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Meta-analysis of quantitative pleiotropic traits for
next-generation sequencing with multivariate
functional linear models

Chi-yang Chiu1, Jeesun Jung2, Wei Chen3, Daniel E Weeks4, Haobo Ren5, Michael Boehnke6,
Christopher I Amos7, Aiyi Liu1, James L Mills8, Mei-ling Ting Lee9, Momiao Xiong10 and Ruzong Fan*,1,11

To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple

studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of

both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple

studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai–Bartlett trace, Hotelling–

Lawley trace, and Wilks’s Lambda are introduced to test for association between multiple quantitative traits and multiple genetic

variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are

applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis

than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the

individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at

least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed

methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data.
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INTRODUCTION

Meta-analysis of multiple studies and pleiotropy analysis of multiple
traits are two areas in association studies that recently have received
extensive attention in the literature.1–10 To our knowledge, meta-
analysis and pleiotropy analysis have been performed separately so far,
and there are no gene-based meta-analysis methods for combining
multiple studies together and for carrying out a unified pleiotropy
analysis. Here, multivariate functional linear models (MFLM) are
developed to connect genetic variant data to multiple quantitative
traits adjusting for covariates in a meta-analysis context. The goal is to
take the advantage of both meta-analysis and pleiotropy analysis in
order to improve power and to carry out a unified analysis of multiple
studies and multiple quantitative traits of complex disorders.
A noticeable feature of next-generation sequencing data is that

dense panels of genetic variants are available via high-throughput
sequencing technology, and so we face high-dimension genetic
data.11–14 The genetic data can consist of rare variants, or common
variants, or a combination of the two, where the rare variants’ minor
allele frequencies (MAFs) are less than 0.01∼ 0.05. The high dimen-
sionality of genetic data and the presence of dense rare variants raise

huge challenges, and properly dealing with the high dimensionality
and rare variants is one priority of statistical research in recent years.15

In our previous research as well as research from other groups,
functional data techniques were used to reduce the dimensionality of
genetic data and to build fixed effect functional regression models for
association analysis of quantitative, dichotomous, and survival
traits.10,16–29 In most cases, it was shown that the functional regression
test statistics perform better than sequence kernel association test
(SKAT), its optimal unified test (SKAT-O), and a combined sum
test of rare and common variant effect (SKAT-C) of mixed
models.4,16–27,30–33 Specifically, mixed model-based SKAT/SKATO/
SKAT-C performs well when (a) the number of causal variants is
large and (b) each causal variant contributes a small amount to the
traits, as the assumption of mixed models is satisfied under these
circumstances.7,21,34 In most cases, however, fixed models perform
better since the causal variants of complex disorders can be common
or rare or a combination of the two and some causal variants may
have relatively large effects.10,16–27 If the number of causal variants is
large and each causal variant contributes a small amount to the traits,
it would be hard to show association as the power of a test can be
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low.35 One may want to note that SKAT and SKAT-O were shown to
have higher power than burden tests, which is another main method
to analyze rare variants.4,32,36–38 Thus, fixed models can be useful in
association studies of complex traits.
As functional regression models perform well in most cases, we are

motivated to extend them to meta-analysis of pleiotropy traits. For
individual studies, MFLM were built to perform pleiotropy analysis
between multiple genetic variants and multiple quantitative traits
adjusting for covariates in Wang et al.10 Similarly, functional linear
models were developed to perform meta-analysis of a univariate
quantitative trait in Fan et al.18 In this paper, we build MFLM to
analyze multiple traits of multiple studies and introduce related
approximate F-distributed test statistics to test for association based
on multivariate analysis theory. The proposed methods are applied to
analyze lipid traits in eight European cohorts. Simulation analysis is
performed to evaluate the false-positive rates and power of the
proposed tests.

MATERIALS AND METHODS
Consider a meta-analysis with L studies in a genomic region. For the c-th study,
we assume that there are nc individuals who are sequenced in the region at mc

variants. For each individual, we assume there are J quantitative trait
phenotypes, JZ1. In this article, the research goal is to model association
between the mc genetic variants and the J phenotypic traits by combining all
the L studies as a whole. We assume that the mc variants are located with
ordered physical positions 0rtc1o?otcmc . To make the notation simpler,
we normalized the region ½tc1; tcmc � to be [0, 1]. For the i-th individual in the
c-th study, let ycij denote her/his j-th quantitative trait (j= 1,2,⋯,J), Gci ¼
ðxciðtc1Þ;?; xciðtcmc ÞÞ0 denote her/his genotypes of the mc variants, and Zci ¼
ðzci1;?; zcicc Þ0 denote her/his cc covariates. Hereafter, ′ denotes the transpose
of a vector or matrix. For the genotypes, we assume that xciðtckÞ (= 0,1,2) is the
number of minor alleles of individual i at the k-th variant.

