
ARTICLE

An efficient and flexible test for rare variant effects

Shonosuke Sugasawa1, Hisashi Noma*,2,3, Takahiro Otani1,3, Jo Nishino3,4 and Shigeyuki Matsui3,4

Since it has been claimed that rare variants with extremely small allele frequency play a crucial role in complex traits, there is

great demand for the development of a powerful test for detecting these variants. However, due to the extremely low frequencies

of rare variants, common statistical testing methods do not work well, which has motivated recent extensive research on

developing an efficient testing procedure for rare variant effects. Many studies have suggested effective testing procedures with

reasonably high power under some presumed assumptions of parametric statistical models. However, if the parametric

assumptions are violated, these tests are possibly under-powered. In this paper, we develop an optimal, powerful statistical test

called the aggregated conditional score test (ACST) for simultaneously testing M rare variant effects without restrictive

parametric assumptions. The proposed test uses a test statistic aggregating the conditional score statistics of effect sizes of

M rare variants. In simulation studies, ACST generally performed well compared with the two most commonly used tests, the

optimal sequence kernel association test (SKAT-O) and Kullback–Leibler distance test. Finally, we demonstrate the performance

and practical utility of ACST using the Dallas Heart Study data.
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INTRODUCTION

While genome-wide association studies have identified many common
variants associated with complex traits, it has also been recognized that
rare variants with minor allele frequency (MAF) smaller than 1–5%
play an important role in complex traits.1 In spite of the importance of
these variants, testing for their association with traits is a challenging
problem. The main reason is the extremely low frequency of rare
variants, which leads to low power of single-variant tests. Therefore,
we collected several relevant rare variants and tested for their joint
association with various traits, which is known as the region-based
rare variant test and is now becoming the standard method for
detecting rare variants.2

Many researchers have already proposed effective region-based
testing methods. The earliest methods are burden-based tests, which
summarize the information of each rare variant.3–6 It is well-known
that burden-based tests suffer from low power when there are large
numbers of non-causal variants or both protective and deleterious
variants.7 To overcome the limitations of burden-based tests, the
sequence kernel association test (SKAT)8 using the variance compo-
nent test has been proposed, along with a composite version of SKAT
called the optimal sequence kernel association test (SKAT-O).9 It has
been shown that SKAT-O has higher power than both burden-based
tests and SKAT in a wide range of scenarios.9 However, SKAT-O
corresponds to an efficient testing method for variance components
under a logistic regression model that assumes the random-effects
regression parameters are normally distributed with mean 0, so that
the optimality of SKAT-O is possibly violated when unknown and
irrelevant parametric assumptions are not correct.
As an alternate testing method, a new rare variant test called the

Kullback–Leibler distance test (KLT)10 using the Kullback–Leibler
distance has been recently proposed. The procedure permits the
straightforward comparison of two distributions over M rare variants

divided by case and control, and uses the Kullback–Leibler distance of
the two distributions as the test statistics. The authors reported that
the suggested testing method performed better than SKAT-O in their
simulation studies. However, there are no theoretical arguments
concerning the theoretical optimality of KLT, defined for instance as
having the greatest statistical power. Since the statistical power to
detect disease-related rare variants is usually insufficient regardless of
the specific test used, the possible non-optimality might yield serious
losses of efficiency in practice. In fact, in some scenarios in our
simulation studies, presented in the Results section, KLT was under-
powered compared to SKAT-O.
In this paper, we propose a new and efficient testing procedure

called the aggregated conditional score test (ACST). The basic idea

of the test is that we jointly test the association between a single

variant and disease status over M variants. Specifically, we calculate

the conditional score statistics for effect sizes of M variants,

and we aggregate these statistics for simultaneously testing the

association between M variants and disease status. We propose

two aggregation methods, both of which hold optimality under

certain correlation structures among M variants. Hence, the optimality

of ACST is expected to result in the efficient identification of disease-

related variant sets. Moreover, ACST does not require any

presumed structures of effect sizes, unlike SKAT-O, so that the

theoretical optimality of ACST is assured under a wide range of

structures of regression parameters. In fact, in our simulation study in

the Results section, ACST generally performed well compared

with SKAT-O and KLT. Moreover, through application to the Dallas

Heart Study data set in the Results section, ACST was revealed to

work well as a useful tool for the analysis of genome-wide

sequencing data.
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METHODS

Notations and model
We consider a data set with N subjects, among which n1 are cases and n2 are
controls. For the ith subject, i= 1,…, N, we observe a phenotype yi and a multi-
site genotype Gi= (gi1,…,giM)

