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Implicating candidate genes at GWAS signals by
leveraging topologically associating domains

Gregory P Way1,2, Daniel W Youngstrom3, Kurt D Hankenson3, Casey S Greene*,2,6 and Struan FA Grant*,4,5,6

Genome-wide association studies (GWAS) have contributed significantly to the understanding of complex disease genetics.

However, GWAS only report association signals and do not necessarily identify culprit genes. As most signals occur in non-coding

regions of the genome, it is often challenging to assign genomic variants to the underlying causal mechanism(s). Topologically

associating domains (TADs) are primarily cell-type-independent genomic regions that define interactome boundaries and can aid

in the designation of limits within which an association most likely impacts gene function. We describe and validate a

computational method that uses the genic content of TADs to prioritize candidate genes. Our method, called 'TAD_Pathways',

performs a Gene Ontology (GO) analysis over genes that reside within TAD boundaries corresponding to GWAS signals for a given

trait or disease. Applying our pipeline to the bone mineral density (BMD) GWAS catalog, we identify ‘Skeletal System

Development’ (Benjamini–Hochberg adjusted P=1.02x10−5) as the top-ranked pathway. In many cases, our method implicated

a gene other than the nearest gene. Our molecular experiments describe a novel example: ACP2, implicated near the canonical

‘ARHGAP1’ locus. We found ACP2 to be an important regulator of osteoblast metabolism, whereas ARHGAP1 was not supported.

Our results via BMD, for example, demonstrate how basic principles of three-dimensional genome organization can define

biologically informed association windows.
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INTRODUCTION

Genome-wide association studies (GWAS) have discovered several
important disease associations.1 Assigning signals to causal genes is
difficult because these signals fall principally within non-coding
regions and do not necessarily implicate the nearest gene.2 For
example, a signal found in an FTO intron has been shown to
physically interact with and lead to differential expression of other
genes, but not FTO itself.3 Moreover, evidence suggests that a type 2
diabetes (T2D) GWAS signal at TCF7L2 also influences ACSL5.4

Chromatin interaction studies have discovered genome organization
principles including topologically associating domains (TADs).5

TADs are genomic regions defined by increased contact frequency,
consistency across cell types and enrichment of insulator element
flanks.6 Therefore, TADs can be used as boundaries of where non-
coding causal variants will most likely impact tissue-independent
function.
The paper is structured in the following manner: First, we present

our novel computational method, called TAD_Pathways, which uses
TADs to determine candidate genes. Next, we apply our method to
bone mineral density (BMD) GWAS findings and test two candidates’
importance in osteoblast function. Our pipeline identified ACP2 as a
novel regulator of osteoblast metabolism. A full description of the
method and validation is available in the Supplementary Video.

METHODS

Computational procedures to identify candidate genes
TAD_Pathways is a computational method using publicly available TAD

boundaries to prioritize candidate genes from GWAS SNPs (Figure 1a).

Alternative approaches assign SNPs to genes based on nearest gene or by an

arbitrary or a linkage disequilibrium (LD)-based window of several kilobases

(Figure 1b). For full computational methods, refer to the Supplementary

Information.
Here, we use human embryonic stem cell TAD boundaries as reported by

Dixon et al.6 and converted to hg19 by Ho et al.7 to build TAD-based gene sets

that consists of all genes falling inside TADs implicated with BMD associations.

We perform a pathway overrepresentation test8 for the input TAD genes against

GO terms.9 This determines if the gene set is associated with any term at a

higher probability than by chance. We included both experimentally confirmed

and computationally inferred genes, which permit the inclusion of putative

genes that do not necessarily have literature support. For validation, we

consider only the most significantly enriched term, but a user can also select

multiple. Our method also supports custom input SNPs. TAD_Pathways

Software is available at https://github.com/greenelab/tad_pathways_pipeline.