Multivariate functional linear models
We view the i-th individual’s genotype data as a genetic variant function (GVF)
XciðtÞ; tA½0; 1� from the c-th study. To relate the GVF to the phenotypic
traits adjusting for covariates, we consider the following MFLM for
c¼ 1; 2;?; L; i¼ 1; 2;?; nc;

Y ci ¼ Ac0 þ AcZci þ
Z
01
BcðtÞXciðtÞdt þ Eci: ð1Þ

The notations used in the model (1) are defined below

Y ci ¼
yci1
^
yciJ

0
@

1
A;Ac0 ¼

ac01
^

ac0J

0
@

1
A;Ac ¼

ac11 ? accc1
^ ^ ^

ac1J ? acccJ

0
@

1
A;

BcðtÞ ¼
bc1ðtÞ
^

bcJðtÞ

0
@

1
A; Eci ¼

εci1
^
εciJ

0
@

1
A;

where Ac0 is a vector of overall means, Ac is a cc ´ J matrix of regression
coefficients of covariates, BcðtÞ is a vector of genetic effect functions bcjðtÞ, and
Eci is a vector of error terms. For each pair of cand i, the error vector Eci is
normally distributed with a mean vector of zeros and a J× J variance–
covariance matrix Σ. Moreover, Ec1;?; Ecnc are assumed to be independent.

Expansion of Genetic Effect Function. The genetic effect functions bcjðtÞ of
BcðtÞ are assumed to be continuous/smooth functions of the position t. One
may expand it by B-spline or Fourier basis functions. Formally, let us expand
the genetic effect functions BcðtÞ by a series of Kβ basis functions
c tð Þ ¼ ðc1ðtÞ;?;cKb

ðtÞÞ0as

Bc tð Þ ¼
bc11 ? bc1Kb

^ ? ^
bcJ1 ? bc1Kb

0
@

1
Ac tð Þ ¼ Occ tð Þ; ð2Þ

where Oc is a J ´Kb matrix of coefficients bcjk. We consider two types of basis
functions: (1) the B-spline basis: ckðtÞ ¼ BkðtÞ; k¼ 1;?;Kb; and (2) the
Fourier basis: c1ðtÞ ¼ 1;c2rþ1ðtÞ ¼ sin ð2prtÞ; and c2rðtÞ ¼ cos ð2prtÞ;
r ¼ 1;?; ðKb � 1Þ=2.39–42

Estimation of GVF. To estimate the GVFs XciðtÞ from the genotypes Gci, we
use an ordinary linear square smoother.16–20,42,43 Let ϕk(t), k= 1, ⋯, K, be a
series of K basis functions, such as the B-spline basis and Fourier basis
functions. Denote ϕ(t)= (ϕ1(t), ⋯, ϕK(t))′. Let Φ denote the mc by K matrix
containing the values fkðtcjÞ, where jA1;?;mc. Using the discrete realizations
Gci ¼ ðxciðtc1Þ;?; xciðtcmc ÞÞ0, we may estimate the GVF XciðtÞ using an
ordinary linear square smoother as follows:42

X̂ciðtÞ ¼ fðtÞ0½F0F��1F0Gci: ð3Þ

Revised MFLM. Replacing BcðtÞ by the expansion (2) and XciðtÞ in the
MFLM (1) by X̂ciðtÞ in (3), we have a revised multivariate linear regression
model

Yci ¼ Ac0 þ AcZci þ Oc

Z 1

0
cðtÞj0ðtÞdt

� �
F0F½ ��1F0Gci þ Eci

¼ Ac0 þ AcZci þ OcWci þ Eci; ð4Þ
where Wci ¼

R 1
0 cðtÞf0ðtÞdt

h i
½F0F��1F0Gci. In the above revised regression

model, one needs to calculate ½F0F��1F0 and
R 1
0 cðtÞf0ðtÞdt to get Wci. In the

statistical computing environment R, there are readily available R packages to
calculate them.43

Dealing with missing genotype data. If some genotype data are missing, the
estimation (3) can be modified to estimate GVF X̂ciðtÞ. For instance, there is no
genotype information at the first variant for the i-th individual, ie, we only have
Gci ¼ ð?; xciðtc2Þ;?; xciðtcmc ÞÞ0. Let Φ1 denote the mc � 1 by K matrix
containing the values fkðtcjÞ, where jA2;?;mc. Then, we may revise the
estimation (3) as

X̂ci tð Þ ¼ f tð Þ F1
0F1½ ��1F1

0ðxci tc2ð Þ;?; xci tcmcð ÞÞ0 ð5Þ
Note that the estimation (5) only depends on the available genotype data
ðxci tc2ð Þ;?; xci tcmcð ÞÞ0. Hence, each individual’s GVF is estimated by his/her
own data. This is one advantage of functional data analysis, which can be useful
in practice. Using the estimation (5), one may revise the model (4) accordingly.

Beta-smooth-only MFLM
Model (1) is a theoretical MFLM.42 For analysis of dense genetic data, one may
use a simplified MFLM as follows

Yci ¼ Ac0 þ AcZci þ
Xmc

k¼1

BcðtckÞxciðtckÞ þ Eci; ð6Þ

where BcðtckÞ is a vector of the genetic effects at position tck for the c-th study,
and the other terms are the same as those in the general MFLM (1).
In model (6), BcðtckÞ ¼ ðbc1ðtckÞ;?;bcJðtckÞÞ0 is a vector of the genetic

effects at the position tck. We assume that BcðtÞ is a vector of genetic effect
functions bcjðtÞ of the physical position t. Therefore, BcðtckÞ; k¼ 1; 2;?;mc

are the values of vector BcðtÞ at the mc physical positions. The genetic effect
functions bcjðtÞ are assumed to be smooth. One may expand it by B-spline or
Fourier basis functions. Replacing BcðtckÞ by expansion (2), model (6) can be
revised as

Yci ¼ Ac0 þ AcZci þ Oc

Xmc

k¼1

cðtckÞxciðtckÞ þ Eci;

