Raw 264.7 cells, 
we attempted to determine the effect of transduced 
PEP-1-PTEN on LPS-induced activation of NF-κB. 
Nuclear extracts from LPS-induced cells were 
analyzed using EMSA. As shown in Figure 6A, 
transduced PEP-1-PTEN fusion protein decreased 
in the LPS-induced DNA binding activity of NF-κB 
in a dose-dependent manner. Next, we examined 
the regulatory effects of PEP-1-PTEN fusion pro-
tein on the LPS-induced signal cascade of NF-κB 
activation such as IκBα phosphorylation and IκBα 
degradation. As shown in Figure 6B, PEP-1-PTEN 
fusion protein inhibited LPS-induced IκBα phos-
phyrylation and degradation in the cells. 

Discussion

It is well known that PTEN is a tumor suppressor 
gene that suppresses cell growth, inhibits cell 
migration, and induces apoptosis. It has been im-
plicated in regulating cell survival signaling through 
the PI3K/Akt pathway (Maehama and Dixon, 1998; 
Myers et al., 1998; Cantley and Neel, 1999; Lu et 
al., 1999; Yamada and Araki, 2001). 
    Many inflammatory mediators attract and activate 
eosinophils via signal transduction pathways invol-
ving the enzyme PI3K (Dunzendorfer et al., 1998; 
Palframan et al., 1998; Tigani et al., 2001). Asthma 
is a chronic inflammatory disorder of the airways in 
which many cell types play a role. Eosinophil 

response appears to be a critical feature in asthma 
(Frigas and Gleich, 1986; Bousquet et al., 2000). It 
was reported that the PTEN protein expression 
and activity were decreased in OVA-induced asthma. 
They demonstrated that the administration of an 
adenovirus gene transfer vector expressing a 
PTEN cDNA or PI3K inhibitor reduced inflamma-
tion and airway hyperresponsiveness in a murine 
model of allergic asthma, and the inhibition of PI3K 
may be a good therapeutic strategy (Kwak et al., 
2003). Several studies reported that the role of 
PTEN in immunity has been shown using PTEN- 
deficient mice. They have generated T cell-specific 
PTEN-deficient (tPtenflox/-) mice in which the T cells 
exhibit autoreactivity, enhanced proliferation, in-
creased levels of Th1 and Th2 cytokines, and 
inhibition of apoptosis. Similar phenomena are 
observed in the B cells derived from B cell-specific 
PTEN-deficient (bPtenflox/flox) mice (Suzuki et al., 
2001, 2003a). They suggest that PTEN negatively 
regulates most cellular functions in the immune 
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system. Although PTEN has been considered as a 
potential therapeutic protein against inflammatory 
diseases, its inability to enter cells hinders its use 
for this purpose. Therefore, in an effort to deliver 
PTEN protein to cells, we investigated the possi-
bility of a protein transduction. In previous studies, 
we have shown that PEP-1-SOD fusion protein can 
be efficiently transduced into cells and skin tissue. 
Moreover, transduced PEP-1-SOD proved enzy-
matically and biologically active, and efficiently 
protected against neuronal cell death caused by 
transient forebrain ischemia (Eum et al., 2004b). 
Also, we reported that transduced PEP-1-Grb7 
fusion protein markedly increased cell viability in 
macrophage Raw 264.7 cells treated with LPS by 
inhibition of the COX-2 expression level (An et al., 
2007). Recently, we showed that transduced PEP- 
1-PLP phosphatase (PLPP) fusion protein signifi-
cantly decreased PLP concentration in PC12 cells 
pretreated with the vitamin B6 precursors (Lee et 
al., 2008).  
    The PEP-1-PTEN fusion protein was expressed, 
purified and it was found to be nearly homoge-
neous and greater than 95% pure, as determined 
by a SDS-PAGE analysis. The expressed and 
purified PEP-1-PTEN fusion proteins were con-
firmed by Western blot using an anti-rabbit poly-
histidine antibody. Purified PEP-1-PTEN fusion 
proteins were efficiently transduced into Raw 264.7 
cells in a time- and dose-dependent manner. The 
intracellular stability of transduced PEP-1-PTEN 
persisted in the cells for 24 h. Although the mecha-
nism of transduction is unclear, protein transduction 
domain (PTD) fusion protein transduction is a 
major development in protein therapeutics. Morris 
et al. (2001) showed that PEP-1 peptide/GFP 
(green fluorescent protein, 30 kDa) or β-Gal (β- 
galactosidase, 119 kDa) mixtures transduce into a 
human fibroblast cell line (HS-68) and into Cos-7 
cells by incubating with a PEP-1 peptide carrier 
and proteins (GFP or β-gal) for 30 min at 37oC. 
These differences in the time courses of trans-
duction may depend on whether the target protein 
is fused with the PEP-1 vector or mixed with the 
PEP-1 peptide. As a result of fusion with the PEP-1 
vector, the conformation, polarity, and the mole-
cular shape of a target protein might be altered, 
which would improve the transduction of fusion 
proteins into cells. 
    It is well known that COX-2 and NO produced in 
macrophages play critical roles in inflammatory 
diseases (Romanovsky et al., 2006; Lee et al., 
2007; Kim et al., 2007). Thus, the inhibition of 
COX-2 and NO expressions may constitute an 
effective new therapeutic strategy for the treatment 
of inflammation and the prevention of inflammatory 