Experimental knockdown of candidate genes
We investigated two candidate genes predicted by TAD_Pathways: ACP2 and

DEAF1. We selected these genes because they are not the nearest gene and are

not in the same LD block as the GWAS SNP (Supplementary Figures S1

and S2). Additionally, the genes were not previously known to impact human
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bone and thus represented potential novel research/treatment avenues. The
corresponding BMD GWAS loci rs7932354 (11p11.2) and rs11602954
(11p15.5) were previously assigned to ARHGAP1 and BET1L, respectively.10

These genes were experimentally knocked down in a human fetal osteoblast
(hFOB) cell line using a commercial siRNA reagent system in three temporally
separated independent technical replicates. The influence of knockdown on
gene expression (qPCR), cellular metabolism/proliferation (MTT), and early
osteoblast differentiation (ALP) was evaluated within the first 4 days following
siRNA transfection. All values are reported as mean± SD with statistical
significance determined via two-way homoscedastic Student’s t-tests
(*Pr 0.05, #Pr 0.10, NS= 'not significant'). Complete experimental methods
are included in the Supplementary Information.

RESULTS

TAD_Pathways reveals candidate genes within phenotype-
associated TADs
We applied TAD_Pathways to BMD GWAS results derived from
replication-requiring journals (see Supplementary Information pub-
lications). GWAS curation resulted in the aggregation of 70 unique
BMD SNPs. TAD_Pathways implicated ‘Skeletal System Development’
as the top-ranked pathway (Benjamini–Hochberg adjusted
P= 1.02× 10− 5). For full BMD TAD_Pathways results refer to
Supplementary Table S1. Many candidates were not the nearest gene
to the GWAS signal and several had independent eQTL support
(Supplementary Table S2).
We compared TAD boundary gene aggregation to nearest-gene and

LD windows (r240.4). The aggregated gene lists included different
gene sets, with TAD boundaries aggregating the most genes
(Supplementary Figure S3A). We also applied a pathway analysis to
each gene set, and the top pathway for all methods was ‘Skeletal
System Development’. TAD_Pathways identified 38 total candidate
genes and 17 unique genes not discovered by either nearest-gene or
LD approaches (Supplementary Figure S3B).

siRNA knockdown of candidate genes in osteoblasts
We targeted the expression of four genes in vitro using siRNA and
assessed transcriptional knockdown efficiency (Figure 2). We noted
variation across the three controls, with the scrambled siRNA control
altering expression of OCN (osteocalcin), IBSP (bone sialoprotein),

TNAP and BET1L (Po0.05). Relative to the scrambled siRNA control,
OCN was downregulated in all siRNA groups (Po0.05), except for
BET1L siRNA (P= 0.122). OSX, IBSP and TNAP were not significantly
altered by any siRNA treatment (Figure 2).

Metabolic and osteoblastic activity of TAD_Pathways gene
predictions
Treatment with ACP2 siRNA led to a 66.0% reduction in MTT
metabolic activity versus the scrambled siRNA control (P= 0.012).
ARHGAP1 siRNA caused a 38.8% reduction (P= 0.088). siRNA
targeted against TNAP, BET1L or DEAF1 did not alter MTT metabolic
activity (Figure 3a).
ALP is highly expressed in osteoblasts: disruption of proliferation or

osteoblast differentiation results in ALP downregulation. TNAP siRNA
significantly reduced ALP intensity by 5.98± 1.77 units versus the
scrambled siRNA control (P= 0.006). ACP2 siRNA also significantly
reduced ALP intensity by 8.74± 2.11 (P= 0.003). The control stained
less intensely than untreated or transfection reagent controls, but this
did not reach statistical significance (0.05oPo0.10) (Figure 3b).

