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A method for analyzing multiple continuous
phenotypes in rare variant association studies allowing
for flexible correlations in variant effects

Jianping Sun1,2, Karim Oualkacha3, Vincenzo Forgetta1,2,4,5, Hou-Feng Zheng6,7, J Brent Richards1,2,4,5,8,
Antonio Ciampi1 and Celia MT Greenwood*,1,2,4,9 UK10K Consortium

For region-based sequencing data, power to detect genetic associations can be improved through analysis of multiple related

phenotypes. With this motivation, we propose a novel test to detect association simultaneously between a set of rare variants,

such as those obtained by sequencing in a small genomic region, and multiple continuous phenotypes. We allow arbitrary

correlations among the phenotypes and build on a linear mixed model by assuming the effects of the variants follow a

multivariate normal distribution with a zero mean and a specific covariance matrix structure. In order to account for the unknown

correlation parameter in the covariance matrix of the variant effects, a data-adaptive variance component test based on score-

type statistics is derived. As our approach can calculate the P-value analytically, the proposed test procedure is computationally

efficient. Broad simulations and an application to the UK10K project show that our proposed multivariate test is generally more

powerful than univariate tests, especially when there are pleiotropic effects or highly correlated phenotypes.
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INTRODUCTION

Advances in next-generation sequencing technologies have led to
identification of millions of rare variants (with minor allele frequencies
(MAFs) o0.05) that can be tested in genetic association studies. There
is a growing literature on methods for analysis of association for a set
of rare variants: for example, the burden test,1,2 sequence kernel
association test (SKAT),3 optimal SKAT (SKAT-O),4 mixed effects
score test,5 and many others.6 Most of the existing rare-variant
association tests can be thought of as univariate tests. That is, they
focus on the association between a set of rare variants and a single
phenotype.
However, multiple measures of related traits, that is, a multivariate

phenotype, are often available and are of interest. Some phenotypes
such as blood pressure, which is measured by both systolic and
diastolic pressure, are intrinsically multivariate. In other cases, there
may be several correlated measures of a trait of interest; however, the
one most directly influenced by genetic variation is unknown. For
example, excess weight can be measured by body mass index, waist
circumference or skin-fold thickness; by bringing in serum lipids as
well, the composite phenotype will have a different emphasis.
Many patterns of genetic architectures could link variants at a locus

to a set of phenotypes:7 pleiotropy describes one genetic variant
influencing multiple traits;8 endophenotypes (measures assumed to be
proximal to genetic effects) can be highly multidimensional; locus
heterogeneity can refer to a single trait caused by variants at different
chromosomal loci,9 or alternatively several variants at a locus may

influence a disease, whereas symptoms (visible phenotypes) vary from
person to person (Figure 1). Thus, multivariate methods may help in
rare-variant association studies, as they may add ability to investigate
the architectures discussed above, and increase power to detect
disease-associated loci.10

For associations between a single genetic variant and multiple traits,
a recent review paper11 summarizes several proposed methods.
However, these single-variant-based multivariate methods usually have
limited power to detect rare-variant effects. Although there are a few
approaches that have been developed to test associations between
multivariate traits and multiple variants in a genetic region, several of
these12,13 employ the idea of combining the test statistics obtained
from single-variant-based multivariate tests or multiple-variant-based
univariate tests. Notably, Maity et al14 recently proposed a kernel
machine regression to test multiple phenotypes and a set of markers
simultaneously, and the method of Maity et al showed power
improvements over single phenotype tests when the correlations are
strong. However, this method can be computationally inefficient and
may not have optimal power to detect pleiotropic associations, as there
is no explicit consideration of correlations between variant effects.
Given the rapid increase in large-scale sequencing studies, there is a
need for a powerful yet easily implemented statistical method to
simultaneously detect associations between multiple phenotypes and
rare variants in a region.
In this study, we develop a novel region-based multivariate test,

MURAT (Multivariate Rare-Variant Association Test), for identifying
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rare-variant associations when multiple correlated continuous pheno-
types are observed. By assuming the variant effects to be random and
correlated, we propose a linear mixed model that leads to a data-
adaptive variance component test based on a score-type statistic.
This choice accounts for unknown correlations among variant
effects, while testing for association. We show that there are two
special cases of our model depending on the assumed correlation
structure, one where it reduces to SKAT and another where it
becomes a multivariate fixed effects model. In addition, we
show that our analytic P-value derivation only depends on a
one-dimensional numerical integration, and hence that this method
is computationally efficient and can be considered for analysis of
genome-wide sequencing data.

