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Joint association analysis of a binary and a quantitative
trait in family samples

Shuai Wang*,1, James B Meigs2,3 and Josée Dupuis1,4

In recent years, improved genotyping and sequencing technologies have enabled the discovery of new loci associated with

various diseases or traits. For instance, by testing the association with each single-nucleotide variant (SNV) separately, genome-

wide association studies (GWAS) have achieved tremendous success in identifying SNVs associated with specific traits. However,

little is known about the common genetic basis of multiple traits owing to lack of efficient methods. With the use of extended

quasi-likelihood, a Wald test has been proposed to perform a bivariate analysis of a continuous and a binary trait in unrelated

samples. However, owing to its low computational efficiency, it has not been implemented in real applications to large-scale

genetic studies. In this paper, we propose an efficient bivariate robust score test for two traits, one continuous and one binary,

based on extended generalized estimating equations. Our approach is applicable to both family-based and unrelated study

designs and can be extended to test the association of multiple traits. Our simulation studies demonstrate the type-I error rate of

our approach is well controlled in all minor allele frequency (MAF) scenarios, with MAF ranging from 1 to 30%, and the method

is more powerful in certain MAF scenarios than univariate testing with correction for multiple testing. Because of the

computational advantage of score tests, our approach is readily applicable to GWAS or sequencing studies. Finally, we present a

real application to uncover genetic variants associated with body mass index and type-2 diabetes in the Framingham

Heart Study.
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INTRODUCTION

In recent years, univariate association test has been implemented as
the predominant statistical method in genetic epidemiology and has
yielded fruitful results in many applications. For example, univariate
association tests have led to tremendous success in the discovery of
disease susceptibility loci when applied to genome-wide association
studies (GWAS) for various diseases. However, for the genetic
association testing of multiple and often correlated traits, univariate
association testing combined with multiple testing correction has
usually been implemented owing to the ease of computation. Other
variations include MultiPhen1 and Yang’s combination of univariate
association tests.2 However, none of these approaches are as powerful
or efficient as a joint multivariate test with each trait treated as a
dependent variable in discovering genetic loci associated with all traits
under study.1,3,4

For example, in the case of two continuous traits assumed to be
normally distributed, a joint test can be derived as a simple extension
of a univariate normal test. However, if one of the two traits is a
discrete trait, for example, a binary trait, deriving such a test becomes
challenging, and it further complicates in family samples. One reason
is that there is no exact closed form of the likelihood function for a
binary trait in family samples. Although applications of linear mixed
effects models (LMM) have been frequently used to analyze binary
traits in GWAS, researchers have demonstrated that, in the presence of
relatedness, LMM results in incorrect type-I error rate owing to the
violation of homoscedasticity assumption.5

Quasi-likelihood-based approaches, such as generalized estimating
equations (GEE), have been proposed to address the question of
correlated data.6–8 GEE has been frequently used to analyze correlated
data in univariate association tests such as application to GWAS in
families.9,10 For instance, Wang et al.11 applied GEE to test gene-based
and single-nucleotide variant (SNV) association with a single binary
trait in family data, assuming that the working correlation matrix is a
function of the relationship matrix. When treating the correlation
parameters as nuisance parameters, the estimators of GEE have been
shown to lack asymptotic efficiency,12 a common weakness of typical
GEE approaches. An improved version of GEE was proposed by Zhao
and Prentice,7,8 in which regression parameters and correlation
parameters are estimated simultaneously based on pseudo
maximum-likelihood approach. However, the improved efficiency
comes at the cost of having to specify a correct covariance structure,
and the third and fourth moments are necessary for the estimation.8,12

Using principles from the extended quasi-likelihood,13,14 Hall and
Severini12 established the theory of extended generalized estimating
equations (EGEE). Instead of treating correlation parameters as
nuisance parameters, EGEE estimates them jointly with the regression
parameters and does not require correct specification of a working
correlation matrix and therefore only requires up to the second order
of moments. Hence, EGEE has been proven to be more powerful,
more asymptotically efficient and more computer efficient than GEE
while retaining many of its good properties.12

