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Introduction

Over 150 members that belong to the nuclear receptor
superfamily have been discovered since glucocorticoid
receptor was first reported in 1985, which primarily regu-
late, in a ligand-dependent manner, transcriptional initi-
ation of the target genes by directly binding to specific
DNA sequences named hormone response elements
(HRE) (reviewed in Mangelsdorf et al., 1995). The C-
terminus of the ligand binding domain (LBD) of these
proteins harbors an essential ligand-dependent trans-
activation function (activation function 2, AF2), whereas
the N-terminus of many nuclear receptors often includes
AF1. Genetic studies implicated that transcription cofac-
tors with no specific DNA-binding activity are essential
components of transcriptional regulation, which ultimate-
ly led to identify a series of nuclear receptor-interacting
coregulatory proteins (reviewed in Horwitz et al., 1996).
Thus far, these proteins have been shown to have a few
characteristic features, as summarized in Figure 1. First,
they bind to target transcription factors in a ligand-
dependent manner. Second, many of them are capable
of directly interacting with the basal transcriptional
machinery. Third, some of them exhibit enzymatic func-
tion intrinsically linked to gene regulation, such as the

nucleosomal remodeling histone acetyl transferase (HAT)
or deacetylase (HDAC) activities. Thus, these proteins
appear to function by either remodeling chromatin struc-
tures and/or acting as adapter molecules between nu-
clear receptors and the components of the basal trans-
criptional apparatus. Herein, we discuss the recent pro-
gress in studies of these coactivators and corepressors
of nuclear receptors.

The p160 Family

A group of related proteins were found to enhance
ligand-induced transactivation function of several nuclear
receptors, named the p160 family. These proteins are
grouped into three subclasses based on their sequence
homology; i.e., SRC-1/NCoA-1 (Hong et al., 1997; Torchia
et al., 1997; Voegel et al., 1998), TIF2/GRIP1/NCoA-2
(Hong et al., 1997; Voegel et al., 1998), and p/CIP/
ACTR/AIB1/xSRC-3 (Anzick et al., 1997; Chen et al.,
1997; Kim et al., 1998; Torchia et al., 1997). A distinctive
structural feature of the p160 coactivators is the
presence of multiple LXXLL signature motifs (Heery et
al., 1997; Torchia et al., 1997). The AF2 core (helix 12)
was recently shown to undergo a major restructuring
upon ligand binding, forming part of a “charged clamp”
that accomodates p160 coactivators within a hydrophobic
cleft of the receptor LBD, through direct contacts with
these LXXLL motifs (Darimont et al., 1998; Nolte et al.,
1998). Loss of function studies using antibody microin-
jection technique also suggested that the p160 family
proteins are required for nuclear receptor functions in
vivo (Torchia et al., 1997). In addition, these factors can
also interact with CREB-binding protein (CBP)/p300 via
a separate domain (Kamei et al., 1996; Yao et al., 1996).
A weak intrinsic HAT activity has been reported in SRC-
1 and ACTR, suggesting that a function of these factor
may involve chromatin remodeling (Chen et al., 1997;
Spencer et al., 1997). We have recently shown that
SRC-1 also mediates transactivation by a series of other
transcription factors, including AP-1 (Lee et al., 1998),
NFκB (Na et al., 1998), SRF (Kim et al., 1998a), and
p53 (Lee et al., 1999). In particular, SRC-1 and p/CIP
were strong coactivators for p53, whereas AIB1 and
xSRC-3 were repressive (Lee et al., 1999). It is also
noted that the p160 family of proteins has a number of
uncharacterized isoforms (Chen et al., 1997; our un-
published results). These results suggest a provoking
hypothesis that each member of the p160 family or iso-
forms may regulate a specific set of target transcription



54 Exp. Mol. Med. Vol. 32(2), 53-60, 2000

factors in vivo.