¼ Ac0 þ AcZci þ OcWci þ Eci; ð7Þ
where Wci ¼

Pmc
k¼1 cðtckÞxciðtckÞ. In model (6) and its revised version (7), we

use the raw genotype data Gci ¼ ðxciðtc1Þ;?; xciðtcmc ÞÞ0 directly in the
analysis. The genetic effect vector BcðtÞ is assumed to be smooth or continuous.
Hence, the models are called beta-smooth only.
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Dealing with Missing Genotype Data. If some genotype data are missing, eg, we
only have Gci ¼ ð?; xciðtc2Þ;?; xciðtcmc ÞÞ0 and xciðtc1Þ ¼ ? is missing, we may
revise the MFLM (6) as

Yci ¼ Ac0 þ AcZci þ
Xmc

k¼2

BcðtckÞxciðtckÞ þ Eci: ð8Þ

Again, the revised MFLM (8) only depends on the available genotype data
xciðtc2Þ;?; xciðtcmc Þð Þ, and it can be revised accordingly to be a form of model
(7) by expansion (2) as

Yci ¼ Ac0 þ AcZci þ Oc

Xmc

k¼2

cðtckÞxciðtckÞ þ Eci:

Traditional additive effect multivariate linear models
Traditionally, an additive effect model can be used to analyze the relation
between the trait and the mc variants in the c-study as Jung et al.44 and
Anderson45

Yci ¼ Ac0 þ AcZci þ
bc11 ? bc1mc

^ ? ^
bcJ1 ? bcJmc

0
@

1
AGci þ Eci

¼ Ac0 þ AcZci þ OcGci þ Eci; c¼ 1; 2;?; L; i¼ 1; 2;?; nc; ð9Þ
where Oc is a J ´mc matrix of coefficients bcjk, which is the additive genetic
effect of variant k for the j-th trait in the c-th study, and the other terms are
similar to those in the MFLM (1) and (6). There is only one difference between
model (6) and model (9), ie, the genetic effect coefficients bcjk in model (9) do
not depend on the physical position tck, whereas bcjðtckÞ in model (6) depends
on the physical position tck. The genetic effect coefficients bcjk in model (9) are
discrete, whereas bcjðtckÞ in model (6) are the values of function bcjðtÞ at the
physical positions tck; k¼ 1; 2;?;mc.

Approximate F-distributed test statistics
Consider the revised regression models (4), (7), and the multivariate linear
model (9), which model the genetic effect of the J phenotypic traits
simultaneously adjusting for covariates by combining the L studies together.
First, assume that the genetic effects among the L studies are different/
heterogeneous. In the test of association between the mc genetic variants
and the J quantitative traits simultaneously, the null hypothesis is
H0 : Oc ¼ Oc; c¼ 1;?; L, where Oc is a zero J×Kβ matrix OJ× Kβ for models
(4) and (7) or a zero J ´mc matrix OJ ´mc for model (9). We may test the null
H0 by approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-
Lawley trace, and Wilks’s Lambda using standard statistical approaches.45,46 The
approximate F-distributed test statistic is denoted as heterogeneous F-approx-
imation test statistics (Het-F).
Consider the revised models (4) and (7). If the genetic effects are

homogeneous, ie, Oc ¼
b11 ? b1Kb

^ ? ^
bJ1 ? bJKb

0
@

1
A ¼ O, we may test the association

between the genetic variants and the J quantitative traits by testing a simplified
null H0 :Ω=OJ× Kβ. The null H0 can be tested by approximate F-distribution
tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks’s Lambda
using standard statistical approaches. The approximate F-distributed statistic is
denoted as Hom-F.
Assume that each individual of the L studies is sequenced at the same

variants located at 0≤ t1o⋯otm and so m1 ¼ ? ¼ mc ¼ m. In addition,
assume that the genetic effects are homogenous. Let us denote

O ¼
b11 ? b1m
^ ? ^
bJ1 ? bJm

0
@

1
A. Then, the model (9) is simplified as

Yci ¼ Ac0 þ AcZci þ OGci þ Eci; c¼ 1; 2;?; L; i¼ 1; 2;?; nc: ð10Þ
The null hypothesis of no association between the genetic variants and
the quantitative traits is H0 :Ω=OJ×m. The corresponding approximate
F-distributed test statistic is denoted as Hom-F.

If there is only one study, ie, L= 1, the approximate F-distribution tests are
equivalent to those of Wang et al.10 and Het-F is the same as Hom-F. If we only
have one quantitative trait, ie, J= 1, the three approximate F-distribution tests
based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks’s Lambda are
equivalent to the F-test statistics of the standard multiple linear regression. The
models proposed in this article and the related approximate F-distribution tests
extend the models and the F-test statistics in Fan et al.18

In practice, we find that the results of the three approximate F-distribution
tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks’s Lambda
are similar to each other.10 In this article, we only report the results of
approximate F-distribution tests based on Pillai-Bartlett trace.

Parameters of Functional Data Analysis
In the data analysis and simulations, we used two functions from the fda R
package to create the basis:
Basis= create.bspline.basis(norder= order, nbasis= bbasis)
basis= create.fourier.basis(c(0,1), nbasis= fbasis)
The three parameters were taken as order= 4, bbasis= 15, fbasis= 25 in all

data analysis and simulations. To make sure that the results are valid and stable,
we tried a wide range of parameters: (1) 10rK=Kβr23 for the heterogeneous
genetic effect model and (2) 10rK=Kβr29 for the homogeneous genetic
effect model. The results are similar to each other.

