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Detection of gene–environment interaction in pedigree
data using genome-wide genotypes

Michel G Nivard*,1, Christel M Middeldorp1,2,3, Gitta Lubke1,4, Jouke-Jan Hottenga1,2, Abdel Abdellaoui1,
Dorret I Boomsma1,2,5 and Conor V Dolan1

Heritability may be estimated using phenotypic data collected in relatives or in distantly related individuals using genome-wide

single nucleotide polymorphism (SNP) data. We combined these approaches by re-parameterizing the model proposed by Zaitlen

et al and extended this model to include moderation of (total and SNP-based) genetic and environmental variance components

by a measured moderator. By means of data simulation, we demonstrated that the type 1 error rates of the proposed test are

correct and parameter estimates are accurate. As an application, we considered the moderation by age or year of birth of

variance components associated with body mass index (BMI), height, attention problems (AP), and symptoms of anxiety and

depression. The genetic variance of BMI was found to increase with age, but the environmental variance displayed a greater

increase with age, resulting in a proportional decrease of the heritability of BMI. Environmental variance of height increased with

year of birth. The environmental variance of AP increased with age. These results illustrate the assessment of moderation of

environmental and genetic effects, when estimating heritability from combined SNP and family data. The assessment of

moderation of genetic and environmental variance will enhance our understanding of the genetic architecture of complex traits.
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INTRODUCTION

Gene–environment (GxE) interaction is an important issue in genetics
with potentially important empirical implications.1 In human genetics,
the moderation of genetic effects by environmental risk factors has
been considered with respect to, for example, psychiatric disorders (for
reviews see refs 2–6), transcriptomics,7 and body mass index (BMI).8,9

GxE interaction studies have often been criticized for lack of statistical
power,10 poor choice of candidate genes, or genetic markers,11,12 and
poor replication.13 To judge whether GxE interaction studies may
inform complex trait genetics, and may play a role in explaining missing
heritability,5 more knowledge is required about the extent to which GxE
interaction contributes to phenotypic variance. Studies that employ
genetically informative designs (eg, the twin design),14,15 and studies
including genome-wide genotype data provide a means to evaluate GxE
interaction effects. One example of the latter approach involves
establishing whether the effect of a polygenic risk score is moderated
by an environment variable.16–18 Such polygenic scores are usually based
on a weighed linear combination of single-nucleotide polymorphisms
(SNPs) which satisfy some significance level in a GWAS. An alternative
approach to quantify the effect of a set of measured SNPs on a
phenotype is to fit a random effects model using genetic relatedness
matrix restricted maximum likelihood (GREML), as implemented in
the GCTA software package.19 GCTA was developed to estimate ‘chip
based’ heritability in large groups of distantly related individuals, and
allows estimation of GxE interaction, given a dichotomous environ-
mental exposure. Vinkhuyzen and Wray16 recently discussed the current
options for GxE interaction research with dichotomous exposures, both
for polygenic risk scores and GCTA analyses.

Here, we propose a model that can include a continuous, ordinal,
or nominal moderator of genetic and environmental variance com-
ponents. In addition, we extend the model to inclusion of data of
closely related subjects, such as twin pairs, or members of extended
pedigrees. To this end, we re-parameterized the model proposed by
Zaitlen et al.1 This allows an evaluation of GxE interaction in terms of
the moderation of the genetic variance attributable to the measured
SNPs, the total additive genetic variance, and the residual (environ-
mental) variance. Including distantly related and closely related
subjects increases the power to resolve the moderator's effect on
genetic and environmental variance components.
We conducted simulation studies to investigate the performance of