T, where yi takes values 0 or 1, representing
control and case, respectively, and gik, k= 1,…,M, are coded as 0, 1 or 2,
representing the number of minor alleles that subject i holds in the kth variant.
It is noted that the MAFs of most M variants are extremely low and our goal is
to test the association between Gi, a set of (rare) variants, and a disease status yi.
To this end, region-based tests have been widely studied2 since a test for an
individual variant with extremely low MAF cannot be expected to achieve
sufficient power to detect its effect.
We consider the following standard logistic regression model that has been

widely adopted in genetic association studies:

log
pik

1� pik

� �
¼ rk þ bkgik; i ¼ 1;y;N ; k ¼ 1;y;M

where pik is the probability of yi= 1 caused by gik, and rk denotes a variant-
specific intercept. Our interest is the effect size βk rather than rk, namely rk is a
nuisance parameter. To perform the region-based test for detecting rare variant
effects simultaneously, we consider the testing problem:
H0: β1= β2=⋯=βM= 0 vs H1: βk≠ 0 for at least one of k (k= 1,2,…,M).
As mentioned before, the existing methods have several restrictions and

limitations such as the strong parametric assumption of (β1,β2,…,βM)
T as in

SKAT-O9 and the lack of theoretical optimality as in KLT.10 Therefore, to solve
these problems, we construct an optimal test that achieves the most power-
fulness without any parametric assumptions of β1,β2,…,βM. To this end, we
first derive the conditional score statistic of the null hypothesis βk= 0 under the
logistic regression model since it is known that the conditional score test has the
greatest power and that conditional inference can eliminate the effect of a
variant-specific intercept rk. Subsequently, we suggest the test statistic for
simultaneously testing β1= β2=⋯= βM= 0 by aggregating all the conditional
score statistics.

Aggregated conditional score test (ACST)
The conditional likelihood for βk is expressed as

CLk bkð Þ ¼
Q

i:yi¼1exp rk þ bkgik
� �QN

i¼1 1þ exp rk þ bkgik
� �� ��1

P
D n1ð Þ

Q
iAD n1ð Þexp rk þ bkgik

� �QN
i¼1 1þ exp rk þ bkgik

� �� ��1
n o

¼
exp bk

P
i:yi¼1gik

� 	
P

D nið Þexp bk
P

iAD n1ð Þgik
� 	

where D(n1) is an arbitrary subset of {1,…,N} with n1 elements andP
D n1ð Þdenotes the summation over all the possible subsets D(n1). Note that

the conditional likelihood CLk(βk) is free from the variant-specific intercept rk.
For notational simplicity, we introduce 2× 3 contingency tables given in
Table 1, in which we summarize the quantities used in the test statistics. Based
on CLk(βk), the conditional score statistic sk; k ¼ 1;y;M, for testing βk= 0 is
given by

sk ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p f2a1k þ b1k � N�1n1 2m1k þm2kð Þgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2ð4m1km3k þm1km2k þm2km3kÞ

p
where the detailed derivation is deferred to the Appendix. It is well-known that
the conditional score test for βk based on sk is most powerful.11

To perform a test for β1,…,βM, simultaneously, we need to aggregate these
scores. The widely used method for aggregating variant-specific statistics is
summing up squared statistics.12,13 Hence, we first propose the test statistic
U1= STS, where S ¼ s1;y; sMð ÞT, which achieves asymptotically greater power
when all the variants are independent. However, it is often observed that there
is a linkage disequilibrium (LD) structure among variants, so that variants are
correlated; thereby the score statistics sks are mutually correlated. In this case,
U1 is not necessarily efficient.
To adapt the LD structure, we propose to allow the score vector S to

have an exchangeable correlation matrix, Rρ= (1−ρ)I+ρ11T, as used in
SKAT-O. Using the correlation structure, we consider the statistic as the