METHODS

Notation and model
Suppose for the ith individual, i= 1,…, N, we observe K correlated continuous
phenotypes, Yi= (yi1,yi2,…,yiK)

T, m covariates, Xi= (xi1,xi2,…,xim)
T, and geno-

type data for a set of SNPs that contains p variants Gi= (gi1,gi2,…,gip)
T, where gij

for j= 1,…,p are coded as 0, 1, or 2, representing the number of minor alleles
that individual i carries for the jth variant. It is noteworthy that these p variants
can be both common and rare, although we focus on rare variants in this study.
We further assume that (Yi,Xi,Gi), i= 1,…, N, are independent and identically
distributed, and our goal is to test the association between Gi, a set of (rare)
variants, and the multiple traits Yi
Assuming that the relationship between Yi, Xi, and Gi can be modeled as
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where for the kth phenotype, k= 1,…,K, αk= (αk1,…,αkm)

T, and βk= (βk1,…,
βkp)

T are regression coefficients for Xi and Gi, respectively. In addition, we
also assume αk is a vector of fixed effects and βk~N(0,τ2W) is a vector of
random effects, where τ2 is an unknown variance component and W= diag
{w1,…,wp} is a weight matrix such that wj represents the weight for the jth
variant. The weight matrix is predetermined and usually a decreasing
function of observed MAFs for the corresponding variants. Finally, we
suppose the model error term, εi= (εi1,εi2,…,εiK)

T, is multivariate normal
with a mean vector of zeros and a variance covariance matrix Σ. As there are

correlations among yik’s for k= 1,…,K, we assume Σ is an arbitrary
symmetric and positive definite matrix.
Moreover, if we denote YKN×1= (Y1

T,…,YN
T)T, X*KN×Km= (IK⊗X1,⋯,

IK⊗XN)
T, and G*KN×Kp= (IK⊗G1,⋯,IK⊗GN)

T, where ⊗ is the Kronecker
product, then the above equation (1) can be written in matrix form as

Y ¼ X�aþ G�bþ ϵ: ð2Þ
Here we assume εKN×1= (ε1T,…,εNT)T~N(0,Σe) with Σe= IN⊗Σ; α= (α1

T,…,αK
T)T

is a Km×1 vector denoting all fixed covariate effects, and β= (β1T,…,βKT,)T is a
Kp×1 vector representing all random variant effects, assumed to follow a
multivariate normal distribution with variance covariance matrix Σβ.

The assumed correlation structures in Σe and Σβ are crucial to this model. To
capture trait pleiotropy effects, we assume the correlation between βk and βk′ is
Corr(βk,βk′)= ρIp for k≠k′ and k,k′∈ {1,…,K}, where ρ is unknown. That is, we
suppose there is a common correlation for the effects of the same variant on
different phenotypes, Corr(βkj,βk′j)= ρ for j= 1,…,p. This assumption also
captures the situation where the phenotypes are symptoms of a latent trait. In
addition, we assume that effects of different variants are uncorrelated, so that
Corr(βkj,βk′j′)= 0 and Corr(βkj,βkj′)= 0 for j≠j′. Therefore, we have β~N(0,Σβ),
where Σβ= τ2R⊗W is a Kp×Kp symmetric and positive definite matrix,
R= (1− ρ)IK+ρ1K1KT, and 1K is a K-dimensional vector of ones. For example,

when K= 2, we have Sb ¼ t2
W rW
rW W

� �
. Consequently, the variance

covariance matrix of Y is

Var Yð Þ ¼ G�SbG
�T þ Se: ð3Þ

The proposed model (2) is a generalization of the underlying model used for
the SKAT test, where variant effects are assumed to be random, independent,
and to follow a distribution with mean 0 and variance τ2. In particular, model
(2) reduces to SKAT when K= 1 (one observed phenotype). Although a
straightforward multivariate generalization of SKAT could be achieved by
implementing SKAT models for each (yik, Gi) pair, k= 1,...,K, and then
combining these K models allowing correlations among {yik}’s, our proposed
MURAT model is richer, because it allows the effects of the same variant on
different phenotypes to be correlated as shown in equation (3). On the
contrary, if we simply generalized SKAT as described above, the corresponding
covariance matrix would be Var(Y)= τ2G*[IK⊗W]G*T+Σe, which is a special
case of equation (3) when ρ= 0, under which, in fact model (2) is also
equivalent to Maity’s test with a linear kernel. Thus, through the correlation
parameter ρ, MURAT has the ability to explore pleiotropic effects.