the model. First, we simulated data given several null hypotheses to
establish that the type-1 error rates for the significance tests used are
correct. Second, we established that the estimated variance compo-
nents were accurate when phenotypic data are normally distributed.
GREML is usually based on the assumption of phenotypic multivariate
normality. Speed et al.20 previously tested the performance of the
model given non-normality due to non-normally distributed
environmental effects, they reported little evidence for bias.
Here we explored the effects of phenotypic positive skewness on
the type-1 error rates and parameter estimates. Positive skewness is
often observed in test scores obtained from questionnaires used to
asses psychopathology due to an abundance of items with low
endorsement rates. We applied our model to BMI and height, and
to attention problems (AP) and anxious depression (AnxDep).
We estimate the contribution of common genetic variants, all
genetic effects, and the environment subject to moderation by age
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or birth year (for height). We considered birth year the appropriate
moderator for height as the variance in adult height does not
change with age. The largest variance in adult height is attributable
to the mean increase in height throughout the 20th century. The
distributions of BMI and height are normal, whereas AP and
AnxDep are positively skewed.

METHODS

Statistical methods
Genome-wide genetic similarities between individuals based on measured SNPs
can be used to estimate the variance attributable to these measured SNPs (for the
derivation, see ref. 19). The associated model is provided in Equations 1a–1d.

Y ¼ XbþWuþ e ð1aÞ

YBNðm;VÞ ð1bÞ

V ¼ GRMn�n � s2snp þ In�n � s2e ð1cÞ

m ¼ Xb ð1dÞ

In Equation 1a, Y (n× 1) is a random vector of phenotypic scores as
observed in n individuals, X (n×m) is the matrix of m fixed covariates, and
β (m×1) is the vector of fixed effects. The matrix W (n×p) is the matrix of
p standardized SNPs, u (p× 1) is a zero mean vector of random effects
(regression coefficients), and e is the n× 1 vector of zero mean residuals. The
phenotype Y is assumed to be a random multivariate normal vector with mean
vector μ and covariance matrix V (Equation 1b). The GRM is a matrix of
pairwise genetic similarities computed as WW′/p. The parameter s2snp is an
estimate of the variance explained by the SNPs included in W and SNPs in
strong LD with SNPs included in W and I is an identity matrix. The GCTA
software can be used to fit the model above, with extensions allowing for
dichotomous GxE moderation, among other options.19

The continuous moderation model
The continuous moderation model allows the magnitude of the variance
components to vary with respect to a moderator M. Parameter βsnp quantifies
the effect of moderation by M of the variance explained in Y by common
SNPs. Parameter σsnp quantifies the effect of measured SNPs on Y given βsnp= 0.
Parameter βe quantifies the effect of moderator M of the residual variance of Y.
Parameter σe quantifies the effect of residual variance given βe=0.

VðY jMÞ ¼ Vn�n ¼ ðssnp þ bsnp:M1�nÞt � ðssnp þ bsnp:M1�nÞ:GRMn�n
þ ðse þ be:M1�nÞt � ðse þ be:M1�nÞ: In�n

ð2Þ
In Equation 2, ‘*’ indicates a matrix product and ‘.’ indicates element-wise

multiplication. This model allows for moderation of the genetic and residual
(co)variances by M. Equation 2 is a variation on the moderation model
introduced by Purcell in the context of twin studies (2002).14 Note that we
assume that the moderator M is also included in the matrix X, that is, as a fixed
covariate with a main effect on the phenotype. We have presented the
moderator M as continuous, but it may be discrete (ordinal or nominal).
Given a binary moderatorM, coded√0.5 and −√0.5, the model in Equation 2
is equivalent to the GxE approach used in GCTA.

Related individuals in the sample
It is a standard practice in GCTA to exclude genetically closely related
individuals to avoid confounding of the total heritability and the SNP
heritability. An extension proposed by Zaitlen et al.1 allows for inclusion of
closely related individuals to estimate the variance due to the SNPs, as well as
the total additive genetic variance. In Equation 3 below, the matrix GRMIBS is
equivalent to the GRM in Equations 1 and 2, but now includes closely related
individuals. Closely related in our analysis is defined as genetic relatedness
greater than 0.05, as in Zaitlen et al.1 The matrix GRMIBS40.05 equals the
matrix GRMIBS in which all relatedness coefficients below 0.05 set to zero. Note

that the values of these coefficients in closely related individuals tend towards
the expected proportion of alleles shared identically by decent (~ IBD; we
denote the expected proportion with pi-hat) (ie, full siblings are characterized
by pi-hat= 0.5 IBD, and ~0.5 in the GRMIBS40.05). Using an IBD matrix or
IBS40.05 matrix yields very similar results.1