RESULTS

A simulation study
To evaluate the performance of the proposed MFLM, we carried out
simulation analyses for two cases: (1) the variants are all rare; (2) some
variants are rare and some are common. Simulations were performed
for three scenarios listed in Table 4 in Supplementary Materials.4,18

For scenarios 1 and 2, we used the European-like (EUR) sequence data
used in Lee et al.32 For scenario 3, we used both the EUR and African-
American-like (AA) sequence data. Specifically, the EUR sequence data
were generated using COSI’s calibrated best-fit models, and the
generated European haplotypes mimick CEPH Utah individuals with
ancestry from northern and western Europe in terms of site frequency
spectrum and linkage disequilibrium (LD) pattern (Figure 4 in
Schaffner et al.47,48). Similarly, the AA sequence data mimic indivi-
duals with 20:80 mixture of Europeans and Africans, together with
parameters calibrated to model realistic demographic history (includ-
ing bottleneck, population expansion, and migration events). The EUR
sequence data included 10 000 chromosomes covering 1 Mb regions,
and the AA sequence data included 45 000 chromosomes covering
0.1 Mb regions. Genetic regions of 3 kb length were randomly selected
in the simulations for type I error and power calculations.

Type I error simulations. To evaluate the type I error rates of the
proposed MFLM and related tests, we generated phenotype data sets
by using the model

Y ci ¼ AcZci þ Eci: ð11Þ
Three scenarios of covariates are given in Supplementary Table S1, in
which three covariates are considered: z1 is a dichotomous covariate
taking values 0 and 1 with a probability of 0.5, z2 and z3 are
continuous covariates from a standard normal distribution N(0,1).
The vector of error terms Eci in model (11) follows a normal
distribution with a mean vector of 0 and a 3× 3 variance–covariance
matrix

S ¼
1:00 0:60 �0:35
0:60 1:00 �0:45
�0:35 �0:45 1:00

0
@

1
A

The 3× 3 variance–covariance matrix Σ is taken from an empirical
analysis of the three traits of the Trinity Students Study from Wang
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et al.10 For scenario 1 in Supplementary Table S1, the covariate
regression coefficients are given by

A1 ¼
0:5 0:5
0:4 0:6
0:3 0:7

0
@

1
A;A2 ¼

0:4 0:4
0:3 0:7
0:2 0:8

0
@

1
A;A3 ¼

0:6 0:6
0:5 0:5
0:4 0:4

0
@

1
A:

For scenarios 2 and 3 in Supplementary Table S1, the covariate
regression coefficients are given by

A1 ¼
0:5
0:4
0:3

0
@

1
A;A2 ¼

0:5 0:5
0:4 0:6
0:3 0:7

0
@

1
A;A3 ¼

0:6 0:6 0:6
0:5 0:5 0:5
0:4 0:4 0:4

0
@

1
A:

To obtain genotype data, 3 kb subregions were randomly selected in
the 1 Mb region of EUR-like data and the 0.1 Mb region of AA-like
data. The ordered genotypes were these SNPs in the 3 kb subregions.
Note that the trait values are not related to the genotypes, and so the
null hypothesis holds. The sample sizes were 1600 (study 1), 2200
(study 2), and 3200 (study 3). The simulation settings are summarized
in Supplementary Table S1. For each sample size combination,
1.2 × 106 phenotype–genotype data sets were generated to fit the

proposed models and to calculate the test statistics and related
P-values. Then, an empirical type I error rate was calculated as the
proportion of 1.2× 106 P-values that were smaller than a given α level
(ie, 0.05, 0.01, 0.001, and 0.0001, respectively).

Empirical power simulations. To evaluate the power of the proposed
MFLM and related tests, we simulated data sets under the alternative
hypothesis by randomly selecting 3 kb subregions to obtain causal
variants for the phenotype values as follows. Once a 3 kb subregion
was selected, a subset of pc causal variants located in the 3 kb
subregion for the c-th study was then randomly selected to obtain
ordered genotypes Gci ¼ ðgciðtc1Þ;?; gciðtcpcÞÞ0. Then, we generated
the quantitative traits by

Yci ¼ AcZci þ
bc11 ? bc1pc
bc21 ? bc2pc
bc31 ? bc3pc

0
@

1
AGci þ Eci; c ¼ 1; 2;?; L; i

¼ 1; 2;?; nc;

where Ac and Eci are the same as in the type I error model (11), and
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Figure 1 The empirical power of homogeneous approximate F-distributed Statistics (Hom-F) of the model (7) at α=0.0001, when the genetic effects were
simulated as homogeneous. For each trait, 20%/80% causal variants had negative/positive effects.
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the βs are additive effect for the causal variants defined as follows. We
used bcjk

��� ��� ¼ ccj log 10ðMAFkÞ
�� ��, where MAFk was the MAF of the k-th

variant. Three genetic effect scenarios were used to perform power
calculations: (1) all causal variants had positive effects; (2) 20%/80%
causal variants had negative/positive effects; (3) 50%/50% causal
variants had negative/positive effects. As in Fan et al.18 and Lee
et al.,4 three different settings were considered: 5, 10, and 20% of
variants in the 3 kb subregion are chosen as causal variants. When 5,
10, and 20% of the variants were causal, two parameter settings of
genetic effects were considered for cc ¼ ðcc1; cc2; cc3Þ: (1) homoge-
neous and (2) heterogeneous (Supplementary Table S2). In the
homogeneous case, the genetic effects are the same for the three
studies, ie, c1= c2= c3. In the heterogeneous case, the genetic effects
are different for the three studies, ie, c2= c1+(0.15,0.15,0.15),
c3= c1− (0.15,0.15,0.15). For each setting, 1000 data sets were simu-
lated to calculate empirical power as the proportion of P-values, which
are smaller than an α= 0.0001 level.