Proposed test statistics
In model (2), the null hypothesis of no association between G* and Y is H0:
β= 0. This is equivalent to H0:τ

2= 0. We propose to develop a score test,
because it does not require an estimate of τ2. For a fixed ρ, the variance
component score statistic for τ2 is

Sr ¼ Y� X�âð ÞT
X̂�1

e
G� R#W½ �G�TX̂�1

e

� �
Y� X�âð Þ; ð4Þ

where â and
P̂�1

e are estimated under the null by regressing Y on only the
covariates X*. The subscript ρ indicates that this score statistic is a function of
ρ. As we assume that the K phenotypes are correlated, â and

P̂�1

e can be
efficiently estimated using the generalized least-squares method, achieved by
using the function gls() in the R package nlme.
For fixed ρ, it can be shown that under the null hypothesis, Sρ follows a

mixture of χ2-distributions15–17 when R is a symmetric matrix (Supplementary
S.1). Several methods exist to approximate this mixture χ2-distribution. For
example, both the Davies method18 based on the inverse characteristic function
and the Liu method19 based on moment matching have been shown to
work well.
However, the common correlation ρ is usually unknown. To construct a test

statistic for unknown ρ, as suggested by Lee et al,4 we apply a data adaptive
approach to select an optimal ρ, to maximize test power. We first calculate Sρ
and its P-value for a grid of values of ρ over [0,1] and then use the smallest
P-value as an overall test statistic for testing H0:τ

2= 0. Specifically, for a grid
0= ρ1oρ2o⋯oρb= 1, we obtain Srv and the corresponding P-value, prv , for

Figure 1 Possible patterns of genetic architecture that could link variants at
a locus to a set of continuous phenotypes. The solid line represents
pleiotropy, where a single variant influences multiple phenotypes. The
dashed line describes the locus heterogeneity, where different variants in the
same gene or region each influence a different phenotype. The dotted line
represents a situation where correlation among phenotypes arises indirectly
due to the variants’ effects on disease; the phenotypes could be symptoms,
endophenotypes, or continuous manifestations of disease.
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v= 1,…,b. Then, the overall test statistic is defined to be

T ¼ min pr1 ; :::;prb

n o
: ð5Þ

We have shown that when ρ= 0, Sρ is the same as the test statistic used in
Maity’s method with linear kernel or the one obtained from multivariate SKAT
by simply assuming correlated model errors. In addition, we can also show that
when ρ= 1, the proposed Sρ is equivalent to the square of a score statistic
obtained from a multivariate fixed effect model, where we assume the same
effect of each variant across the multiple traits (Supplementary S.2). Hence, by
searching 0≤ ρ≤ 1, MURAT covers all score tests between Maity’s method (or
multivariate SKAT) and multivariate multiple regression.

Null distribution of the test statistic T
For an observed T, say Tobs, let q(ρ) be the (1−Tobs)

th percentile of the null
distribution of Sρ, such that pρ4Tobs is equivalent to Sρoq(ρ). Then, by
definition, the P-value, pT, for overall test statistic T is defined to be

pT ¼ P ToTobsf g¼ 1� P Sr1oq r1ð Þ; Sr2oq r2ð Þ;?; Srboq rbð Þ� �
:

We show in the Supplementary S.3 that we can approximate Sρ as a weighted
sum of two asymptotically independent random variables, say κ and η, which
do not depend on ρ, and both follow a mixture of χ2-distributions.
Consequently, pT can be calculated by using one-dimensional numerical
integration,

pT¼ 1�
Z
x
Fk min

v¼1;:::;b

1

1� rv
q rvð Þ � t rvð Þx½ �

� �� �
� f Z xð Þdx; ð6Þ

where τ(ρ) is a constant, Fκ(⋅) is the distribution function of κ, and fη(⋅) is the
density function of η. To improve tail probability estimates, we used the
moment matching method with mean, variance, and kurtosis instead of
the first three moments,4 to approximate Fκ(⋅). Furthermore, to improve
accuracy in numerical integration, we used a convolution of independent
random variables to calculate fη(⋅) (see Supplementary S.3).