Vn�n ¼ GRMIBS
n�n � s2snp þ GRMIBS40:05

n�n � ðs2BIBD � s2snpÞ þ In�n � s2e ð3Þ
In Equation (3), parameter s2snp reflects the variance explained by SNPs, the

term ðs2BIBD � s2snpÞ represents the difference between the total additive genetic
variance s2BIBD and the variance explained by SNPs, and s2e reflects the variance
attributable to residual effects. Inspection of the parameter correlation matrix
derived from the Hessian revealed very strong negative parameter correlations
between s2snp and ðs2BIBD � s2snpÞ, which complicates any moderation of these
terms. To ensure low-parameter correlations, and to allow for separate
moderation of s2snp and s2BIBD, we re-parameterized the Zaitlen et al. model
(Equation 3) as shown in Equation 4.

Vn�n ¼ GRMIBSo0:05
n�n � s2snp þ GRMIBS40:05

n�n � s2BIBD þ In�n � s2e ð4Þ
In Equation 4, the first GRM, GRMIBSo0:05

n�n includes values only for pairs of
distantly related individuals with IBSo0.05, whereas the other values including
the diagonal elements are set to zero. This provides an estimate of variance
attributable to SNPs exclusively based on the covariance between distantly
related individuals. The second GRM, GRMIBS40:05

n�n contains only values for
pairs of individuals that are closely related, with IBS40.05, reflecting all genetic
variance as a function of approximate IBD. Note that this model requires
the presence of closely related individuals to reliably estimate s2BIBD. The
re-parameterized model (Equation 4) and the Zaitlen et al. model (Equation 3)
produce the same estimates of s2BIBD;s

2
snp, and s2e . This equivalence was

established empirically by simulating data for a wide range of s2BIBD;s
2
snp, and

s2e , under the Zaitlen et al. model, and subsequently fitting both models,
and obtaining the same − 2*log-likelihood and parameter estimates
(Supplementary Table S1). We note that in the unlikely scenario that
s2snp ¼ 0 or ðs2BIBD � s2snpÞ= 0, the equivalence does not hold. However, if
s2snp ¼ 0 or ðs2BIBD � s2snpÞ= 0 is true, separate moderation of s2snp or s

2
BIBD is

undesirable given the absence of the variance component to be moderated.
Furthermore, note that s2snp is not added to the total variance of a trait. This is
due to our reparameterization of the Zaitlen et al. model, given that we estimate
s2snp in the matrix diagonal and entries for covariance between closely related
subjects is set to 0, s2snp no longer influences the total phenotypic variation.
We extended Equation 4 to include moderation, as shown in Equation 4a.

Parameter β~ IBD in Equation 4a reflects the change in additive genetic variance
as a function of the moderatorM. Parameter βsnp reflects moderation of genetic
variance attributable to SNPs as a function of M.

VðY jMÞn�n ¼ ðssnp þ bsnp:M1�nÞt � ðssnp þ bsnp:M1�nÞ:GRMIBSo0:05
n�n

þ ðsBIBD þ bBIBD:M1�nÞt � ðsBIBD þ bBIBD:M1�nÞGRMIBS>0:05
n�n

þ ðse þ be:M1�nÞt � ðse þ be:M1�nÞ: In�n
ð4aÞ

In fitting model 4a, we assume that we have a sufficient number of related
individuals to accurately estimate s2BIBD. Although the main innovation
presented here is continuous moderation of the variance attributable to SNPs,
our model allows for moderation of the other variance components. It is
important to consider moderation of all variance components. First, modera-
tion of each of the variance components influences standardized variance
components as these are expressed as a ratio. Accordingly, moderation of
variance components featured in the denominator of a ratio results in
moderation of the entire ratio. Second, allowing moderation of all genetic
variance components yields an internally consistent model, as moderation of
the variance of a trait explained by common SNPs should be accompanied by
moderation of the total additive variance of the trait.