function of r : Qr ¼ STR�1
r S. When ρ= 0, Qρ reduces to U1. When ρ= 1, we

define R�1
r as the generalized inverse matrix satisfying RrR

�1
r Rr ¼ Rr, that is,

R�1
r ¼ M�211T. Hence, when ρ= 1, Qr ¼ M�2

PM
k¼1 sk

� �2
and M2Qρ corre-

sponds to the well-known Mantel–Haenszel test statistic in 2× 3 contingency
tables. For a fixed ρ, Qρ follows a mixture of χ2 distributions for large N since
the score vector S asymptotically follows a multivariate normal distribution
with mean vector 0 and some covariance matrix C with all the diagonal

elements 1. Specifically, let λ1,…,λM be the eigenvalues of R�1
r Ĉ; then the null

distribution of Qρ can be closely approximated by
PM

k¼1 lkw
2
1k, where

w211;y; w21M are mutually independent w21 random variables. For estimation

of the correlation matrix C ¼ ckj
� �

1rk;jrM
, we note that 2a1k þ b1k ¼P

i:yi¼1gik and

ckj ¼ Cor
X
i:yi¼1

gik;
X
i:yi¼1

gij

0
@

1
A ¼ Cor g1k; g1j

� 	

which can be estimated by the sample correlation between (g1k,…,gNk)
T and

(g1j,…,gNj)
T. Then we can compute the P-value of Qρ for each fixed ρ.

However, there is little information about unknown parameter ρ in applica-
tions, thereby we propose selecting the optimal value of ρ to maximize the
power similarly to SKAT-O.9 Hence the proposed test statistic is

U2 ¼ inf0rrr1pr

where pρ is the P-value of Qρ. In practice, the test statistic U2 can be computed
by the simple grid search, namely U2 ¼ minfpr1 ;y; prcg for

�1or1o?orco1. Since the correlations among variants are not large, it
could be enough to search the optimal ρ around 0. Hence, we set the default
grids as 21 points from − 0.1 to 0.1 with equal intervals.
We call the test using the conditional score statistic sk the ACST, and, in

particular, we refer to the two tests using U1 and U2 as the independent ACST
(ACST-I) and the correlation-adjusted ACST (ACST-C), respectively. Note that
ACST is asymptotically most powerful without any restriction among β1,…,βM,
so that ACST is flexible and theoretically efficient compared, for example, with
SKAT-O and KLT. It should be noted that the score statistic sk cannot be
computed when both m1k and m2k are 0, namely there are no minor alleles in
the kth variant. Hence, we need to omit variants with no minor alleles in
advance in order to perform ACST.
In case gik ¼ 0; 1; k ¼ 1;y;M, that is, there are no subjects carrying two

minor alleles, corresponding to aik= a2k=m1k= 0 in Table 1, the score statistic
sk reduces to the form

sk ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p ðb1k � N�1n1m2kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2m2km3k

p

and the sum of these scores corresponds to the Mantel–Haenszel test statistic.
Hence, the score statistic sk can be regarded as a generalization of the score
statistic used in the Mantel–Haenszel test in 2× 3 contingency tables. It should
be noted that ACST achieves the greatest power if the stratum-specific log odds
ratios β1,…,βM are heterogeneous (for arbitrary values of β1,…,βM under H1),
while the Mantel–Haenszel test was derived as an asymptotically efficient test
under the common effect assumption across the strata.14,15 Thus, ACST, a
generalization of the Mantel–Haenszel test, maintains optimality under a broad
range of conditions regardless of the homogeneity of the effect measures, and

Table 1 2×3 contingency tables between phenotype variable

yi;i ¼ 1;y;N , representing the case (yi=1) and control (yi=0), and

genotype variable gik; k ¼ 1;y;M, representing the number of minor

alleles

gik=2 gik=1 gik=0 Sum

yi=1 a1k b1k c1k n1
yi=0 a2k b2k c2k n2
Sum m1k m2k m3k N
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this fact is quite meaningful in the context of region-based simultaneous testing
to efficiently detect disease-related rare variants.