RESULTS

Simulation studies
We conducted a variety of simulation studies to evaluate the
performance of MURAT. In the simulations, we considered K
(K= 2 or 3) correlated continuous traits and compared type I error
and power between MURAT, Maity’s test, and SKAT, which tests the
multiple traits separately. The genotypes we used for the simulations
were taken from sequencing data for a sample of 1000 individuals
from the UK10K project (http://www.uk10k.org/). A set of 10 rare
variants were randomly selected from a single gene, BET1L, in order to
preserve the linkage disequilibrium pattern. The MAFs for these 10
variants range from 0.001 to 0.043 in the sample.
For each individual, we generated K correlated continuous pheno-

types following the model (1), where two covariates were generated
from Normal(0,1) and Bernoulli(0.5), respectively, both with coeffi-
cient 0.5; a common intercept of 0.1 was also included and εi= (εi1,⋯,
εiK)

T was generated from a multivariate normal distribution, N(0,Σ),
with Σ= (1− ρe)IK+ρe1K1K

T. In simulations, we used four different
levels of the residual correlation, ρe= 0, 0.1, 0.4, and 0.7. Different
values for the genetic effects, βkj, where k= 1,…,K and j= 1,…,10,
were considered, in order to evaluate type I error and power. To avoid
potential zero denominators in equation (6), we searched over a grid
of values for ρ from 0 to 0.99, with step size 0.1 in MURAT. For
simplicity, we used the identity weight matrix, that is, W= I, through
all the simulation studies. A total of 10 000 simulated data sets were
generated for each scenario. Finally, to eliminate the effects caused by
different phenotype scales, we first standardized all phenotypes within
each simulation before implementing our multivariate test.
Unless otherwise specified, to correct for multiple testing across

phenotypes, all SKAT results are based on adjusted P-values, defined

as K times the minimum of the univariate-based P-values obtained
via SKAT.

Type I error rates
To evaluate type I error, we generated phenotypes with βkj= 0 for
k= 1,…,K where K= 2 or 3, and j= 1,…,10. We assessed type I error
first at moderate significance levels of α= 0.05, α= 0.01, and
α= 0.001, and the results are summarized in Table 1. All three
methods control type I error well under these moderate significance
levels, except that SKAT tends to have slightly inflated type I error
when α= 0.001 and ρe40.
However, in genome-wide studies, such moderate significance levels

are usually of secondary interest. As there are around 20,000 genes in
the exome, a Bonferroni-adjusted threshold for testing would be
0.05/20 000= 2.5 × 10− 6. Therefore, we also examined the type I error
of MURAT and SKAT for smaller α levels of 10− 4, 10− 5, and
2.5 × 10− 6 by performing 107 simulations. Owing to the computa-
tional burden, these extra simulations only examined ρe= 0 and 0.4. In
addition, as Maity’s test is much slower than the other two methods
(Supplementary S.5), we excluded it from this comparison.
Table 2 shows that both MURAT and SKAT have inflated type I

error when α is very small, and that SKAT performs better than
MURAT in this situation. However, the inflation for MURAT is not
severe. MURAT’s type I error inflation could be due to the
approximations required to calculate the significance level analytically,
such as matching the first three moments, or the numerical integration
in equation (6). Permutation analysis can be used at key regions to
obtain more accurate P-values if necessary. To perform permutation,
one needs to preserve the dependence structure between the pheno-
types and between the genotypes as well. Specifically, for one
individual, all his/her phenotypes should be viewed as a single
phenotype group or block, and similarly all genotypes in the region
being studied can be considered as a single genotype block. Permuting
the phenotype blocks with respect to the genotype blocks across
individuals leads to data sets that retain the necessary within-block
correlations, yet are generated under the null hypothesis of no
association between the blocks.