Model estimation
All models were fitted in R (Vienna, Austria) using full information maximum
likelihood optimization with exact derivatives. The implementation in R
includes two FORTRAN routines to speed up calculation of the likelihood
function and derivatives. Optimization using exact derivatives is done using the
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optim() function available in R. Scripts to perform the optimization and the
required FORTRAN routines are available online (https://sites.google.com/site/
mgnivard/multigrm). We tested the significance of parameters by means of the
likelihood ratio test. We adopted a significance level of 0.05 for each test. The
four outcome phenotypes were regressed on the first 6 principal components
that reflect the population structure.21 The standardized residuals were further
analyzed to reduce the number of fixed effects in the final model, and thus
reduce computational burden. Fixed effects covariates entered into all analyses
were sex and standardized age, and age squared. For height, year of birth rather
than age was included as a covariate.

Simulations
Type-1 error. It is well known that the distribution of the test
statistic associated with bounded variance components deviate from the
standard central χ2 distribution. The approximate null distribution is a
0.5 Χ2

df¼0=0:5 Χ
2
df¼1 mixture distributions, but the exact distribution of the

test statistic is dependent on the Eigen spectrum of the design matrix (GRM).22

In GCTA, this 0.5:0.5 mixture distribution is used. To establish that this
assumed distribution is reasonable, we simulated data sets, based on the
empirical GRMs as observed in the NTR data set. First, data were simulated
with σsnp= 0, σ~ IBD= 0.2 and σe= 0.8 and βsnp= β~ IBD= βe= 0, and we tested
the type-1 error associated with the null hypothesis σsnp= 0. Assuming the
mixture null distribution, we expected the type-1 error rates to be 0.025 and
0.05 (ie, the nominal significance level divided by 2). In our second scenario, we
simulated a data set where: σsnp= 0.2, σ~ IBD= 0.4 and σe= 0.6 and
βsnp= β~ IBD= βe= 0. Here we tested the type-1 error associated with the
(omnibus) null hypotheses βsnp= 0, β~ IBD= 0 and βe= 0 at significance levels
0.1 and 0.05. The moderation parameters are not bounded and therefore
should follow the standard distribution Χ2

df¼3. To gauge the effect of violations
of phenotypic normality, the simulated normal data were transformed by
mapping the data onto the empirical distribution of AnxDep scores, while
retaining the rank of the data. We then repeated our test type-1 error based on
the empirically distributed data.

Parameter accuracy given distributional violations
In fitting the model, we usually assume that the data are multivariate normally
distributed. However, in practice data are often non-normal. To test the effects
of non-normality on parameter estimates, we simulated sets of multivariate
normal data, in which the SNP heritability was increased from 0 to 0.5 in 0.01
steps, and the residual heritability was increased from 0 to 0.5 in 0.01 steps for
each step. Forty data sets were simulated per step. The simulated normal data
were transformed by mapping the data onto the empirical distribution of
AnxDep, while retaining the rank of the data. We chose the distribution of
AnxDep because its distribution is typical of the distributions arising from
questionnaires concerning psychopathology. That is, such data are positively
skewed (the AnxDep data has a skewness of 1.62, and the AP data a skewness of
0.91). We estimated the parameters both in the normal and the skewed data,
and evaluated the effects of non-normality by a regression of the estimates
based on the normal data and non-normal data on the true values. Unbiased
estimates will give rise to a slope parameter equal to 1. We separately tested the
bias in the SNP heritability variance component, and genetic variance not
attributable to SNPs.