diseases. To determine whether transduced PEP- 
1-PTEN can play a biological role in cells, we 
tested the effects of transduced PEP-1-PTEN on 
COX-2 expression levels and NO production under 
LPS exposure. COX-2 expression is induced by a 
number of stimuli, including cytokines, during the 
inflammatory response (Carey et al., 2003). Nons-
teroidal anti-inflammatory drugs inhibit COX, leading 
to a marked decrease in prostaglandin synthesis 
and inflammation (Simon, 1996). The transduced 
PEP-1-PTEN fusion protein significantly suppre-
ssed LPS-induced COX-2 expression levels and 
NO production in Raw 264.7 cells in a dose- de-
pendent manner. 
    NF-κB is a transcription factor that controls a 
number of genes, such as, iNOS and COX-2, 
TNF-α, and IL-6, which are important for immunity 
and inflammation (Barnes et al., 1997; Yun et al., 
2008). Upon stimulation with LPS, NF-κB is trans-
located in the cytoplasm as an inactive complex 
bound to IκB-α, which is phosphorylated and 
subsequently degraded, and then dissociates to 
produce activated NF-κB. Therefore, we examined 
the effect of transduced PEP-1-PTEN on the 
LPS-induced activation of NF-κB. We found that 
the translocation of NF-κB was inhibited by trans-
duced PEP-1-PTEN fusion protein in a dose- 
dependent manner, as well as the phosphorylation 
and degradation of IκB-α in the cells. In addition, 
we performed experiments to explore the effect of 
PEP-1-PTEN fusion protein on the LPS-induced 
expression levels of iNOS and COX-2 mRNA. The 
transduced PEP-1-PTEN fusion protein markedly 
inhibited iNOS and COX-2 mRNA expression levels. 
Thus, inhibition of these mediators may constitute 
an effective therapeutic strategy for the prevention 
of inflammatory reactions and diseases. 
    Suzuki et al. (2003b) indicates that k5Ptenflox/flox 
mice, which a keratinocyte-specific null mutation of 
Pten, exhibit noticeably wrinkled skin, and more 
than 90% of the mice died within 3 weeks of birth. 
Skin is continuously exposed to many hazardous 
environmental agents. PTEN is an essential regu-
lator of normal development and oncogenesis in 
the skin. Thus, the cell permeable PTEN fusion 
proteins used in this study may have therapeutic 
potential against skin inflammation disorders when 
applied topically. PEP-1 peptide carriers present 
several advantages for protein therapy, which 
include the translocation of native proteins, high 
stability, a lack of toxicity, and a lack of sensitivity 
to serum. In particular, no toxicity to PEP-1 peptide 
was observed in several cell lines at up to 1 mM. 
Although the exact mechanisms of protein trans-
duction are unclear, transduction of the PTEN 
fused with PEP-1 vector offers more attractive 
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advantages for protein therapy.  
    In summary, we demonstrated for the first time 
that human PTEN fused with PEP-1 peptide (PEP- 
1-PTEN) can be efficiently transduced into Raw 
264.7 cells. In addition, transduced PEP-1-PTEN 
fusion protein significantly suppressed LPS-induced 
COX-2 expression, NO production. Moreover, the 
inhibitory effects of PEP-1-PTEN fusion protein 
were found to be associated with NF-κB inacti-
vation via the blockade of IκB-α phosphorylation. 
Although the detailed mechanism needs to be 
further elucidated, our success in the protein 
transduction of PEP-1-PTEN may be beneficial in 
developing topical application against inflammatory 
skin disorders. 
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