Calculation of the P-value
Concerning the calculation of P-values of ACST, we propose a permutation
method since it enables us to compute adequate P-values regardless of sample
size N and number of variants M. Without loss of generality, we demonstrate a
permutation test only of ACST-I. We randomly shuffle the disease status yi of
all subjects in the sample, and we calculate the test statistic UðbÞ

1 from the
permuted data. We repeat this process B times to calculate the P-value as

p ¼ B�1
XB
b¼1

I UðbÞ
1 ZU1

� 	

where I(⋅) denotes the indicator function. It should be noted that ACST-C takes
much more running time than ACST-I since ACST-C needs to compute the
minimum of P-values in each permutation.

RESULTS

Simulation study: evaluation of type-I error rates
To evaluate the performance of ACST compared with two existing
methods, SKAT-O and KLT, under realistic situations, we carried out
simulation studies. To begin with, we evaluated the type-I error rate of
ACST and those of KLT and SKAT-O. We considered M= 20 variants
and they were divided into four groups with five variants in each
group. The MAFs of each rare variant in the same group were set to be
equal. With (m1,…,m4) as the combination of MAFs in the four
groups, we considered the following three patterns:

Að Þ 0:002; 0:003; 0:004; 0:005ð Þ Bð Þ 0:003; 0:005; 0:008; 0:010ð Þ
Cð Þð0:005; 0:010; 0:015; 0:020Þ

For generating genotype data, we first generated two M-dimensional
binary vectors a1, a2 using rmvbin function in R with a correlation

matrix R ¼ r i�jj j� �
i;j¼1;y;M

with ρ= 0.05. Then we set the genotype

data G= (g1,…,gM)
T as G= a1+a2. For evaluating type-I error rates, we

generated the disease status y of each subject from the null logistic
regression model:

logit P y ¼ 1ð Þ ¼ b0
In the above model we used b0 ¼ �log 4, corresponding to a 20%
background disease prevalence. From this model, we generated 5n
samples and randomly selected n/2 cases and controls for n= 2000.
Then, we applied four tests ACST-C, ACST-I, KLT and SKAT-O to
the generated data set with significance level α= 0.05,0.01 and 0.001.
We used 2000 permutations for calculating P-values of ACST-C,
ACST-I and KLT. Based on 1000 simulation runs when α= 0.05 and
0.01, and 5000 runs when α= 0.001, we computed the simulated type-
I error rates of the four tests, which are presented in Table 2. It is
observed that the type-I error rates of the four methods are around the
nominal significance level, so all the four procedures can adequately
control the type-I error rates.

Simulation study: evaluation of power
We next evaluated the statistical power of the four tests, ACST-C,
ACST-I, KLT and SKAT-O, for detecting disease-related rare variants
via simulation studies. We generated M= 20 variants in the same way
as in the previous simulation, the correlation parameter ρ was set to 0,
0.02 and 0.05, and (B) pattern of MAFs was considered in this study.
To evaluate the power, we used the following non-null logistic model:

logit P y ¼ 1ð Þ ¼ b0 þ
XM
k¼1

bkgk

where b0 ¼ �log 4. For the setups of the non-zero effect sizes
bk; k ¼ 1;y;M, we considered the following eight scenarios:

1: bk ¼ 0:3; k ¼ 1;y;M

2: ðb1;y; bMÞTB0:2Nð 0;y; 0ð ÞT; 0:3I þ 0:711TÞ

3:
bk ¼ 0:05´ log MAFkð Þj j ´ uk; P uk ¼ 1ð Þ ¼ P uk ¼ �1ð Þ

¼ 0:5; k ¼ 1;y;M

4: P bk ¼ 0:3ð Þ ¼ P bk ¼ �0:3ð Þ ¼ 0:3; k ¼ 1;y;M

5: b2k ¼ �0:5; b2k�1 ¼ 0:5; k ¼ 1; 2; 3; 4

6:
b1 ¼ �0:6; b2 ¼ �0:4; b3 ¼ �0:2; b4 ¼ 0:2; b1

¼ 0:4; b6 ¼ 0:6

7: bk ¼ 0:5; k ¼ 1; 2; 3; 4

8: b1 ¼ b15 ¼ 1; b8 ¼ �1

It is noted that the number of causal variants gets smaller as the
scenario number gets larger. In Supplementary Table S1, we show the
number of causal variants in each MAF group in the eight scenarios.
In scenarios 1 and 2, all the variants are causal and deleterious, in
which the parametric assumption in SKAT-O seems reasonable. In
scenario 3, rarer variants have larger effect sizes while there exist both
deleterious and protective variants. In scenarios 4, 5 and 6, some
variants are causal, which are deleterious or protective. In scenarios 7
and 8, a small portion of variants are causal while the effect sizes are
relatively large in scenario 8. In each scenario, we generated 5n
samples and randomly selected n/2 cases and controls with n= 2000,
and applied the four testing methods with a significance level α= 0.05.
In applying ACST-C, ACST-I and KLT, we used 2000 permutations to
obtain P-values. Based on 1000 simulation runs, we computed the
simulated powers in eight scenarios, which are shown in Figure 1. It is
observed that SKAT-O performs quite well when all the variants are
causal and deleterious like in scenarios 1 and 2. However, when
protective variants are included or the number of causal variants is
small, the result reveals that SKAT-O tends to be under-powered.
Concerning KLT, it seems to perform well when the number of causal
variants is small as in scenarios from 3 to 8. However, we can observe

Table 2 Simulation results: type-I error comparison among ACST-C,

ACST-I, KLT and SKAT-O at significance levels α=0.01, 0.05 and

0.001

Pattern α ACST-C ACST-I KLT SKAT-O

(A) 0.05 0.051 0.049 0.050 0.039

0.01 0.011 0.009 0.012 0.012

0.001 0.0010 0.0008 0.0010 0.0002

(B) 0.05 0.048 0.046 0.049 0.036

0.01 0.009 0.010 0.009 0.011

0.001 0.0008 0.0006 0.0007 0.0006

(C) 0.05 0.045 0.045 0.042 0.043

0.01 0.015 0.013 0.013 0.012

0.001 0.0009 0.0010 0.0009 0.0006

Abbreviations: ACST-C, aggregated conditional score test using the exchangeable correlation
structure among variants; ACST-I, aggregated conditional score test assuming independence
among variants; KLT, Kullback–Leibler test; SKAT-O, optimal sequence kernel association test.
The type-I errors were calculated based on 1000 simulated runs when α=0.05 and 0.01, and
5000 runs when α=0.001. Two thousand permutations were used for calculating P-values of
ACST-C, ACST-I and KLT.
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that KLT is extremely under-powered in scenarios 1 and 2. On the
other hand, both ACST-I and ACST-C provide reasonable powers in
all scenarios. It is worth noting that ACST-C provides the almost same
powers as SKAT-O, while it is under-powered compared with ACST-I
in scenarios 5 and 6. In Supplementary Figure S1, we also provide a
power comparison as a function of a quantity determined by the effect
sizes and MAFs.
We next evaluated the statistical powers of the four tests with

smaller significance level α= 0.001 in three scenarios 2, 5 and 8 with
ρ= 0.05. We used 2000 permutations for ACST-C, ACST-I and KLT
for computing P-values. Based on 2000 simulation runs, the empirical
powers were calculated, which are presented in Table 3. It is observed

that power relations among the four tests are not different from the
results with α= 0.05.

Applications to the Dallas Heart Study
We applied ACST together with KLT and SKAT-O to the sequence
data from the Dallas Heart Study16 to test the association between
serum triglyceride (TG) levels and rare variants in three genes
(ANGPTL3, ANGPTL4 and ANGPTL5). The data set was also used
in both papers presenting SKAT-O9 and KLT,10 thereby we examined
how ACST performs compared with SKAT-O and KLT. The data set
has sequence information on 95 observed variants in the three genes
from each of 3474 individuals, including 1830 African Americans,
1043 European Americans and 601 Hispanics. The higher levels of TG
in blood are known to be related to some metabolic disease such as
diabetes, coronary heart disease and fatty liver disease. It has been
revealed that ANGPTL3, ANGPTL4 and ANGPTL5 are associated with
lower levels of TG.6,17–20 Most of the variants are rare: with the
exception of one variant, the estimated allele frequencies of the
variants are under 0.05. We considered a dichotomized trait by
classifying individuals with the top q% of TG values as cases and the
bottom q% as controls, and we considered three conditions, with
q= 15, 20 or 25. For each choice of q, we deleted variants that had no
sequence variation among the case and control samples. In Table 4, we
show the sample sizes of cases and controls for each q and the number
of variants used for testing. In applying ACST-C, ACST-I and KLT,
the P-values were computed based on 106 permutations.