Subjects, genotypes and measures
Phenotype data were collected from participants in the Netherlands Twin
Register (NTR)23 by mailed or online surveys, or during home visits. Adult
participants received surveys in 10 consecutive waves over the past 25 years.
Adolescent participants received self-report questionnaires, from the age of 14
onwards. AnxDep and AP scores were obtained from the Youth or Adult Self
Report.24 as part of the Achenbach system for empirical assessment.24 AnxDep
and AP were defined as described in previous work.25,26 Height and BMI were
assessed during a home visit for the NTR biobank projects.27 and by self-report.
AnxDep scores were available in 6881, AP scores in 6618, BMI in 6395, and
height in 6409 individuals. As our simulations show that a skewed distribution
influences the parameter accuracy in the proposed models, we carried out a
square-root transformation of the AP and AnxDep scores to reduce the

skewness of the observed distributions. AP had a skewness of 0.91 before
transformation and − 0.30 after square-root transformation, AnxDep had a
skewness of 1.62 before transformation and 0.25 after square-root transforma-
tion. Genotypes: DNA samples were obtained in different projects of the
NTR.27,28 Genotyping in the different projects was performed on the Affymetrix
6.0 chip (Affymetrix, Santa Clara, CA, USA). Genotypes were called, cleaned
and processed in a single pipeline to ensure consistency across projects. SNPs
that were genotyped in less than 95% of individuals were removed. Individuals
with a contrast quality control (CQC) score below 0.40, who had less than 90%
of SNPs successfully genotyped, or had excess genome-wide heterozygosity/
inbreeding levels (Fo− 0.10 or F40.10) were removed. Individuals of non-
European descent were excluded. The resulting sample included genotypes of
8485 individuals. A genetic relatedness matrix (GRM) was computed on the
basis of all autosomal SNPs with a minor allele frequency40.01, and Hardy–
Weinberg Equilibrium test P-value41× 10− 6 using GCTA 1.24.2.19 Informed
consent was obtained from all participants. The study was approved by the
Central Ethics Committee on Research Involving Human Subjects of the VU
University Medical Centre, Amsterdam, an Institutional Review Board certified
by the U.S. Office of Human Research Protections (IRB number IRB-2991
under Federal-wide Assurance-3703; IRB/institute codes, NTR 03-180).

RESULTS

Type-1 error
We simulated 1000 data sets in which the SNP-heritability variance
component was zero. To establish the type-1 error rate, we tested the
hypothesis that the variance component was zero using a naive chi.2 1)
test of the likelihood ratio with significance levels set at 0.1 and 0.05,
but expect type-1 error rate of 0.05 and 0.025, respectively, as the
variance estimate is bounded by zero. This test produced the type-1
error rates of 0.057 and 0.029. These values are consistent with
expectation, that is, they do not deviate significantly (given α= 0.01)
from the expected values of 0.025 and 0.05. Type-1 error rates
calculated using the skewed data produced type-1 error rates of 0.035
and 0.059, neither of which deviated significantly (α= 0.01) from the
expected values of 0.025 and 0.05.
We simulated 1000 data sets in which moderation of the SNP,

additive genetic, and environmental variance component was absent.
We estimated a model with and without the 3 moderation parameters,
and tested the likelihood ratio (a 3 df χ2 test) using a significance levels
of 0.05 and 0.10. The observed type-1 error rates were 0.047 and
0.097, which do not deviate significantly (α= 0.01) from the expected
values of 0.05 and 0.10. Type-1 error rates for the omnibus test of
moderation calculated using the skewed data were 0.181 and 0.266,
revealing that distributional violations can result in inaccurate type-1
error rates.