Based on the idea of EGEE, Liu et al.15 developed an approach
specifically for bivariate genetic analysis. They proposed a joint Wald
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test to evaluate the association between a SNV and the two traits.
The joint Wald test asymptotically follows a chi-squared distribution
with two degrees of freedom. However, applications to large-scale
genetic studies such as GWAS leads to large computational burden
because the parameters have to be estimated first before constructing
the test statistic each time a SNV is evaluated for association. Another
limitation of EGEE application by Liu et al.15 is that it is only intended
for unrelated subjects and hence is not applicable to family data.
However, there has been an increasing need for methods suitable for
family-based study designs because of the presence of related individuals
in many existing cohorts, such as the Framingham Heart Study (FHS)
and the Family Heart Study. These family-based studies have enabled
the discovery of clinical and genetic risk factors influencing cardiovas-
cular and related diseases’ risk and have made great contributions to our
current understanding of several complex diseases.
In this paper, we construct a model to accommodate familial

correlation, and we propose an efficient robust score test to jointly
evaluate the association between a SNV and two traits, one
continuous and one binary trait. Moreover, our approach has wider
applicability: it can also be applied to test the association with two
binary traits or a single binary trait. Our simulation studies demon-
strate that the type-I error of our approach is well controlled under all
minor allele frequency (MAF) scenarios down to 1% MAF. It is also
shown that the score test is more powerful in certain scenarios than
the univariate testing corrected for multiple testing. Finally, we present
a real application to the FHS by analyzing body mass index (BMI) and
type-2 diabetes (T2D) as the two traits of interest and report multiple
SNV associations in or near genes with prior implication with one or
both of these traits. We also report SNVs in genes that have yet to be
implicated in the genetics of these traits and hence represent possible
new loci. For implementation of source code, please see http://sites.bu.
edu/fhspl/publications/bivaregee/.

METHODS
We first state the assumptions and define the model equations for one
continuous and one binary trait in family samples. We assume that there are
N independent families (i= 1,…, N) with a total sample size of n, and the
family size (ni) depends on the family index (i). The model is composed of two
simultaneous equations written as:

Y c ¼ Xcbc þ GbcG þ bþ ϵ
g E Yb½ �ð Þ ¼ Xbbb þ GbbG

where the continuous trait Yc and the binary trait Yb are n×1 vectors;
Xc is the design matrix for the continuous trait-specific covariates,
including an intercept, with a dimension of n× pc; βc is a pc × 1
coefficient vector for the intercept and the (pc− 1) covariates; Xb is the
design matrix for the binary trait-specific covariates, including the
intercept, with a dimension of n× pb; βb is a pb × 1 coefficient vector
for the intercept and the (pb− 1) covariates; G is an n×1 genotype
vector for the SNV; βcG and βbG are the corresponding SNV
coefficients for the continuous and the binary traits, respectively;
and b is the random intercept following a normal distribution of
N 0; s2aU
� �

with the relationship matrix Φ being twice the kinship
matrix. The vector ε is a random error term assumed to follow a
normal distribution of N 0; s2eI

� �
where I is the n× n identity matrix.

We account for within-family correlation by defining the overall variance

matrix of the two traits in family blocks as V ¼
V 1 ? 0
^ & ^
0 ? VN

24 35 where

Vi (i= 1, …, N) is the variance matrix of the two traits for the ith family with a
dimension of 2ni×2ni. The within-family covariance matrix has a form

Var Y cið Þ cov Yci;Ybið Þ
cov Y ci;Ybið ÞT Var Ybið Þ

� �
where Var(Yci) is the covariance matrix of

the continuous trait, cov(Yci,Ybi) is the covariance matrix between the
continuous and the binary trait and Var(Ybi) is the covariance matrix of the
binary trait. Because the variance matrix is crucial to the parameter estimation,
we further define the individual components of the variance matrix explicitly as
follows:
For the ith family, the covariance matrix of the continuous trait is expressed

as

Var Y cið Þ ¼ s2aUi þ s2eIi;