Power
To assess power of the proposed multivariate test, we randomly
selected one, two, or five rare variants, to be causal. That is, let
{v1,v2,…,vu} be u selected causal variants, where u= 1, 2, or 5. We set
variant effects β1j=⋯= βKj= 0 for j∉ {v1,v2,…,vu} in the simulations,
where K= 2 or 3. The nonzero variant effects, βkj′s were generated
from N(0,Σβ) with Σβ= τ2R⊗Iu and R= (1− ρ)IK+ρ1K1K

T for
k= 1,…,K and j′∈ {v1,v2,…,vu}. In the simulations, different values
for τ2 were chosen under different scenarios so that the resulting
power was high enough to facilitate comparisons. We evaluated power
at significance level α= 0.05 for each scenario.

Scenario 1. We first considered the scenario where u causal variants
were associated with both K= 2 phenotypes. In this setting, we
selected τ2= 3 and considered six different correlations among the
causal variant effects: ρ= 0, 0.1, 0.3, 0.5, 0.7, and 0.9, in order to
explore pleiotropic effects on power.
The top and middle panels in Figure 2 compare MURAT with

SKAT for u= 2 causal variants associated with both phenotypes and
show that MURAT is overall more powerful than SKAT under all
possible combinations of ρ and ρe. For small residual correlation ρe,
the pleiotropic correlation ρ has little effect on MURAT’s power;
however, for large ρe, the power of MURAT decreases as ρ increases.
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This is not surprising, because when ρe and ρ are both large, the two
phenotypes are highly correlated. Hence, in situations of very strong
correlation, a multivariate test may gain little power relative to analysis
of only a single trait. For all values of ρe, the power of SKAT decreases
as ρ increases. Similar conclusions can also be drawn when there are
only one or five causal variants associated with both phenotypes
(Supplementary Figures S1 and S2).

We also compared the power of MURAT and SKAT with that of
Maity’s test with a linear kernel when K= 2 and 3. Owing to the
computational time associated with Maity’s method, we only evaluated
its performance with u= 5 causal variants, ρe= 0.4 and ρ= 0, 0.3 or
0.7. The bottom panel of Figure 2 shows that for K= 2, when ρ= 0,
MURAT and Maity’s test have similar power, consistent with our
expectation, but when K= 3 and ρ= 0, MURAT seems a little less
powerful than Maity’s test. As MURAT searches grids of ρ, there could
exist slight power differences between MURAT and Maity’s method
even when the true ρ is zero. It is notable that when ρ is large,
MURAT tends to be more powerful than Maity’s test for both values
of K. For example, when K= 2, MURAT is 10% (for ρ= 0.3) or 40%
(for ρ= 0.7) more powerful than Maity’s test. Hence, MURAT can
exploit pleiotropic effects to gain additional power over a multivariate
method that only incorporates correlations among phenotypes. In
addition, in this scenario, MURAT gains power as K increases.

Scenario 2. We further conducted a set of simulations in which u
causal variants were only associated with the first of two traits. That is,
we assumed β2j= 0 for j= 1,…,10 and generated β1j′, j′∈ {v1,v2,…,vu},
independent and identically distributed from N(0,τ2) with τ2= 5.
Figure 3 shows that there is usually some power loss for MURAT

compared with SKAT when causal variants are only associated with
trait 1. However, the power loss diminishes as ρe increases and there is
a power gain when ρe is 0.7. Hence, when traits are strongly correlated,
there is a potential benefit of a multivariate test even if only one trait is
truly under genetic influence.

Table 1 Type I error comparison among MURAT, SKAT, and Maity’s method at moderate significance levels, α=0.05, 0.01, and 0.001