CBP/p300

CBP was originally isolated on the basis of its associ-
ation with CREB in response to cAMP signaling, where-
as its close homologue, p300, was purified as a cellular
binding protein of the adenoviral protein E1A (Chrivia et
al., 1993; Eckner et al., 1994). CBP and p300 have
been implicated in functions of a large number of regu-
lated transcription factors (reviewed in Goldman et al.,
1997). For nuclear receptors, the interaction with CBP/
p300 is ligand- and AF2-dependent, although this direct
interaction does not appear to be essential with many
nuclear receptors (Westin et al., 1998; Li et al., 2000). In
fibroblasts isolated from a p300−/− mouse, however, RA-
dependent transcription was severely impaired, clearly
indicating that CBP/p300 are components of hormonal
regulation of transcription in vivo (Yao et al., 1998).
Surprisingly, CBP and p300 harbor HAT activity
(Bannister et al., 1996; Ogryzko et al., 1996). In
addition, purified p300 was shown to potentiate ligand-
induced ER function only on chromatinized template,
strongly indicating that a major function of CBP/p300
could be to modify chromatin structure via histone
acetylation (Kraus and Kadonaga, 1998). However, it is
notable that CBP/p300 can also acetylate and
functionally modulate, either in a negative or positive
manner, non-histone proteins, including TFIIEβ (Imhof et
al., 1997), p53 (Gu and Roeder, 1997), hematopoietic
transcription factor GATA-1 (Boyes et al., 1998) and
erythroid Krüppel-like factor (Zhang and Bieker, 1998).
These results suggest that CBP/p300 may also target
different aspects of gene activation, in addition to their
roles in chromatin remodeling. 

p/CAF

This protein was first discovered on the basis of sequ-
ence homology to the yeast HAT protein Gcn5p (Yang
et al., 1996). The N-terminus of p/CAF interacts with
CBP and members of the p160 family, whereas inter-
action interface between p/CAF and nuclear receptors
was different from that mediating the binding with either
CBP/p300 or p160s (Blanco et al., 1998; Korzus et al.,
1998). A core p/CAF complex was recently isolated by
exploiting an affinity purification approach, which contain-
ed human homologues of the yeast ADA proteins, TAFs
or TAF homologs, and p/CAF associated factor 65α which
contains histone-like structure (Ogryzko et al., 1998).
These results suggest a possible link between the p/
CAF complex and the RNA polymerase II core machi-
nery. This p/CAF complex bears resemblance to the
GCN5/SAGA complex in yeast. In particular, other sub-
units of the complex facilitate p/CAF to acetylate his-
tones in the context of nucleosomes, although p/CAF
alone is inert (Grant et al., 1997). 

TRAP/DRIP Complexes

The thyroid hormone receptor associated proteins (TRAPs),
composed of at least 9 polypeptides, were immuno-
purified from cells stably transfected with flag-tagged
thyroid hormone receptors (Fondell et al., 1996). In re-
constituted in vitro transcription assays utilizing naked
DNA templates, the TRAP complex potentiated trans-
activation function of liganded TR. A highly homologous
DRIP (vitamin D3 receptor (VDR) interacting protein)
complex was also isolated using VDR as the affinity
matrix (Rachez et al., 1998), which substantially poten-
tiated ligand-dependent transactivation function of VDR

Figure 1. The role of transcriptional cofactors. Three general functions of known receptor cofactors are denoted as I, II, and III (see the text for details). HRE
and +1 denote hormone response elements and transcription initiation site, respectively. Nuclear receptors, nucleosomes, cofactor and RNA polymerase II
bound to TATA sequences are schematically depicted. Notably, RNA polymerase II and most cofactors exist as steady-state complex of multiple polypeptides,
although each of them is represented as a single polypeptide for simplicity. 
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on a chromatinized template in vitro (Rachez et al.,
1999). Interestingly, constituents of DRIP complex are
almost identical to another newly discovered ARC (acti-
vator recruited cofactor) complex, which is essential for
a number of other transcription factors such as SREBP,
NFκB and VP16 (Naar et al., 1999; Rachez et al.,
1999). This TRAP/DRIP complex is recruited to the LBD
AF2 core in response to ligand-binding through a single
subunit (DRIP205/TRAP220/TRIP2) via a single LXXLL
motif (Lee et al., 1995; Naar et al., 1999; Rachez et al.,
1999). This protein anchors the other components of the
DRIP/TRAP complex to the receptor, thereby conferring
hormone-dependent recruitment of what appears to be
a preformed complex. In addition, TRAP/DRIP/ARC also
contain part of the “Mediator complex” (Kim et al., 1994),
strongly suggesting their direct connection to the RNA
polymerase II core machinery. 