Figure 1 Simulation results: Power comparisons among ACST-C (aggregated conditional score test using the exchangeable correlation structure among
variants), ACST-I (independent aggregated conditional score test assuming independence among variants), KLT (Kullback–Leibler test) and SKAT-O (optimal
sequence kernel association test) at significance level α=0.05, number of subjects n=2000 and correlation parameter ρ=0, 0.02 and 0.05. The empirical
powers were calculated based on 1000 simulated data sets. Two thousand permutations were used for computing P-values for ACST-C, ACST-I and KLT.

Table 3 Simulation results: power comparisons among ACST-C,

ACST-I, KLT and SKAT-O at significance level α=0.001, number of

subjects n=2000 and ρ=0.05

Scenario ACST-C ACST-I KLT SKAT-O

2 0.0860 0.0105 0.0020 0.0690

5 0.0030 0.0185 0.0170 0.0020

8 0.1040 0.1545 0.1595 0.1210

Abbreviations: ACST-C, aggregated conditional score test using the exchangeable correlation
structure among variants; ACST-I, aggregated conditional score test assuming independence
among variants; KLT, Kullback–Leibler test; SKAT-O, optimal sequence kernel association test.
The empirical powers were calculated based on 2000 simulated data sets. Two thousand
permutations were used in ACST-C, ACST-I and KLT for computing P-values.
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The P-values of ACST-C, ACST-I, KLT, and SKAT-O are given in
Table 4. The results for ANGPTL3 and ANGPTL4 did not differ
among the four testing methods. However, it reveals that both ACST-
C and ACST-I provide smaller P-values than SKAT-O in ANGPTL5,
which is has been shown to be associated with serum triglycerides. On
the other hand, KLT produces smaller P-values than both ACST-C
and ACST-I while the differences are relatively small. Moreover, the
P-value of ACST-I was smaller than that of ACST-C in this case.
Concerning the running time of these methods, it takes 336 s in

ACST-I, 6 h 25 min 54 s in ACST-C, 174 s in KLT and 0.1 s in SKAT-
O for computing P-values of ANGPTL3 with q= 15. It is observed that
ACST-I takes almost as long as KLT compared with SKAT-O since
both ACST-I and KLT requires permutations for computing P-values.
On the other hand, ACST-C takes a much more running time than
ACST-I since ACST-C requires grid search for optimal correlation
parameter in each permutation. The program was run on a PC with a
2.7 GHz Intel Core i5-4570R Quad Core Processor with approximately
8GB RAM.

DISCUSSION

We developed a new optimal test, ACST, to detect the association
between a phenotype and a set of rare variants. We derived the
conditional score statistics for testing the association between a
phenotype and each single variant, and proposed two methods for
aggregating these score statistics. The first method involves simply
summing the squared score statistics, and the resulting test using the
statistic is called ACST-I, which is most powerful if all the variants are
independent. The second method is called ACST-C, and involves
aggregation with a quadratic form, assuming the correlation matrix of
the conditional scores is an exchangeable correlation matrix with
tuning parameter ρ. We developed a grid search technique for
selecting ρ to maximize the power. The P-values of both ACST
approaches can be calculated using a permutation test.
In the simulation study of power comparison, we considered eight

scenarios with various effect sizes and evaluated the power of ACST as
well as KLT and SKAT-O. We found that SKAT-O tends to be under-
powered when there was a large proportion of null variants or
protective variants exist, while KLT was extremely under-powered
when all variants are causal and deleterious. In comparison, ACST
performs well in both scenarios since ACST is asymptotically most
powerful under arbitrary effect sizes. On the other hand, the power of
ACST is smaller than that of SKAT-O where the parametric assump-
tion of SKAT-O seems correct while the differences are not large and