K=2

ρe=0 ρe=0.1

α MURAT Maity SKAT MURAT Maity SKAT

5×10−2 5.17×10−2 5.17×10−2 4.76×10−2 5.12×10−2 5.10×10−2 4.81×10−2

1×10−2 0.90×10−2 0.94×10−2 0.94×10−2 0.97×10−2 0.99×10−2 0.95×10−2

1×10−3 1.01×10−3 1.30×10−3 0.90×10−3 1.10×10−3 1.10×10−3 1.20×10−3

ρe=0.4 ρe=0.7

5×10−2 4.99×10−2 4.80×10−2 4.78×10−2 5.01×10−2 4.78×10−2 4.41×10−2

1×10−2 1.02×10−2 0.91×10−2 0.98×10−2 0.98×10−2 0.93×10−2 0.97×10−2

1×10−3 1.02×10−3 0.70×10−3 1.40×10−3 1.10×10−3 0.80×10−3 1.30×10−3

K=3

ρe=0 ρe=0.1

α MURAT Maity SKAT MURAT Maity SKAT

5×10−2 5.08×10−2 4.83×10−2 4.79×10−2 5.12×10−2 4.62×10−2 4.91×10−2

1×10−2 1.03×10−2 0.90×10−2 1.02×10−2 1.06×10−2 0.98×10−2 0.91×10−2

1×10−3 1.00×10−3 0.90×10−3 0.60×10−3 1.30×10−3 0.80×10−3 1.20×10−3

ρe=0.4 ρe=0.7

5×10−2 5.06×10−2 4.69×10−2 4.65×10−2 5.08×10−2 4.67×10−2 4.05×10−2

1×10−2 1.02×10−2 0.93×10−2 0.93×10−2 1.04×10−2 0.99×10−2 0.86×10−2

1×10−3 1.20×10−3 0.90×10−3 1.40×10−3 1.10×10−3 1.00×10−3 1.40×10−3

Abbreviations: MURAT, Multivariate Rare-Variant Association Test; SKAT, sequence kernel association test.
The simulations are based on 10 000 simulated data sets. The results for SKAT are based on adjusted P-values, which are defined as K times the minimum of univariate-based P-values obtained
via SKAT.

Table 2 Type I error comparison between MURAT and SKAT at

stringent significance levels, α=1×10−4, 1×10−5, and 2.5×10−6

ρe=0 ρe=0.4

α MURAT SKAT MURAT SKAT

K=2
1×10−4 1.68×10−4 1.27×10−4 1.48×10−4 1.24×10−4

1×10−5 2.78×10−5 1.16×10−5 1.29×10−5 1.54×10−5

2.5×10−6 7.60×10−6 3.30×10−6 2.80×10−6 3.30×10−6

K=3
1×10−4 1.64×10−4 1.29×10−4 1.35×10−4 1.23×10−4

1×10−5 2.15×10−5 1.25×10−5 1.82×10−5 1.35×10−5

2.5×10−6 9.80×10−6 4.10×10−6 10.20×10−6 3.10×10−6

Abbreviations: MURAT, Multivariate Rare-Variant Association Test; SKAT, sequence kernel
association test.
The simulations are based on 107 simulated data sets. The results for SKAT are based on
adjusted P-values, which are defined as K times the minimum of univariate-based P-values
obtained via SKAT.
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when five causal variants are associated with multiple traits. The significance level is 0.05 for all tests and the univariate tests, SKAT, are corrected for
multiple comparisons.
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Figure 3 Empirical powers of MURAT versus SKAT for trait 1 at significance level of 0.05. Causal variants are associated with only the first trait. The results
for SKAT on trait 1 are not adjusted for multiple testing.
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Using scenario 2, we also compared MURAT with Maity’s test with
a linear kernel when there were five causal variants and ρe= 0.4. The
empirical power for Maity’s test (0.64) was higher than for MURAT
(0.57) but lower than the power for testing only the first associated
trait with SKAT (0.71).

Bone mineral density and exome-sequencing variants
We have analyzed bone mineral density (BMD) phenotypes and tested
for genetic associations with sequence-identified variants in data from
the TwinsUK participants (www.twinsuk.ac.uk) in the UK10K con-
sortium. The UK10K project (http://www.uk10k.org/) is a whole-
genome and exome-sequencing study focused on the genetic archi-
tecture of complex diseases. This analysis is intended to demonstrate
the performance of our methods and is not definitive; investigations of
genetic associations with BMD in larger sample sizes have been
undertaken by the GEFOS consortium.20