DISCUSSION

We show that TAD_Pathways can reveal functional gene to inter-
mediate phenotype relationships using BMD. Several of the
TAD_Pathways genes, such as LRP5, are bona fide BMD genes already
identified by several methods, thus providing positive controls.
However, several BMD GWAS signals do not have obvious nearest-
gene associations with bone. Our results suggest that a nearby gene,
ACP2, and not the nearest gene, ARHGAP1, regulates osteoblast
proliferation/viability. There is modest previous evidence that ACP2
impacts bone in mouse models11 and is thus a promising candidate for
follow-up studies.
There are several limitations to our approach. Publication biases

from pathway curation present challenges.12 To lessen this bias, we
include computationally predicted GO annotations. We used TAD
boundaries defined by Dixon et al.,13 whereas increased Hi-C
resolution reduced TAD sizes. Despite our method using larger TADs,
we still identify relevant pathways. However, the method will fail in
diseases instigated by aberrant looping. We were also concerned that

Figure 1 Concepts motivating our approach. TADs are shown as orange triangles, genes are shown as black lines and a genome-wide significant GWAS signal
is shown as a dotted red line. (a) The TAD_Pathways method. An example using BMD GWAS signals is shown. (b) Three hypothetical examples are illustrated
by a cartoon. The ground truth causal gene is shaded in red. The method-specific selected genes are shaded in blue. The top panel describes a nearest-gene
approach. The nearest gene in this scenario is not the gene actually impacted by the GWAS SNP. The middle panel describes a window approach. Based
either on linkage disequilibrium or an arbitrarily sized window, the scenario does not capture the true gene. The bottom panel describes the TAD_Pathways
approach. In this scenario, the causal gene is selected for downstream assessment.
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TAD_Pathways works only with BMD. We applied TAD_Pathways to
T2D and identify several candidate genes that are also not the nearest
gene (see Supplementary Table S3). Moreover, the experimental
validation was performed in a tetraploid in vitro cell culture system,
which may compensate for gene knockdown. While TAD_Pathways
identified several candidate genes, we only examined two, and our
validation approach does not directly interrogate each SNP.
One of the investigated GWAS SNPs, rs7932354, located in the

ARHGAP1 promoter, is an eQTL for ARHGAP1 in several GTEx
tissues14 and is associated with epigenetic marks and alternative genes
in HaploReg.15 However, none of these tissues are bone related and
our screen implicates ACP2 and not ARHGAP1 in osteoblast
processes. Furthermore, LRP4 and PACSIN3 also fall within the

rs7932354 TAD and LD block (Supplementary Figure S1). Both genes
are associated with bone.16,17 Therefore, TAD_Pathways revealed
additional genes that would otherwise have been overlooked by
alternative methods.
In conclusion, TAD_Pathways can be used as a candidate gene

discovery tool through the leveraging of features of chromatin looping.
TAD_Pathways is different from previous approaches, such as
DEPICT18 and MAGENTA,19 because it only requires the trait as
user input and can be performed rapidly. Our method builds solely
from publicly available GWAS and TAD boundaries. TAD_Pathways
overcomes SNP abundance-related gene selection biases pervasive in
previous methods by aggregating SNPs directly to TADs instead of
genes.20 We believe TAD_Pathways and algorithms that leverage 3D

Figure 3 Validating two TAD_Pathways predictions for BMD GWAS hits on hFOB cells. siRNA was used to knockdown expression of TNAP, ARHGAP1, ACP2,
BET1L and DEAF1. (a) Knockdown of ACP2 decreases cellular metabolic activity, demonstrated using an MTT assay. (b) ALP staining and quantitation
indicates that knockdown of TNAP or ACP2 inhibits performance in an osteoblast differentiation assay. Values represent mean±SD. Statistical significance
relative to the scrambled siRNA control is annotated as: *Pr0.05 and #Pr0.10 using a two-tailed Student’s t-test.

Figure 2 Real-time PCR of osteoblast differentiation genes and GWAS/TAD hits in hFOB cells. siRNA was used to knockdown expression of TNAP (positive
control), ARHGAP1, ACP2, BET1L and DEAF1. Relative expression of the osteoblast marker genes OSX, OCN and IBSP suggests that GWAS/TAD hits are not
major regulators of bone differentiation in this model. Red bars highlight specificity of each siRNA knockdown. Values represent mean±SD. Statistical
significance relative to the scrambled siRNA control is annotated as: *Pr0.05 and #Pr0.10 using a two-tailed Student’s t-test.
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genomic structure will aid in the discovery of novel disease features.
A Supplementary Video is available at the European Journal of
Human Genetics website.
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