ASC-1

We have recently discovered a novel nuclear receptor-
interacting coactivator, termed activating signal cointe-
grator-1 (ASC-1) (Kim et al., 1999). ASC-1 harbors an
autonomous transactivation function and binds to basal
transcription factors TBP and TFIIA and transcription
integrators SRC-1 and CBP/p300. The ASC-1 binding
sites involve the hinge domain of nuclear receptors.
Nonetheless, ASC-1 appears to require the AF2-depen-
dent factors to function (i.e., CBP/p300 and SRC-1), as
suggested by the ASC-1’s ability to coactivate nuclear
receptors, either alone or in conjunction with SRC-1 and
p300, as well as its inability to coactivate a mutant
receptor lacking the AF2 core region. The ASC-1-recep-
tor bindings, a ligand-independent event in vitro when
tested with purified components, are either ligand-depen-
dent in vivo or become ligand-dependent in the pres-
ence of NCoR in vitro (Kim et al., 1999). Thus, ASC-1
may have more active roles in replacing NCoR/SMRT
from receptors upon ligand binding. In addition, ASC-1,
a nuclear protein, was found to be cytoplasmic under
serum-deprivation but retained in nucleus when serum-
starved in the presence of ligand or coexpressed CBP
or SRC-1, suggesting additional roles for ASC-1 in
cellular signal transductions (Kim et al., 1999). Recently,
we have purified the steady-state ASC-1 complex from
HeLa nuclei (our unpublished results), which consisted
of four different polypeptides of 200, 100, 65 (ASC-1),
and 50 kD. Isolation of their cDNAs revealed that P200
and P50 have multiple RNA-helicase domains and RNA-
binding motifs, respectively. RNA helicase A was recently
isolated as a transcriptional coactivator specific for the
AF1 of estrogen receptor a (Endoh et al., 1999), where-
as p68 RNA helicase was found to be a factor that
mediates association of CBP with RNA polymerase II
(Nakajima et al., 1997). Surprisingly, a novel transcrip-

tional coactivator, p52, interacted not only with transcrip-
tional activators and general transcription factors to
enhance activated transcription but also with the essen-
tial splicing factor ASF/SF2 both in vitro and in vivo to
modulate ASF/SF2-mediated pre-mRNA splicing (Ge and
Wolfe, 1998). These results, along with the notion that
pre-mRNA splicing can take place cotranscriptionally in
vivo, suggest that, in addition to functioning as a trans-
criptional coactivator, ASC-1 may also act as an adaptor
to coordinate pre-mRNA splicing and transcriptional
activation of class II genes. 