In our analysis, we selected measures of BMD at two positions:
lumbar spine (LS) and femoral neck (FN), in 1005 individuals. These
are strongly correlated traits with a correlation of 0.685. We performed
gene-based analysis on variants identified by exome sequencing on all
autosomes, therefore testing association with BMD at 19 123 gene-
based sets. All analyses included two covariates, weight and age, as
these strongly affect BMD. As in our simulation studies, we separately
standardized the 1005 measurements of LS and FN before
applying MURAT.
We compared the strategy of simultaneously testing LS and FN for

association using MURAT, with separate tests of LS and FN using
SKAT. As the analysis included both common and rare variants, we
applied SKAT with the weighted linear kernel and set the MURAT
weight matrix as W= diag{w1,...,wp}, where (wj)

1/2= β(MAFj,1,25) is
the weight for the jth variant in a particular gene as suggested by Wu
et al.3

The Bonferroni-corrected significance threshold for 19 123 genes is
around 0.05/19 123= 2.61× 10− 6. As this correction is stringent and
the sample size is small, in Table 3 we list all genes that have P-values
o1× 10− 5, from either MURAT or SKAT (SKAT P-values here are
not adjusted for multiple comparisons). For genes SLC17A5 and
C20orf187, the MURAT P-values are smaller than those obtained from
SKAT and the difference is notable at C20orf187. In addition, we
applied Maity’s test to C20orf187 and obtained a P-value of 8 × 10− 6,
supporting the benefit of a multivariate test and the potential benefits
of MURAT. Gene SNX17 showed association with only one of the
bone phenotypes; the result with MURAT was less significant than the
better of the two univariate tests; similar results were seen in our
simulations. However, MURAT was only slightly less significant than
the better univariate result.

To adjust single phenotype results for multiple testing, MURAT
region-based P-values are compared with adjusted SKAT results in the
right panel of Figure 4, clearly showing that many MURAT P-values
tend to be smaller than the adjusted SKAT P-values. In addition, we
also show the corresponding Q–Q plots for MURAT and adjusted
SKAT, respectively, in the left panel of Figure 4. The MURAT Q–Q
plot indicates a small amount of inflation from the null distribution.
In contrast, SKAT suffers from conservativeness for large P-values (ie,
earlier departure from the null distribution) and later inflation that
exceeds MURAT. Hence, MURAT has the potential to improve test
power over single phenotype tests by reducing adjustments for
multiple testing in the tail of the distribution.
Several genes are well-known to contain variants that influence

BMD.21 Our results did not identify these genes as significant, either
because of the limited sample size or due to performing region-based
analysis of windows containing too many non-associated variants. In
Supplementary S.4, we report the region-based P-values at 15 well-
replicated bone-density-associated genes; MURAT has smaller or
equivalent P-values at 11 of these 15 genes.
The computation time for running MURAT on all 22 autosomes

was manageable. On chromosome 1, for example, 2004 genes were
analyzed and computational time was ~ 6 h using one processor on a
node equipped with 64 GB RAM and two Intel Xeon CPUs E5645 at
2.40 GHz. In contrast, analysis of the 241 genes on chromosome 21
took only 52 min with MURAT. The runtimes for each chromosome
are summarized in Supplementary Table S2.

DISCUSSION

We have developed a new method, MURAT, to detect association
between multiple correlated continuous phenotypes and a set of rare
genetic variants. Our test can be applied to studies where features of a
complex disease are measured by multiple correlated traits. Similarly,
MURAT may be also beneficial for studies in which multiple
questionnaires assess psychological or behavioral phenotypes. Through
simulations, we show that MURAT has the potential to increase test
power. As for most other rare-variant association tests, weights can be
used in MURAT, to prioritize variants either based on MAFs or
external annotation information.
By assuming the variant effects to be random yet correlated,

MURAT is based on a linear mixed model that incorporates arbitrary
correlations among multivariate phenotypic traits. It is a generalization
of SKAT when there exist correlations among observed phenotypes.
Through the analytic derivation of the distribution of the P-value, we
can avoid the need for permutation tests, except for very small
significance thresholds. The computational costs for running our
proposed test are much less expensive than for Maity’s method

Table 3 Top genes selected from association testing of BMD phenotypes with exome-sequencing variants