Effects of the distribution on parameter estimates
We simulated 1000 data set with the SNP and additive heritable
components increasing in 100 steps of 0.0033, whereas the environ-
mental variance component decreased in 50 steps of 0.0066. We
simulated 10 data sets per step. The parameter recovery was found to
be good. The slope from the regression of the estimated parameter
σsnp on the true parameter is 1.01 (SE= 0.035) and for the regression
of the estimated parameter σ~ IBD on the true parameter the slope is
0.97 (SE= 0.012) (Supplementary Figures S1 and S2). However, the
parameter estimates obtained in the analysis of the skewed data were
biased. Regression of the parameter estimates on the true parameter
values yielded a slope of 0.81 (SE= 0.033) for σsnp and a slope of 0.84
(SE= 0.013) for σ~ IBD. Regression of the true parameter difference
(σ~ IBD− σsnp, ie the genetic variance not attributable to SNPs) on the
estimated difference yielded a slope of 0.93 (SE= 0.04) for the normal
data, and 0.88 (SE= 0.039) for the transformed data (Supplementary
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Figure S3). We therefore conclude that the particular non-normality
considered here resulted in an underestimation of the genetic variance
attributable to SNPs and the genetic variance not attributable to SNPs,
where the bias in the estimate of the genetic variance attributable to
SNPs seemed to be greater.

Heritability and variance explained by SNPs
The variances attributable to total and SNP related genetic effects
(Equation 3, see methods) on BMI, Height, AP and AnxDep are given
in Table 1. All estimates are significant (P-valueso0.05) except the
variance explained by SNPs in AnxDep (P= 0.078). SNP heritability
for BMI and height were moderate and total heritability was
substantial. SNP heritability of AP and AnxDep was low, and the
total additive heritability was moderate. The percentage of the genetic
variance of BMI, height, AP, and AnxDep explained by the SNPs was
56.2% (SE 8.6%), 59 % (SE 6.9%), 27.5% (SE 14.1%), and 24.3%
(SE 14.1%), respectively. The genetic variance of AnxDep and AP may
be underestimated, and type-1 error rates would be inflated due to the
non-normality of the phenotypic data. As indicated in the methods,
AP and AnxDep scores were square-root transformed to reduce the
skewness. As the genetic variance explained by SNPs for BMI was
somewhat higher than that reported in the literature.29 we repeated the
analysis for BMI in GCTA, based on data of 3119 distantly related
individuals only. Here the SNP heritability estimate was 49%
(SE 11.4%). Analysis carried out in GCTA based on 6395 individuals
(including closely related and distantly related subjects in the GRM,
and therefore estimating a variance component dominated by the
closely related subjects, approximately equal to σ~ IBD) resulted in a
heritability estimate of 75.4% (SE 1.3%). These results are very close to
those obtained with our methods.

Genetic variance moderation
Next we fitted the model given in Equation 4a (see methods) to all
four variables with age or birth year as the moderator of the variance
components (s2snp, s2BIBD and s2e ). Moderation of the variance
components attributable to SNP effects were not significant for any
of the phenotypes (Table 2). For BMI, the total genetic variation was
significantly moderated by age. For BMI, height and AP moderation of
the residual effects was significant; for AnxDep, no significant
moderation by age was seen.
Figures 1a to 3a, show s2snp, s

2
BIBD and s2e of as a function of age or

birth year for BMI, height, and AP. Figures 1b–3b, show the

heritability ð s2BIBD

s2BIBDþs2e
Þ and the proportion of phenotypic variance

attributable to SNPs ð s2snp
s2BIBDþs2e

Þ as a function of age or birth year.

Note the denominator in these ratios does not include s2snp, as our

model parameterization s2snp is estimated separately from the total
additive genetic variance s2BIBD. All figures show that the total
heritability and the SNP heritability decrease as a function of age, or
birth year.