The covariance matrix of the binary trait Var(Ybi) and the covariance matrix
between the continuous and the binary trait cov(Yci, Ybi) have the following
forms:

Var Ybið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ybi1ð Þp

? 0
^ & ^
0 ?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ybinið Þp

0@ 1ARi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ybi1ð Þp

? 0
^ & ^
0 ?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ybinið Þp

0@ 1A
cov Y ci;Ybið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Y ci1ð Þp

? 0
^ & ^
0 ?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Y cinið Þp

0@ 1ARbci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ybi1ð Þp

? 0
^ & ^
0 ?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ybinið Þp

0@ 1A
where Φi (i= 1,…, N) is the ith family relationship matrix with a dimension of
ni×ni and Ii is the ni×ni identity matrix. We use the same working correlation
matrix Ri=Φiϕ (ϕ is an unknown parameter) as in Wang et al.11 with the
diagonal elements fixed to 1. The elements of Rbci (−1≤ r≤ 1 is an unknown
parameter) are defined as follows 81rj; j0rnið Þ:

rjj0 ¼ r
1

ðFi Þjj0 ðFiÞjj0a0
0 ðFiÞjj0 ¼ 0

(
Where Fið Þjj0 is the jj′th element of the relationship matrix Φi.
Then, based on the EGEE score equations,12

PN
i¼1 Ui b; að Þ ¼PN

i¼1
Di

0 0
0 Fi

0

� �
V�1

i 0
0 I

� �
yi � li
si � ri

� �
¼ 0, the Fisher’s scoring algorithm

is implemented iteratively to update the regression parameters β= (βc, βcG, βb,

βbG)
T and the correlation parameters a ¼ s2a;s

2
e ;f; r

� �T
until some conver-

gence criterion is met.12,15 The (m+1)th iteration equations are:

b mþ1ð Þ

a mþ1ð Þ

� �
¼ b mð Þ

a mð Þ

� �
þ U� b mð Þ; a mð Þ

� ��1XN

i¼1
Ui b mð Þ; a mð Þ
� �

where U� b mð Þ; a mð Þ
� �

¼ �E D
PN

i¼1 Ui b mð Þ; a mð Þ
� �h i

¼PN
i¼1

Di
0V�1

i Di 0
Fi

0∂ri
∂b0

Fi
0∂ri
∂a0

 !
15,16;

Df denotes the Jacobian of f; Di=
∂li
∂b is the stacked matrix with a size of

2ni× (pc+pb+2); Fi ¼ ∂vec V�1
ið Þ

∂aT ; and σi is the vectorized Vi. We are estimating

both regression parameters β and the correlation parameters α simultaneously,
while in Wang’s method for a single binary trait,11 the estimates of regression
parameters are first updated based on the scoring equations for β only, and the
correlation parameter ϕ is then updated based on the formula of Pearson
residuals.17 The convergence of Wang’s method is solely based on β. However,
the convergence of our novel approach is based on the Euclidean distance
between iterations for β, α.
Note that when the approach is applied to unrelated samples, it is equivalent

to specifying Φi= I, ϕ= 1, s2a ¼ 0, reducing the score equations above to the
form proposed by Liu et al.15

Robust score test
Breslow18 developed a score test for overdispersed Poisson regression and other
quasi-likelihood models in 1990, and then Guo et al.19 demonstrated its
advantage over the sandwich estimator. Following the same rationale, we derive
a robust score test to evaluate the null hypothesis of no association between the
genotypes and the two traits. Equivalently, we are testing H0 : bcG ¼ bbG ¼ 0.
Note this could be easily extended to analyze two binary traits or a single
binary trait.
Let U 1ð Þ ¼ Ubc

Ubb

� �
denote the vector of score function with respect to

h 1ð Þ ¼ bTc ; b
T
b

� �T
, U 2ð Þ ¼ UbcG

UbbG

� �
denote the vector of score function with

Bivariate association analysis in families
S Wang et al

131

European Journal of Human Genetics

http://sites.bu.edu/fhspl/publications/bivaregee/
http://sites.bu.edu/fhspl/publications/bivaregee/


respect to h 2ð Þ ¼ bcG;bbGð ÞT and let ĥ0 and â0 denote the parameter estimates

under H0. We propose the following score test statistic:

S ¼ A ĥ0; â0

� �
U ĥ0; â0

� �� �T
A ĥ0; â0

� �XN

i¼1
Ui ĥ0; â0

� �
UT

i ĥ0; â0

� �h i
AT ĥ0; â0

� �n o�1
A ĥ0; â0

� �
U ĥ0; â0

� �
:

where A ¼ �U�
h 2ð Þh 1ð Þ U�

h 1ð Þh 1ð Þ

� ��1
; I

� �
; U ¼ U 1ð Þ

U 2ð Þ

� �
¼PN

i¼1 Ui ¼
PN

i¼1
U 1ð Þ

i

U 2ð Þ
i

 !
; U� is

as previously defined; and I is the 2× 2 identity matrix. (see Appendix for

derivation details). The proposed test statistic asymptotically follows a w22
(termed as ‘BivarEGEE’). When the covariance structure is correctly specified,18

that is, E U h 1ð Þ; h 2ð Þ
� �

UT h 1ð Þ; h 2ð Þ
� �h i

¼ �E
∂U h 1ð Þ ;h 2ð Þð Þ

∂hT

	 

, the variance for-

mula of U(2) will reduce to U�
22 � U�

21U
��1
11 U�

12 (the subscript 1 and 2

corresponds to θ(1) and θ(2), respectively). The test statistic with this restriction

is termed as ‘BivarEGEER’.

Simulations
We conduct simulation studies to evaluate the validity of our approach to test
the association between SNVs with different MAF and two traits. We also
compare the power of our approach to a univariate approach to determine
under which circumstances it is more powerful.

Type-I error
We compare the type-I error rate of our approach to the minimum P-value
obtained from the univariate association testing for each trait with Bonferroni
correction for multiple testing of two traits (‘minP’). We simulate the traits
under the null hypothesis that there is no genetic association with any of the
two traits, that is, H0 : bcG ¼ bbG ¼ 0. We simulate 8 SNV scenarios with MAF
ranging from 0.01 to 0.3. For each SNV and trait scenario, we simulate 50 000
replicates and calculate the proportion of simulations reaching the significance
threshold of 0.001. In each replicate, we simulate a total of 1000 independent
nuclear families with 2 parents and the number of children randomly
determined from a discrete uniform distribution ranging from 1 to 4, so that
family size ranges from 3 to 6 members. Within each family, we simulate the
genotypes of the parents under Hardy–Weinberg equilibrium, and the
children’s genotypes using random allele dropping. We also simulate two
covariates: age and sex. Given a family, the sex of the offspring is randomly
assigned and we simulate age in the following way: we first simulate the age of
the youngest adult offspring from a continuous uniform distribution ranging
from 30 to 50, additional offspring’s ages are set to be within 5 years of the first
one with at least a 1-year gap so that the possibility of them being twins is
excluded. The mother is assumed to be 20–45 years older than all her offspring,
and the father’s age is set to be within 5-year of the mother’s age and he must
be at least 20 years older than his oldest offspring. We then simulate two
continuous traits influenced by age and sex only, based on the following two
equations, so that age and sex explains around 4.5 and 5.4% of the total
variance of y1 versus 11 and 0.9% of y2:

y1 ¼ 0:025ageþ 0:5sexþ ε1;
y2 ¼ 0:04ageþ 0:2sexþ ε2;

where
� ε1
ε2

�
BN 0;Ra#Uþ Re#Ið Þ, the additive covariance matrix

is Ra ¼
� 0:5 0:25
0:25 0:5

�
and the environmental covariance matrix is

Re ¼
� 0:5 0:25
0:25 0:5

�
.

We transform y2 to a binary variable using a threshold model with a disease
prevalence of 30%, assuming a disease with a high prevalence such as obesity or
hypertension in older adults. Based on the same trait and covariates data set, in
each replicate, we compute the ‘minP’ as follows: we conduct univariate
association testing on y1 and the transformed binary version of y2, select the
smaller P-value, and then multiply it by a factor of 2 (Bonferroni’s correction).
In both approaches, the type-I error rate is defined as the proportion of
replicates with P-valueo0.001.