P-values

SKAT MURAT

Chr Gene No. of SNPs FN LS FN and LS ρv in MURAT

2 SNX17 34 1.02×10−1 2.46×10−9 3.05×10−8 0.5

6 SLC17A5 42 2.39×10−6 4.43×10−2 6.12×10−7 0.6

20 C20orf187 3 1.12×10−2 1.14×10−1 7.73×10−6 0

Abbreviations: BMD, bone mineral density; FN, femoral neck; LS, lumbar spine; MURAT, Multivariate Rare-Variant Association Test; SKAT, sequence kernel association test; SNP, single-nucleotide
polymorphism.
Results with P-values ≤1×10−5 are shown. SKAT tests were not corrected for multiple comparisons. The last column reports the value of the correlation parameter ρv that gave the minimum P-value
in the MURAT test.
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(Supplementary S.5). An R package for MURAT can be downloaded
from http://greenwoodlab.github.io/software/.
We assumed a common correlation for the effect of the same

variant on different traits, that is, the variance–covariance matrix for β
is Σβ= τ2R⊗W, where R= (1− ρ)IK+ρ1K1K

T. This form for Σβ is a
generalization of the correlation structures used in other popular rare-
variant association tests also based on mixed models. For example,
when K= 1, the matrix Σβ reduces to τ2W, which is exactly the
variance used for SKAT with p variants. When p= 1 and K41, our
test becomes a single-variant-based multivariate test and Σβ reduces to
a K×K matrix Σβ= τ2R. Hence, the matrix Σβ in MURAT becomes
the same as that used in SKAT-O, if the identity weight matrix is
assumed for a set of K variants, as SKAT-O assumes an exchangeable
correlation structure for variant effects. If we further assume Σe=
IN⊗Σ= IN⊗(σ2IK) in equation (3), that is, the residuals are uncorre-
lated, then our proposed model (2) reduces to the one used for the
SKAT-O test.
The specific correlation matrix structure that we assumed is of

course a simplification. A more realistic assumption might allow an
arbitrary correlation matrix without any constraints. However, this
assumption leads to many parameters and it becomes impractical to

derive a feasible procedure to estimate significance. Therefore, to
compromise between biological reality and statistical feasibility, we
assumed there is only one common correlation, ρ, for the effects of the
same variant. Simulation shows that MURAT power is affected very
little by the misspecified correlation matrix for variant effects
(Supplementary S.6).
Through extra simulations, we also find that MURAT is robust to

different densities of grid for ρ (Supplementary S.7) and direction of
variant effect β, especially under scenarios of antagonistic pleiotropy,22

where one gene is associated with multiple traits; however, the variants
are beneficial for some traits and detrimental for others
(Supplementary S.8).
It could be argued that observing K phenotypes for an individual is

conceptually similar to observing only one phenotype in a family with
K members. Although equation (1) could be adapted to univariate-
trait family-based designs, the specific assumptions of our model apply
only to the multiple phenotype situation. We assume there is a
correlation (0≤ ρ≤ 1) between the effects of a single variant on
different phenotypes; in a family situation, it would make more sense
to assume a variant always has the same effect on different family
members (ρ= 1). As we have previously demonstrated, our test
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Figure 4 The left panel shows the Q–Q plot for MURAT P-values and adjusted SKAT P-values on 19 123 genes in UK10K data analysis. The slopes for the
MURAT Q–Q plot and adjusted SKAT Q–Q plot are 1.04 and 1.02, respectively. The right panel shows the comparison of − log10(P-values) between MURAT
and SKAT tests on each of the 19 123 genes. The SKAT results are corrected for multiple comparisons and the adjusted P-values are defined as twice the
minimum of the LS- and FN-based P-values obtained via SKAT.
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simplifies in this situation to a score test for a multivariate fixed effect
model, where we assume the same effect of each variant across the
multiple traits. In families, controlling for relatedness not linked to the
locus of interest is necessary and several linear mixed models23–25 have
been proposed that use the kinship matrix or realized relationship
matrix to capture these residual genetic correlations. In contrast, in
MURAT, the residual correlations in Σe could be due to either genetic
or other factors. Covariates capturing cryptic population structure (eg,
principal components26) can be added as fixed effect covariates, if
necessary.
A useful extension of our current work might be to generalize the

correlated phenotypes from continuous variables to binary ones, or a
mixture of these two types, and to extend the proposed multivariate
test to family-based studies. Research along this line will be presented
in future work.
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