ACST has still larger power than KLT. Concerning the simulation
settings, the background prevalence should be smaller than that was
used in our studies (20%) in terms of biological plausibility. However,
the background prevalence is associated only with the intercept term
and does not affect the superiority and inferiority relationship among
the four tests. In the applications to DHS data set, ACST performed
better than SKAT-O, but ACST produced larger P-values than KLT in
most cases. However, since the differences were quite small and KLT
might be extremely under-powered in some cases, the use of ACST is
justified.
Concerning usage of ACST-I and ACST-C, we first note that ACST-

C is optimal even if rare variants to be tested are correlated. Hence,
ACST-C should be recommended from a theoretical point of view.
However, since it cannot be assumed that the correlations among rare
variants are large in this context, ACST-I is expected to perform as
well as ACST-C, which can be observed from the results in
simulation study.
In this paper, we considered the case without any covariates except

for genotype data. However, clinical covariates are often associated
with disease status, which could improve the statistical power.
Since the conditional score statistics under adjustment for covariates
can be computed by using the conditional logistic regression,11 the
extension of ACST seems straightforward. However, the detailed
investigation is out of the scope of the paper and is left to a
future study.
We used the exchangeable correlation structure in ACST-C for

modeling correlations among the conditional score statistics. However,
another type of correlation structure can also be implemented in quite
a similar way. One possible alternative is a correlation structure
defined as a function of a certain distance of variants to be tested.
Finally, we note that ACST was developed under the condition where
the phenotype variable yi was binary, but the generalization of ACST
to the case of multinomial variables yi is somewhat straightforward.
On the other hand, we are often faced with continuous phenotypes as
well, and the extension of ACST to such cases will be a valuable
future study.
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APPENDIX

Appendix Derivation of the Conditional Score Statistic
We here provide the derivation of the conditional score statistic sk. To
begin with, the partial derivative of the conditional log-likelihood is
given by

∂log CL bkð Þ
∂bk

jbk¼0 ¼
X
i:yi¼1

gik � D n1ð Þj j�1
X
D n1ð Þ

X
iAD n1ð Þ

gik

¼ 2a1k þ b1k � D n1ð Þj j�1
X
D n1ð Þ

X
iAD n1ð Þ

gik

¼ 2a1k þ b1k � Eð2a1k þ b1kÞ
where |D(n1)| denotes the number of all possible subsets D(n1). Under
the null hypothesis that βk= 0, the vector (a1k,b1k,c1k) follows
the trivariate hypergeometric distribution21 since the summation of
(a1k,b1k,c1k) is n1 and these vector components are not greater than
m1k;m2k;m3k, respectively. It is known that the expectations and
variances are given by

E a1kð Þ ¼ n1m1k

N ; E b1kð Þ ¼ n1m2k

N ;Cov a1k; b1kð Þ ¼ �m1km2kn1n2
N2 N�1ð Þ ;

Var a1kð Þ ¼ m1kn1n2ðm2kþm3kÞ
N2ðN�1Þ ;Var b1kð Þ ¼ m2kn1n2ðm1kþm3kÞ

N2ðN�1Þ

Then, using the above results, the expectation E[2a1k+b1k] is
calculated as E[2a1k+b1k]=N− 1n1(2m1k+m2k). The information of
CLk(βk) evaluated at βk= 0 is given by

�∂2log CLk bkð Þ
∂b2k

jbk¼0 ¼ D n1ð Þj j�1
X
D n1ð Þ

X
iAD n1ð Þ

gik

0
@

1
A

2

� D n1ð Þj j�2
X
D n1ð Þ

X
iAD n1ð Þ

gik

0
@

1
A

2

¼ E 2a1k þ b1kð Þ2� �� E 2a1k þ b1k½ �ð Þ2
¼ Var 2a1k þ b1kð Þ

Hence, we get

Var 2a1k þ b1kð Þ ¼ 4Var a1kð Þ þ 4Var b1kð Þ þ 4Cov a1k; b1kð Þ
¼ n1n2

N2 N � 1ð Þ 4m1km3k þm1km2k þm2km3kð Þ

whereby we obtain the conditional score statistic sk.
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