Power simulation
We compare the power of our approach to the minimum P-value obtained
from univariate tests (minP) under the same scenarios (Table 1) and the same
family structure as above. In addition to the effects of sex and age, we include
an additively coded genetic variant to the model, so that the traits are simulated
under the alternative hypothesis that there is an association between the
genotypes and each of the two traits:

y1 ¼ 0:025ageþ 0:5sexþm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1%
2MAF 1�MAFð Þ

q
Gþ ε1;

y2 ¼ 0:04ageþ 0:2sexþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1%
2MAF 1�MAFð Þ

q
Gþ ε2;

where m is used to model the relative strength of association and takes values of
− 0.5, − 0.1, 0.1 and 0.5 under different scenarios; and ε1 and ε2 follow the same
normal distribution as for the type-I error simulations. We adjust the
correlation parameter ρ (= 0.2, 0.5 or 0.8) in the additive covariance matrix

Ra ¼ 0:5 0:5r
0:5r 0:5

� �
to reflect different correlation magnitude between the

two traits. We set Σe equal to Σa, except in the last two scenarios (the bottom
row in Figure 1), where the covariance term in Σe is set to be negative.
For each scenario, we simulate 1000 replicates and then compute the power

as the proportion of simulations reaching the significance threshold of 0.0001, a
threshold that gives a good range of power for the methods compared.

Framingham Heart Study
One important motivation for developing the model and proposing the score
test statistic is to provide a computationally efficient approach applicable to
large-scale genetic studies such as GWAS, exome sequencing or whole genome
sequencing (WGS) studies. In the application section, we perform a genome-
wide association of BMI and T2D in the FHS, to better understand the
common genetic basis of these two traits.
The FHS was initiated in 1948 and is a longitudinal study consisting of three

generations of cohorts: the Original cohort, the Offspring cohort and the third
generation (Gen 3) cohort, totaling 14, 428 participants. Some participants were
recruited from the same household, and hence are related. Over the years,
research efforts in FHS have been rewarded with fruitful results in identifying
risk factors of cardiovascular-related traits such as blood pressure and
cholesterol levels, as well as glycemic and other metabolic traits.
Obesity is an important risk factor in the development of T2D.20,21 By

applying our approach to BMI, a continuous variable, and T2D, a binary
variable, on a genome-wide scale, we hope to better understand their common
genetic basis. In our analyses, both traits are adjusted for age and sex.
We analyze the association between these two traits and genotypes from the

Framingham SNP Health Association Resource (SHARe) project sponsored by
the National Heart, Lung and Blood Institute (NHLBI). Genotypes from
Affymetrix 500K genotyping arrays (Affymetrix, Santa Clara, CA, USA),
supplemented by the Affymetrix MIPS array, were available on 8481 partici-
pants after exclusion for low call rate (o97%), heterozygosity rate outside of 5
SDs from the mean or excess Mendelian errors (41000). Additional SNVs
were imputed with the software MACH (Markov Chain-based haplotyper)
using the HapMap 2 reference haplotypes.22

Table 1 Type-I error simulation results

MAF BivarEGEE (SD) BivarEGEER(SD) minP (SD)

0.01 0.0006 (1.1×10−4) 0.0006 (1.1×10−4) 0.0009 (1.3×10−4)

0.02 0.0006 (1.1×10−4) 0.0007 (1.2×10−4) 0.0009 (1.3×10−4)

0.03 0.0007 (1.2×10−4) 0.0007 (1.2×10−4) 0.0009 (1.3×10−4)

0.04 0.0009 (1.3×10−4) 0.0009 (1.3×10−4) 0.0009 (1.3×10−4)

0.05 0.001 (1.4×10−4) 0.010 (1.4×10−4) 0.0009 (1.3×10−4)

0.1 0.001 (1.4×10−4) 0.0011 (1.5×10−4) 0.0008 (1.3×10−4)