ASC-2

Activating signal cointegrator-2 (ASC-2) is another novel
transcriptional coactivator molecule of nuclear receptors,
recently isolated from this lab (Lee et al., 1999a). Similar
or identical molecules were also reported by other
groups, named TRBP (Ko et al., 2000), PRIP (Zhu et
al., 2000), and RAP250 (Caira et al., 2000). ASC-2 har-
bors an autonomous transactivation function and binds
to basal transcription factors TBP and TFIIA and trans-
cription integrators SRC-1 and CBP/p300. Accordingly,
ASC-2, a typical ligand- and AF2-dependent interactor
of nuclear receptors, enhances the receptor transactiva-
tion, either alone or in conjunction with SRC-1 and p300.
Interestingly, the autonomous transactivation domain of
ASC-2 served as the interaction interface with CBP and
the function of ASC-2 was absolutely dependent on the
integrity of CBP recruitment in vivo (Lee et al., submitt-
ed). Consistent with an idea that ASC-2 is essential for
the nuclear receptor function in vivo, microinjection of
anti-ASC-2 antibody almost completely abrogated the
ligand-dependent transactivation of retinoic acid recep-
tor (RAR) (Lee et al., 1999a). More recently, we have
also found that ASC-2 exists as a stable complex of
multiple polypeptides in vivo (our unpublished results),
which shows distinct chromatographic profiles from either
ASC-1 (our unpublished results) or the recently describ-
ed CBP/p300- and SRC-1-complexes (McKenna et al.,
1998). In addition, the LXXLL-type receptor interaction
domain of ASC-2 acted as a potent dominant negative
mutant of the peroxisome proliferator-activated receptors
(PPARs), RAR and TR transactivation (Zhu et al., 2000;
Lee et al., submitted). These results suggested that
ASC-2 should directly bind to receptors and recruit CBP
to mediate the receptor transactivation in vivo. Surpris-
ingly, ASC-2 was identical to AIB3, a gene previously
identified during a search for genes amplified and over-
expressed in breast and other human cancers (Guan et
al., 1996). ASC-2 was recently found to mediate trans-
activation by a series of mitogenic transcription factors,
including SRF, AP-1, NFκB and E2F (Lee et al., 2000;
our unpublished results). Thus, ASC-2 may directly par-
ticipate in the tumorigenesis processes when overex-
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pressed. 
 

NCoR/SMRT

Unliganded-RAR and TR bind to their target genes and
repress transcription. NCoR (Chen et al., 1995) and
SMRT (Horlein et al., 1995) were originally isolated as
factors associated with the hinge domain of these nu-
clear receptors in the absence of ligand. More recently,
however, the molecular basis of NCoR/SMRT recruit-
ment was shown to be similar to that of coactivator
recruitment, involving cooperative binding of two helical
interaction motifs within the NCoR carboxyl terminus to
both subunits of an RAR-RXR heterodimer (Hu and
Lazar, 1999; Perissi et al., 1999). The NCoR/SMRT nuclear
receptor interaction motifs exhibit a consensus sequence
of LXXI/HIXXXI/L, representing an extended helix com-
pared to the coactivator LXXLL helix (Heery et al., 1997;
Torchia et al., 1997), which was able to interact with
specific residues in the same receptor pocket re-
quired for coactivator binding. Thus, discrimination of
the different lengths of the coactivator and corepressor
interaction helices by the nuclear receptor AF2 motif
may provide the molecular basis for the exchange of
coactivators for corepressors, with ligand-dependent for-
mation of the charge clamp that stabilizes LXXLL bind-
ing sterically inhibiting interaction of the extended core-
pressor helix. Interestingly, NCoR and SMRT harbor
transferable repression domains and associate with HDAC,
consistent with the concept that histone hypoacetylation
correlates with gene repression (Heinzel et al., 1997;
Nagy et al., 1997). Two groups have reported the isola-
tion of HDAC core complexes (mSinA and the NuRD
complex) that are critically involved in this transcriptional
repression (Tong et al., 1998; Zhang et al., 1998). A few
components of the NuRD complex are also present in
the recently described Sin3 complex that consists of
seven polypeptides (Laherty et al., 1998; Zhang et al.,
1998a). In particular, SAP30 was found to directly interact
with NCoR (Laherty et al., 1998). Antibody-blocking ex-
periments and studies with HDAC inhibitors supported
the idea that components of the NCoR/NuRD/mSin3
complex are required for repression mediated by these
unliganded nuclear receptors. Thus, although NCoR
doesn’t appear to be stably associated with the mSin3
complex, it may serve as an adapter molecule between
the core mSin3 complex and sequence-specific trans-
criptional repressors such as apo-nuclear receptors.
Interestingly, the N-CoR/Sin3/HDAC complex is also
known to mediate transcriptional repression from a wide
variety of other non-receptor-mediated pathways. These
include AP-1, NFκB, SRF (Lee et al., 2000a), MyoD
(Bailey et al., 1999), the bHLH-LZ proteins Mad and Mxi
that mediate repression of myc activities and tumor sup-
pression (Laherty et al., 1997), E2F-repressive retino-