DISCUSSION

We presented a variance component model which included modera-
tion of SNP genetic, total additive genetic and residual effects. The
moderator is assumed to be a measured variable, which may be
continuously or discretely distributed. The model can be used in
cohorts of unrelated, and/or distantly related, individuals to estimate
the moderation of the genetic effects attributable to SNPs. In pedigree
data, the model separately estimates the moderation of SNP effects and
of total additive genetic effects. By allowing for simultaneous
moderation of SNP and total additive genetic variance, we can include
data from twin and family cohorts, and estimate the genetic variance
attributable to SNPs, and its moderation while retaining all partici-
pants in the analyses. We tested the type-1 error associated with a χ2
test and found that the type-1 error rate is accurate for the test of the
unmoderated variance component estimate being larger than zero. For
the (omnibus) test of continuous moderation of variance components,
the type-1 error rate of the test was also accurate. We further
investigated the effects of phenotypic non-normality on the (SNP)
heritability estimates. We found that both the variance attributable to
SNPs and the residual variance are underestimated by positive
skewness of the phenotypic distribution. The variance attributable to
SNPs was underestimated more than the additive genetic variance not
captured by SNPs. Thus, our simulations showed good type-1 error
rates for the χ2 test of variance components, and good type-1 error
rates for the χ2 test of moderator effects. The type-1 error rates
remained good when the data were transformed to match the
empirical distribution of the AnxDep scores before square-root
transformation. Type-1 error for the test of moderation was accurate
if the distributional assumptions were met, violations of the distribu-
tional assumptions can induce false positive results.
The moderation models were fitted to data on BMI, height, AP, and

AnxDep. Results showed differences between these phenotypes in
genetic architecture that were not limited to differences in s2BIBD, s

2
snp

and s2e , but also were the results of differences in the degree to which
these variance components were moderated by age or year of birth.
The results indicated that for AnxDep, neither the genetic nor
environmental effects were moderated by age. For AP, BMI, and
height the residual variance, s2e , was found to increase with age or
birth year. For BMI, age had a positive moderating effect on the
additive genetic variance. We found no evidence of moderation of s2snp

Table 1 Estimates of the proportion of variance attributable to SNPs, familial genetic effects, and the environment for AnxDep, AP, BMI and

height

AnxDep AP BMI Height

Proportion of phenotypic variance explained by SNPs 9.8% NS (SE=5.7%) 11.4%* (SE=5.8%) 41.6%*** (SE=6.4%) 53.8%*** (SE=6.3%)

Proportion of genetic variance explained by SNPs 24.3% (SE=14.1%) 27.5% (SE=14.1%) 56.2% (SE=8.6%) 58.9% (SE=6.9%)

Proportion of phenotypic variance explained by additive genetic

influences

40.6%*** (SE=2.0%) 41.6%*** 75.3%*** (SE=1.3%) 91.3%*** (SE=0.4%)

Proportion of phenotypic variance explained by residual influences 59.4% (SE=2.0 %) 56.8% (SE=2.0%) 24.8% (SE=1.3%) 9.7% (SE=0.4%)

*Po0.05, ***Po0.0001

The heritability is computed as: s2BIBD
s2BIBDþs2e

� �
and proportion of phenotypic variance attributable to SNPs is computed as:

s2snp
s2BIBDþs2e

� �
; wherein * denotes significance determined by likelihood ratio testing. SEs

for the different ratios were approximated using the delta method.36 The delta method relies on the parameter correlations found in the Hessian matrix, to obtain the variance for a function of individual
parameters.
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in any of the phenotypes considered. These differences in results
confirm differences in genetic architectures of these phenotypes. As
established in twin studies, both AP and AnxDep are moderately
heritable,25,26 whereas BMI and height are strongly heritable.30,31 The
moderation findings for BMI (decreasing heritability with age) agree
with a recent meta-analysis into the heritability of BMI30 and with
evidence for GxE at the SNP level. For example, Rosenquist et al.8

reported evidence for an interaction between the FTO gene and birth
cohort on BMI. Note the model fitted to the empirical data did not
allow for a common environment within family, or for dominant
genetic effects, these effects may be of interest and could be
accommodated.32

The method presented here has some limitations. If related
individuals are present in the sample, and the moderator itself is
heritable, this needs to be accounted for as shown by van der Sluis
et al.33 All GxE models are sensitive to scaling.34 and GxE interaction
effects reported here also are conditional on the scale of the outcome
variables; different scaling may yield different results. Where BMI and
height have a natural scale (ie, kg/m2 and m or cm), the scale of the
data based on self-report inventories is generally arbitrary. This
problem is not limited to the current model and its solution is
beyond the scope of this article (potential solutions are discussed
elsewhere15,34). Estimates of SNP heritability are unbiased if the
residual variance is not normally distributed.20 Our simulation