0.2 0.001 (1.4×10−4) 0.001 (1.4×10−4) 0.001 (1.4×10−4)

0.3 0.001 (1.4×10−4) 0.001 (1.4×10−4) 0.0009 (1.3×10−4)
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RESULTS

Type-I error
Simulation results show that the type-I error rate of our proposed
approach (‘BivarEGEE’) is well controlled in all MAF scenarios where
MAF ranges from 0.01 to 0.3 (Table 1). We also provide the type-I

error rate when the variance structure is assumed to be correctly
specified (‘BivarEGEER’). The fact that both approaches yield the same
type-I error rate in all MAF scenarios is a good indication that the
variance structure is correctly modeled. The type-I error rate of the
minP approach is also well controlled at α= 0.001.

Figure 1 Power (y axis) as a function of MAF (x axis). Different trait correlation (ρ) values are distinguished by different color lines, and different effect size
proportion (m) are presented in each panel: (a) m=−0.1; (b) m=−0.5; (c) m=−0.5 (negative environmental covariance); (d) m=0.1; (e) m=0.5;
(f) m=−0.5 (negative environmental covariance).
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Power simulations
The results of power simulations are presented in Figure 1. The results
suggest that when the two untransformed traits have opposite
direction of association with the SNV, our proposed approach is
consistently more powerful. The highest power gain from BivarEGEE
over minP reaches 40%. In the scenarios where both traits have the
same direction of association, the power gain differs depending on the
relative association strength m and the correlation ρ. For instance,
when m= 0.1, BivarEGEE is more powerful or as powerful as minP
when the two untransformed traits are strongly or moderately
correlated (ρ= 0.8 or 0.5), while the power slightly decreases when
the two traits have a weak correlation (ρ= 0.2). When m= 0.5,
BivarEGEE is at least as powerful as minP when the two traits have
a weak or moderate correlation, while with increased correlation, the
power tends to suffer some small loss. When the covariance term of

the environmental covariance matrix Σe is set to be negative, our
approach is consistently more powerful for common variants
(MAF40.02).

Application to the FHS
We apply our approach to study the genome-wide association between
genetic variants from the Framingham SHARe and the combination of
BMI and T2D status in FHS participants. A total of 7038 genotyped
and phenotyped participants in 1185 families are analyzed after
participants with missing traits or without genotypes are omitted.
Both traits are adjusted for age and sex. We present the genome-wide
association results as the minus logarithm base 10 of the P-value in
Figure 2 and also provide a list of the top 20 SNVs with the smallest
P-values in Table 2. Three SNVs reach the GWAS significance
threshold of 5 × 10− 8, including the top 2 SNVs from chromosome
4, near the height-associated gene HHIP.23 The chromosome
4-associated SNVs are also near TMEM154, a T2D-associated gene
identified by the DIAbetes Genetics Replication And Meta-analysis
(DIAGRAM) Consortium in 2014.24

Among the remaining top 20 SNVs, chromosome 16 SNVs
(rs8059849, rs9931529, rs13332434, rs9783765) are near FTO, a gene
known for its association with both BMI and T2D.24–29 The SNV
rs10894188 (chromosome 11) is near MTNR1B, a gene known to be
associated with both T2D and obesity-related traits;26 rs12097783
(chromosome 1) is near previously identified BMI gene SEC16B;29–32

rs11145958 (chromosome 9) is near GPSM1, a T2D-associated gene;33

5 SNVs on chromosome 1 are near NOTCH225 and ADAM30,25 two
genes known for SNVs associated with T2D; rs17863929 (chromo-
some 4) is approximately 3 Mb away from IL2,34 a gene known for
SNVs in the intron region associated with type-1 diabetes.

DISCUSSION

We propose a novel approach to test the association between a genetic
variant and two traits, at least one of which is binary, in family
samples, based on EGEE. Our approach can handle a range of families,

Figure 2 GWAS results for the 23 chromosomes using the FHS SHARe
550 k genotype data. The y axis is the − log10-transformed P-value, and the
x axis represents the coordinates of the SNVs on the 23 chromosomes.