Type I error simulation results. The empirical type I error rates are
reported in Supplementary Table S3 when the variants are only rare

and in Supplementary Table S4 when some variants are rare and some
are common. For each entry of empirical type I error rates, we
generated 1.2 × 106 data sets. Results of four different α= 0.05,
0.010.001, and 0.0001 levels were reported. For the proposed
approximate F-distributed test statistics of MFLM (4) and (7) and
additive model (9), all empirical type I error rates are around the
nominal α levels for both B-spline basis and Fourier basis (columns
5–9 of Supplementary Tables S.3 and S.4). Therefore, the approximate
F-distributed test statistics of MFLM controlled type I error rates
correctly for all scenarios at all significance levels. The MFLM and
related approximate F-distributed test statistics can be useful in both
whole-genome and whole-exome association studies.

Power results. We compared the power of F-test of univariate and the
approximate F-distributed tests of bivariate and trivariate traits based
on the simulated COSI sequence data. The empirical power levels of
the test statistics at α= 0.0001 level were plotted in Figures 1 and 2. In
the figures, 20%/80% causal variants had negative/positive effects for
each trait. In the legend of all the Figures, ‘beta’ means that the power
level is from beta-smooth only model (7), and ‘add’ means that the
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Figure 2 The empirical power of Het-F of the models (7) and (9) at α=0.0001, when the genetic effects were simulated as heterogeneous. For each trait,
20%/80% causal variants had negative/positive effects.
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power level is from additive model (9). In Figure 1, the results of
‘Hom-F’ were reported when the approximate F-distributed statistics
were constructed using the homogeneous effect model (7) when the
data were generated using the homogeneous models (Supplementary
Table S2). Since the genotype data are different from study to study,
there are no power levels for homogeneous additive model (10) in
Figure 1. In Figure 2, the results of ‘Het-F’ were reported that the
approximate F-distributed statistics were constructed using hetero-
geneous effect models (7) and (9) when the data were generated using
the heterogeneous models (Supplementary Table S2). Therefore,
‘correct models’ were used to analyze simulated data in Figures 1
and 2.
In general, the power levels of F-test of the univariate y1 trait are the

lowest, the power levels of approximate F-distributed tests of the
bivariate (y1,y2) trait are in the middle, and the power levels of
approximate F-distributed tests of the trivariate (y1,y2,y3) trait are the
highest for either beta-smooth only model (7) or additive model (9) in
Figures 1 and 2. Therefore, it makes sense to perform multivariate
analysis of pleiotropy traits.

Meta-analysis of lipid traits in eight European cohorts
Lipid traits from eight European cohorts were analyzed: five from
Finland (FUSION Stage 2, D2d-2007, DPS, METSIM, and DRs
EXTRA), two from Norway (HUNT and Tromso), and one from
Germany (DIAGEN). The two Norwegian cohorts are combined into
one study for these analyses. The genotype data were generated using

the Metabochip, which was designed to fine map regions that have
been associated with metabolic traits.49 For each cohort, 54 741 genetic
variants were genotyped.
For our analysis, we utilized the existing literature as a reference for

gene selection and found that 22 gene regions were fine mapped.5 We
used Builder Mar. 2006 (NCBI36/hg18) to determine gene positions
and 5 kb was used to extend the gene region on each side of a gene.
The summary of 22 genes and the number of genetic variants in each
region are given in Supplementary Table S5, Supplementary Materials.
Four lipid traits were analyzed: high-density lipoprotein levels, low-
density lipoprotein (LDL) levels, triglycerides (TG), and total choles-
terol (CHOL). The sample sizes for each trait are provided in
Supplementary Table S6, Supplementary Materials. For each trait,
inverse normal rank transformation was performed to make sure that
normality holds. For all studies except for METSIM, age, sex, and type
2 diabetes status were used as covariates. For METSIM, age and type 2
diabetes status were used as covariates since no females were included
in the study. A significance threshold of Po3.1 × 10− 6 was taken from
Liu et al.5 (corresponding to 0.05/16 153 and allowing for the number
of genes tested therein).
Using homogeneous F-approximation test statistics (Hom-F) based

on Pillai-Bartlett trace, Table 1 reports results of three-trait and four-
trait meta-analysis of lipid traits in European studies. For each
combination of three to four traits, we observed association at five
genes of APOB, APOE, LDLR, LPL, and PCSK9. For each of the five
genes, we observed association for some of the traits in one-trait meta-

Table 1 Three-trait and four-trait meta-analysis of lipid traits in European studies using Hom-F based on Pillai-Bartlett trace