blastoma protein (Lai et al., 1999), and the oncoproteins
PLZF-RAR (Lin et al., 1998) and LAZ3/BCL6 (Dhordain
et al., 1997), which are involved in acute promyelocytic
leukemia and non-Hodgkin lymphomas, respectively. 

Conclusion and Perspectives 

Transcription coactivators and corepressors provide im-
portant insights into the mechanisms by which ligand
mediates the transactivation function of nuclear recep-
tors. In brief, ligand binding results in the dismissal of
HDAC-containing corepressor complexes and the con-
comitant recruitment of coactivator complexes. The cur-
rent model for the coactivator recruitment by nuclear
receptor involves two step mechanisms, as depicted in
Figure 2A. First, SRC-1 appears to be directly recruited
to the liganded-receptors, which then serves as a
platform to recruit CBP. Consistent with this idea, the
receptor-interacting LXXLL motif located at the N-
terminus of CBP was deleted without significantly affecting
transactivation by RAR-RXR heterodimers, whereas the
SRC-1 LXXLL motifs were absolutely essential (Li et al.,
2000; Westin et al., 1998). These factors and associated
proteins such as p/CAF, by using their HAT activities,
remodel the nucleosomal structures so that TRAP/DRIP
complex can replace SRC-1/CBP and bind the ligand-
ed-receptors. Subsequent recruitment of RNA polymer-
ase II complex to TRAP/DRIP completes the second
step in the nuclear receptor transactivation. However, this
simple view is blurred by a large number of other
nuclear receptor binding cofactor proteins or complexes,
in particular with the increasing number of AF2-depen-
dent coactivators (Horwitz et al., 1996). Thus, one of the
most immediate challenges to resolve is to unravel the
inter-relationships between these distinct transcription
cofactor proteins or complexes. These potential nuclear
receptor cofactors may specifically function with different
target genes as evidenced for CBP and p300 (Kawasaki
et al., 1998). Alternatively, these complexes may sequ-
entially engage in different steps during the ligand-
induced transactivation by nuclear receptors. For in-
stance, we have recently suggested that ASC-2 may
play a similar, essential role as SRC-1; i.e. direct bind-
ings to nuclear receptors and recruitment of CBP to the
receptor-ASC-2 complex (Lee et al., submitted) (Figure
2B). Considering the fact that ASC-2 is expressed in
relatively low amount in most cells but can be up-
regulated in certain cells by various cytokines and
growth factors (our unpublished results), ASC-2 may
serve as an inducible factor that represents an
alternative functional homologue of SRC-1. It is also
noted that, from the results with ASC-1 (Kim et al.,
1999), RNA helicase A (Nakajima et al., 1997), p68
(Endoh et al., 1999), and p52 (Ge and Wolfe, 1998),
transcription initiation was suggested to be directly
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linked to post-transcriptional RNA processing events
(such as pre-RNA splicings, as depicted in Figure 2B).
Finally, MAP kinase-induced phosphorylation of SRC-1
was recently demonstrated to enhance its ability to
function as a transcriptional coactivator (Rowan et al.,
2000), suggesting that signal transduction pathways may
also modulate the assembly and/or functions of these
cofactor complexes. Further characterization of these
receptor coactivators and corepressors will undoubtedly
unravel the fundamental mechanisms underlying the
receptor function as well as the general transcription
machinery. 
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