Table 2 Top 20 SNVs of SHARe GWAS of BMI and T2D

rsID dbSNP (GRCh38) P-value Previously associated trait: nearest gene P-value (BMI) P-value (T2D)

rs17363126 Chr4: g.141595017T4C 2.3×10−8 Height: HHIP T2D: TMEM154 0.09 1.7×10−8

rs17459397 Chr4: g.141541225T4C 2.5×10−8 Height: HHIP T2D: TMEM154 0.07 4.7×10−9

rs8066504 Chr17: g.64334251C4T 4.0×10−8 NA 0.06 1.4×10−8

rs16825415 Chr1: g.21494365G4A 9.3×10−8 NA 0.60 2.3×10−8

rs4545864 Chr17: g.16682354G4C 1.2×10−7 NA 0.21 2.4×10−8

rs16825373 Chr1: g.21469182C4T 1.2×10−7 NA 0.63 2.8×10−8

rs12097783 Chr1: g.171941188C4G 1.6×10−7 BMI: SEC16B 0.53 4.3×10−8

rs2316510 Chr1: g.21442519G4T 1.6×10−7 NA 0.71 3.7×10−8

rs10894188 Chr11: g.99957388G4C 1.6×10−7 Obesity-related traits: MTNR1B T2D: MTNR1B 0.80 3.2×10−8

rs11145958 Chr9: g.136360621G4A 1.7×10−7 T2D: GPSM1 0.48 1.9×10−8

rs12023850 Chr1: g.115262772G4A 1.8×10−7 T2D: NOTCH2 ADAM30 0.10 5.1×10−8

rs12031246 Chr1: g.115262711C4T 1.9×10−7 NA 0.10 5.4×10−8

rs4839429 Chr1: g.115259437C4T 1.9×10−7 NA 0.10 5.3×10−8

rs17033541 Chr1: g.115259165G4A 1.9×10−7 NA 0.10 5.4×10−8

rs17033538 Chr1: g.115259019T4C 1.9×10−7 NA 0.10 5.5×10−8

rs8059849 Chr16: g.60021262A4G 2.0×10−7 T2D and BMI: FTO 0.66 8.4×10−8

rs9931529 Chr16: g.60025332A4C 2.0×10−7 T2D and BMI: FTO 0.65 8.4×10−8

rs13332434 Chr16: g.60041028A4C 2.1×10−7 T2D and BMI: FTO 0.64 8.5×10−8

rs17863929 Chr4: g.117796608C4A 2.2×10−7 T1D: IL2 0.008 3.6×10−8

rs9783765 Chr16: g.60012023A4G 2.4×10−7 T2D and BMI: FTO 0.56 1.3×10−7
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including large and complex pedigrees. Using simulation studies, we
demonstrate that our approach has well-controlled type-I error rate in
all the scenarios evaluated and is more powerful than univariate tests
adjusted for multiple testing in certain scenarios.
Our approach is based on extended quasi-likelihood. Fisher’s

scoring algorithm is implemented for parameter estimation. It is
worth noting that we model the covariance matrix of the binary and
continuous traits as a function of the kinship matrix. Moreover, we
propose to use a conditional correlation matrix to account for the
correlation between the two traits, which is novel. All these features
lead to a computer-efficient implementation that allows for genome-
wide applications. In the simulation studies, our unrestricted approach
(‘BivarEGEE’) has similar type-I error rate as the restricted version
(‘BivarEGEER’), so we are confident that the covariance structure is
correctly modeled in our approach. However, ‘BivarEGEE’ is more
flexible, because it has no additional restrictions on the covariance
structure of the traits. Using a similar framework, our approach can be
easily extended to the analysis of two binary traits or a single binary
trait, for which R functions and sample codes are also available on the
webpage. The approach should readily be extendable to genetic
analysis of three or four traits simultaneously. However, extensions
to 44 traits might add complexity to the model and implementation.
Although our approach is based on joint estimation and testing, it is