P-values of the Hom-F

Basis of Both GVF and βℓ(t) Basis of beta-smooth only

Traits Gene B-spline basis Fourier basis B-spline basis Fourier basis

LDL, TG, CHOL APOB 1.29×10−10 1.73×10−5 9.16×10−10 2.21×10−6

APOE 1.82×10−88 5.22×10−90 9.03×10−89 1.31×10−90

LDLR 3.14×10−11 2.25×10−9 3.51×10−9 8.49×10−8

LPL 1.74×10−7 2.33×10−8 8.71×10−8 1.01×10−8

PCSK9 7.55×10−6 4.00×10−7 0.000196 2.16×10−6

HDL, LDL, TG APOB 6.47×10−10 6.32×10−6 4.89×10−10 1.15×10−6

APOE 6.22×10−95 3.11×10−97 4.77×10−95 2.03×10−96

LDLR 1.03×10−11 2.16×10−10 1.34×10−10 4.51×10−9

LPL 6.31×10−7 2.98×10−7 3.64×10−7 1.69×10−6

PCSK9 1.46×10−7 3.62×10−8 4.54×10−5 1.08×10−6

HDL, LDL, CHOL APOB 1.01×10−9 1.67×10−5 5.61×10−10 2.23×10−6

APOE 1.62×10−82 1.25×10−83 5.03×10−81 5.94×10−83

LDLR 1.33×10−10 6.82×10−10 3.07×10−9 2.24×10−8

LPL 2.32×10−7 8.76×10−8 2.24×10−7 1.33×10−7

PCSK9 1.18×10−6 3.25×10−8 7.88×10−5 1.57×10−7

HDL, TG, CHOL APOB 1.11×10−10 2.93×10−6 1.66×10−10 4.11×10−7

APOE 4.59×10−88 1.10×10−88 2.10×10−87 1.06×10−86

LDLR 4.67×10−12 1.48×10−10 7.33×10−11 3.23×10−9

LPL 1.86×10−9 6.25×10−11 1.47×10−9 2.33×10−10

PCSK9 7.62×10−8 1.47×10−8 1.13×10−5 1.35×10−7

HDL, LDL, TG, CHOL APOB 2.23×10−10 1.60×10−6 1.67×10−10 1.24×10−7

APOE 4.76×10−93 1.64×10−94 7.29×10−94 8.08×10−94

LDLR 3.17×10− 11 6.89×10−11 1.13×10−9 5.15×10−9

LPL 7.41×10−8 8.79×10−9 7.14×10−8 2.20×10−9

PCSK9 1.41×10−7 1.51×10−7 8.07×10−5 4.49×10−7

Abbreviations: GVF, genetic variant function; Hom-F, homogeneous F-approximation test statistics.
The associations that attain a threshold significance of Po3.1×10−6 are highlighted in bold.5 The results of ‘Basis of Both GVF and βℓ(t)’ were based on smoothing both GVF and genetic effect
functions βℓ(t) of model (4), and the results of ‘Basis of beta-smooth only’ were based on smoothing βℓ(t) only approach of model (7).
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analysis by homogeneous models (Table 1 of Fan et al.18 presented in
Supplementary Table S7 in the Supplementary Materials). The results
of two-trait meta-analysis of the lipid traits are presented in
Supplementary Table S8, and association is observed for each of the
five genes for some of the two-trait combinations.
Using Het-F based on Pillai-Bartlett trace, Tables 2 and 3 report

results of three-trait meta-analysis of the lipid traits, and results of
four-trait meta-analysis of Het-F are presented in Table 4. By Het-F of
MFLM (4) and (7), we observe associations for some three-trait
and four-trait combinations at APOB, APOE, CDC123, CDKAL1,
CDKN2B, FTO, HMGA2, HNF1A, JAZF1, IDE, KCNQ1, KIF11,
LDLR, LPL, OASL, PCSK9, and TSPAN8. The results of two-trait
meta-analysis of lipid traits are presented in Supplementary Tables S9
and S10 and association is observed for some genes and some of the
two-trait combinations. Three traits (LDL, TG, and CHOL) are
associated with some genes in one-trait meta-analysis by heteroge-
neous models (Table 2 of Fan et al.18 presented in Supplementary
Table S11 in the Supplementary Materials). The additive effect
model (9) detects some association signals, but less than the MFLM
(4) and (7).
In study-based pleiotropy analysis of Wang et al.,10 which analyzes

each data set separately, association was observed at only two genes,
APOE and LDLR, in some studies (Supplementary Table S12 in the
Supplementary Materials from Table 1 of Wang et al.10). Thus, it is
more advantageous to perform meta-analysis of multiple studies.

DISCUSSION

Here we develop MFLM for meta-analysis of multiple quantitative
traits adjusting for covariates. On the basis of the MFLM, approximate

F-distributed statistics of Pillai-Bartlett trace, Hotelling-Lawley trace,
and Wilks’s Lambda are introduced to test for association between
multiple quantitative traits and multiple genetic variants. Simulation
analysis is performed to show that the approximate F-distributed tests
control the false-positive rates accurately. By evaluating power
performance, it is shown that it can be advantageous to perform
the proposed pleiotropy analysis instead of individual trait
analysis.1–10,27,44 Among other merits, the MFLM can handle missing
genotype data naturally.
The proposed methods were used to analyze four lipid traits in eight

European cohorts. When we use the homogeneous MFLM to analyze
three traits and four traits together, association is observed at five
genes of APOB, APOE, LDLR, LPL, and PCSK9. For each of the five
genes, we only observed association for some traits in one-trait meta-
analysis and two-trait meta-analyses (Table 1 of Fan et al.18 presented
in Supplementary Table S7 and Supplementary Table S8 in the
Supplementary Materials). Similarly, the proposed heterogeneous
MFLM detected more and stronger association signals by three-trait
or four-trait analysis than one-trait or two-trait analysis.
One special feature of MFLM is that functional data analysis

techniques are used to reduce the dimensionality of the next-
generation sequencing data.39–43 The key idea is that multiple genetic
variants of an individual is treated as a realization of an underlying
stochastic process.50 Therefore, the genome of an individual is viewed
as a continuous stochastic function that contains both genetic position
and LD information of the genetic markers. In real data analysis, one
may test whether the genetic effects are heterogeneous or homo-
geneous, ie, to test H0: Ω1= · · · =ΩL=Ω. If the H0 is rejected, the
genetic effects are heterogeneous; otherwise, they are homogeneous.