Table 2 Parameter estimates, −2 log likelihoods, and significance tests in the GxE models

σsnp βsnp σIBD βIBD σe βe −2ll Δ−df Likelihood ratio

AP moderated by age
Full moderation 0.32 0.096 0.62 −0.002 0.73 0.054 17 830.78 — —

Drop βsnp 0.32 — 0.61 −0.003 0.74 0.054 17 831.78 1 1

Drop βIBD and βsnp 0.32 0.61 0.74 0.053 17 831.82 1 0.04

Drop βIBD, βsnp, and βe 0.32 0.62 0.73 17 859.96 1 28.14

AnxDep moderated by age
Full moderation 0.27 −0.2 0.63 0.03 0.76 −0.005 18 977.33 — —

Drop βsnp 0.31 0.63 0.03 0.76 −0.004 18 978.76 1 1.43

Drop βIBD and βsnp 0.31 — 0.63 — 0.76 0.012 18 981.273 1 2.51

Drop βIBD, βsnp, and βe — — 0.64 — 0.77 — 18 982.684 1 1.39

BMI moderated by age
Full moderation 0.62 0.048 0.8 0.045 0.48 0.124 16 480.76

Drop βsnp 0.61 0.8 0.043 0.5 0.125 16 482.06 1 1.3

Drop βIBD and βsnp 0.61 0.78 0.52 0.148 16 491.55 1 9.5

Drop βIBD, βsnp, and βe 0.61 — 0.82 — 0.48 16 684.9 1 193.35

Height moderated by birth year
Full moderation 0.53 0.047 0.69 0.005 0.21 0.02 11 132.06 — —

Drop βsnp 0.53 — 0.69 0.003 0.21 0.02 11 134.03 1 1.97

Drop βIBD and βsnp 0.52 — 0.69 — 0.21 0.02 11 134.29 1 0.26

Drop βIBD, βsnp, and βe 0.53 — 0.68 — 0.21 — 11 154.57 1 20.28

β indicates magnitude of change, given a SD change in the moderator.
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revealed, however, that even if the underlying variance components
are normally distributed, some rating scales give rise to skewed
distributions and this may result in parameter bias, and inflated
type-1 error for the test of moderation. In view of our simulation
results, it is possible that the (genetic) variance attributable to SNPs for
AP and AnxDep are underestimated due to the skewness of the AP
and AnxDep scores. As we found little evidence of age moderation for
AP and AnxDep, the evidence we find (age moderation of the
environment for AP) should be interpreted cautiously given the
distributions of these phenotypes. To mitigate the distributional
violations the AP and AnxDep scores were square-root transformed
before analysis to reduce skew. In light of these limitations, presence
or absence of age moderation of genetic variance components, for the
traits AP and AnxDep need to be replicated across different self-report
scales or diagnostic instruments, reducing the reliance on a single
(arbitrary) scale.
The present method can include data from distantly and closely

related individuals, it can accommodate, categorical, ordinal or

continuous moderators, and moderation multiple variance compo-
nents simultaneously. The proposed method has been successfully
applied to detect moderation of the (additive) genetic and environ-
mental effects by age and sex for 400 000+ methylation probes.35 The
analysis of these 400 000 phenotypes showed that large scale imple-
mentation is feasible. The addition of multiple genetic effects (GRMs)
further allows for the separate moderation of different subsets of the
genome. For example, one could limit the SNPs in a GRM to a single
biological pathway (ie, SNPs in genes in the serotonin pathway), to a
single class of SNPs (ie, coding variants), or to specific regions of the
genome (ie, regulatory elements, the exome, etc.). Bearing in mind the
assumptions discussed above the moderator can be genetic (GxG ie, a
known risk variant), biological (ie, a gene expression; gut microbiota)
or environmental (ie, early childhood trauma experiences).
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