computer efficient. Table 3 lists computing time when applied to data
with different family structure and sample size, including parameter
estimation under the null hypothesis, computing the test statistic and
P-value on a single node of Intel(R) Xeon(R) CPU E5-2640 0 @
2.50 GHz Linux machine. As a score test, the parameter estimation is
performed only once under the null hypothesis prior to application to
a large-scale genetic study, such as GWAS. The computational time for
minP is also listed in Table 3. It takes approximately half the time to
analyze a single binary trait compared with that to analyze the two
traits jointly. The time it takes to analyze a continuous trait using
famskat35 increases exponentially with the sample size. By contrast, it
is not computationally affordable to apply the Wald test proposed by
Liu et al.15 to a large-scale genetic study, because the parameters always
have to be re-estimated each time a new SNV is tested for association.
Bivariate genetic association testing is not new, but it has not been

extensively applied, due to various limitations or non-availability of
the existing methods and software. In this paper, we develop a
bivariate approach, BivarEGEE, and we apply our approach to a real
data set and found interesting associations. For instance, we replicate
some loci close to relevant genes known to have impact on both traits,
such as FTO and MTNR1B. One novel region (chr1:115,259,019-
115,262,711 using GRCh38) on chromosome 1 was among our top
findings; however, no prior T2D or BMI associations have been
reported in this region. Replication from an independent study using

our approach or other multivariate methods is needed to determine
whether this finding is spurious or a real replicable association that we
have identified using BivarEGEE and would have been undetectable
without a powerful bivariate analytic approach. It is worth noting that
our approach is not purely driven by the more significantly associated
trait. For example, rs1558902 (FTO, chromosome 16) is the most
significantly associated SNV with BMI (P= 2.6× 10− 9) but is not
associated with T2D (P= 0.20). The overall P-value of rs1558902 with
both traits (P= 1.7× 10− 6) does not reach the GWAS significance
threshold.
Current GWAS often involve meta-analysis of independent studies

in a consortium, because meta-analysis can greatly increase sample size
and power. In the future, we aim to develop meta-analysis method for
the BivarEGEE approach. This will provide a more powerful bivariate
approach to study two traits that commonly occur in human
physiology and disease and offers a powerful approach to identify
novel SNV associations with multiple correlated traits.
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APPENDIX

Below we show how the coefficient matrix A of the score function is
derived.
Let U(3) denote the score function vector with respect to the

correlation parameter vector α, and U(1), U(2) is as defined in the
methods section. We apply the first-order Taylor expansion around α,

θ(1) and h
2ð Þ
0 to the score function vector U ¼

U 1ð Þ

U 2ð Þ

U 3ð Þ

0@ 1A, substitute

the estimates from Fisher’s algorithm
d
h

1ð Þ
0 , ba0 , h 2ð Þ

0 at H0 and thus we
obtain the following equations:

0 ¼ U ð1Þðdhð1Þ0 ; h
ð2Þ
0 ; â0ÞEU ð1Þðhð1Þ; hð2Þ0 ; aÞ þ ∂U ð1Þ

∂hð1Þ
ðdhð1Þ0 � hð1ÞÞ þ ∂U ð1Þ

∂a
ð ba0 � aÞ

0 ¼ U ð3Þðdhð1Þ0 ; h
ð2Þ
0 ; â0ÞEU ð3Þðhð1Þ; hð2Þ0 ; aÞ þ ∂U ð3Þ

∂hð1Þ
ðdhð1Þ0 � hð1ÞÞ þ ∂U ð3Þ

∂a
ð ba0 � aÞ:

Using the principle of Fisher’s scoring algorithm by replacing the
second-order derivative with its expectation, we get d

h
ð1Þ
0 � hð1Þba0 � a

!
E

"
� E

 
∂U ð1Þ

∂hð1Þ
∂U ð1Þ
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!
:

Next we substitute these equations into the equation for the first-order

Taylor expansion of U(2) around α, θ(1) and h
ð2Þ
0 and replace the first-

order derivative by its expectation to obtain the following equation
evaluated at:

d
h
ð1Þ
0 ; h

ð2Þ
0 ; â0 : U
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