Table 2 Three-trait meta-analysis of lipid traits in European studies using Het-F based on Pillai-Bartlett trace

P-values of the Het-F

Basis of Both GVF and βℓ(t) Basis of beta-smooth only

Traits Gene B-spline basis Fourier basis B-spline basis Fourier basis Additive model (9)

LDL, TG, CHOL APOB 1.20×10−10 2.01×10−8 3.92×10−6 1.39×10−6 2.06×10−7

APOE 3.80×10−69 8.84×10−68 1.07×10−63 2.62×10−65 2.79×10−64

CDKL1 3.77×10−6 2.97×10−7 5.90×10−6 3.03×10−7 0.001498

FTO 1.15×10−6 0.000219 0.000242 0.001061 0.001042

HNF1A 1.69×10−10 1.73×10−7 4.00×10−7 3.79×10−8 2.02×10−8

LPL 5.98×10−7 2.86×10−6 1.11×10−6 2.48×10−8 0.000581

OSAL 1.37×10−6 6.14×10−5 3.08×10−5 0.000824 0.000993

TSPAN8 3.31×10−8 5.38×10−9 2.30×10−8 2.80×10−9 3.06×10−8

PCSK9 2.28×10−8 8.68×10−10 2.49×10−10 1.63×10−10 5.87×10−11

HDL, LDL, TG APOB 7.90×10−13 2.40×10−10 4.29×10−8 7.68×10−9 5.52×10−5

APOE 5.25×10−77 1.01×10−75 1.97×10−71 1.16×10−73 2.83×10−72

CDC123 1.14×10−5 1.55×10−5 8.07×10−6 1.98×10−6 0.018755

CDKL1 1.37×10−8 4.18×10−9 4.90×10−9 3.34×10−10 2.72×10−5

CDKN2B 6.12×10−7 1.95×10−6 1.64×10−6 1.51×10−6 3.72×10−6

FTO 4.38×10−8 3.80×10−6 5.76×10−6 3.88×10−5 5.65×10−5

HNF1A 1.48×10−10 1.04×10−8 4.48×10−9 1.55×10−9 1.16×10−9

JAZF1 1.58×10−6 2.31×10−6 2.80×10−6 9.99×10−6 0.003786

KIF11 1.74×10−6 0.000153 1.31×10−5 6.83×10−6 0.000198

LPL 2.29×10−7 4.09×10−7 2.36×10−7 6.03×10−9 3.59×10−5

OSAL 1.38×10−9 7.99×10−8 4.01×10−8 1.20×10−6 6.20×10−6

TSPAN8 1.95×10−11 1.28×10−12 9.49×10−12 6.69×10−13 1.43×10−11

PCSK9 4.08×10−10 3.75×10−12 6.47×10−11 6.24×10−11 2.50×10−11

Abbreviations: GVF, genetic variant function; Het-F, heterogeneous F-approximation test statistics.
The associations that attain a threshold significance of Po3.1×10−6 are highlighted in bold.5 The results of ‘Basis of Both GVF and βℓ(t)’ were based on smoothing both GVF and genetic effect
functions βℓ(t) of model (4), the results of ‘Basis of beta-Smooth Only’ were based on smoothing βℓ(t) only approach of model (7), and the results of ‘Additive Model (9)’ were based on the additive
effect model (9).
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In linkage analysis, it is well known that the genetic data are treated
as functions of the recombination fraction51,52 to order genes along a
chromosome.53 Thus, it is reasonable and esirable to treat genetic data
as functions. In linkage analysis, one needs to estimate the recombina-
tion fractions based on pedigree data. In next-generation sequencing

data, the physical positions in terms of base pairs are available in
almost all studies and one does not need to estimate them. However,
in association studies, the genetic data are usually treated as discrete
and the physical positions are simply ignored in most literature
except in recent functional regression models.10,16–29 Our functional

Table 3 Three-trait meta-analysis of lipid traits in European studies using Het-F based on Pillai-Bartlett trace

P-values of the Het-F

Basis of both GVF and βℓ(t) Basis of beta-smooth only

Traits Gene B-spline basis Fourier basis B-spline basis Fourier basis Additive model (9)

HDL, LDL, CHOL APOB 4.23×10−11 6.12×10−8 4.50×10−6 1.11×10−6 7.75×10−9

APOE 4.59×10−66 3.96×10−65 1.44×10−60 7.92×10−63 4.98×10−62

CDKL1 7.85×10−7 2.07×10−8 6.30×10−8 5.77×10−9 0.000183

FTO 2.89×10−7 4.84×10−5 0.000331 0.000907 0.001266

HNF1A 1.91×10−10 7.11×10−8 7.35×10−8 1.07×10−8 3.20×10−8

JAZF1 2.89×10−6 1.02×10−5 4.42×10−6 2.91×10−6 0.053595

LDLR 5.87×10−7 2.07×10−7 8.56×10−8 2.87×10−8 6.70×10−8

LPL 4.56×10−7 2.99×10−7 1.71×10−5 5.70×10−6 0.017553

OSAL 2.81×10−9 6.62×10−7 8.13×10−7 3.67×10−5 0.000276

TSPAN8 5.79×10−12 1.20×10−13 8.15×10−13 6.81×10−14 1.36×10−12

PCSK9 5.23×10−10 1.64×10−11 4.65×10−11 8.36×10−11 3.58×10−10

HDL, TG, CHOL APOB 3.25×10−13 7.35×10−12 5.16×10−9 2.84×10−10 1.80×10−7

APOE 1.64×10−69 8.22×10−68 1.21×10−66 9.28×10−67 1.28×10−65

CDKL1 7.17×10−8 1.18×10−8 4.47×10−8 2.38×10−9 2.55×10−5

FTO 2.86×10−8 6.38×10−7 2.41×10−6 2.03×10−5 2.91×10−5

HNF1A 7.17×10−9 4.60×10−7 9.22×10−8 2.14×10−8 2.38×10−8

KIF11 2.68×10−6 9.95×10−5 2.74×10−5 1.35×10−5 0.001113

LPL 5.18×10−8 9.15×10−8 2.73×10−7 1.13×10−9 1.50×10−5

OSAL 9.59×10−8 4.81×10−7 1.17×10−7 1.20×10−6 4.65×10−6

TSPAN8 3.34×10−9 1.15×10−10 4.38×10−10 4.82×10−11 7.09×10−10

PCSK9 8.29×10−11 2.89×10−11 2.95×10−10 4.21×10−10 1.59×10−11

Abbreviations: GVF, genetic variant function; Het-F, heterogeneous F-approximation test statistics.
The associations that attain a threshold significance of Po3.1×10−6 are highlighted in bold.5 The results of ‘basis of both GVF and βℓ(t)’ were based on smoothing both GVF and genetic effect
functions βℓ(t) of model (4), the results of ‘basis of beta-smooth only’ were based on smoothing βℓ(t) only approach of model (7), and the results of ‘additive model (9)’ were based on the additive
effect model (9).

Table 4 Four-trait meta-analysis of lipid traits in European studies using Het-F based on Pillai-Bartlett trace

P-values of the Het-F

Basis of both GVF and βℓ(t) Basis of beta-smooth only

Traits Gene B-spline basis Fourier basis B-spline basis Fourier basis Additive model (9)

HDL, LDL, TG, CHOL APOB 7.23×10−13 1.66×10−11 7.62×10−8 3.28×10−9 5.26×10−15

APOE 7.45×10−74 3.26×10−72 4.64×10−67 1.61×10−69 3.18×10−68

CDC123 4.12×10−5 0.000519 5.53×10−7 3.87×10−7 0.016618

CDKAL1 2.37×10−8 2.66×10−9 5.03×10−9 8.06×10−10 0.000182

FTO 1.73×10−9 2.29×10−6 2.77×10−6 2.88×10−5 3.83×10−6

HMGA2 1.92×10−5 4.07×10−5 6.97×10−6 1.34×10−6 2.99×10−8

HNF1A 4.40×10−14 9.32×10−10 2.99×10−10 5.91×10−12 2.05×10−10

IDE 7.57×10−6 1.92×10−6 5.52×10−7 2.29×10−6 0.057381

KCNQ1 8.64×10−7 2.16×10−7 0.000121 4.23×10−5 1.85×10−5

KIF11 4.54×10−7 3.00×10−5 4.33×10−6 2.50×10−6 0.000326

LDLR 6.34×10−7 7.06×10−7 3.60×10−7 2.02×10−7 3.96×10−7

LPL 3.62×10−9 3.71×10−8 9.08×10−9 2.48×10−11 1.11×10−5

OASL 1.11×10−10 1.64×10−8 3.87×10−9 1.88×10−7 6.23×10−7

PCSK9 7.64×10−10 3.82×10−11 2.57×10−11 1.37×10−10 5.53×10−10

TSPAN8 8.05×10−13 9.58×10−15 2.03×10−13 6.01×10−15 3.48×10−13

Abbreviations: GVF, genetic variant function; Het-F, heterogeneous F-approximation test statistics.
The associations that attain a threshold significance of Po3.1×10−6 are highlighted in bold.5 The results of ‘basis of Both GVF and βℓ(t)’ were based on smoothing both GVF and genetic effect
functions βℓ(t) of model (4), the results of ‘basis of beta-smooth only’ were based on smoothing βℓ(t) only approach of model (7), and the results of ‘additive model (9)’ were based on the additive
effect model (9).
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regression models provide a way to properly utilize the physical
positions in gene-based association studies.
In genetic meta-analysis, summary statistics from different studies

are usually used to meta-analyze the data as individual data are not
always available.5,54 In our case, the European cohorts individual
genetic data are available for analysis. Therefore, we build our MFLM
using the individual-level data. If only summary statistics of functional
regression models are available from different studies, it is still an open
question if those statistics can be used to meta-analyze the data. It is
known that meta-analysis using individual data are advantageous over
meta-analysis of summary statistics in non-genetics studies.55–57 It
would be interesting to evaluate the pros and cons of two approaches
in genetic association analysis in the future studies. Note that the
functional regressions are simply ordinary regressions after revising the
theoretical functional models by functional data analysis techniques,
and so the strategy of usual meta-analysis would be useful.54 It should
be possible to use results from functional regression models for a
meta-analysis across cohorts. However, the details are still waiting for
further work.
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