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Kullback–Leibler divergence for detection of rare
haplotype common disease association

Shili Lin*

Rare haplotypes may tag rare causal variants of common diseases; hence, detection of such rare haplotypes may also contribute

to our understanding of complex disease etiology. Because rare haplotypes frequently result from common single-nucleotide

polymorphisms (SNPs), focusing on rare haplotypes is much more economical compared with using rare single-nucleotide

variants (SNVs) from sequencing, as SNPs are available and ‘free’ from already amassed genome-wide studies. Further,

associated haplotypes may shed light on the underlying disease causal mechanism, a feat unmatched by SNV-based collapsing

methods. In recent years, data mining approaches have been adapted to detect rare haplotype association. However, as they rely

on an assumed underlying disease model and require the specification of a null haplotype, results can be erroneous if such

assumptions are violated. In this paper, we present a haplotype association method based on Kullback–Leibler divergence

(hapKL) for case–control samples. The idea is to compare haplotype frequencies for the cases versus the controls by computing

symmetrical divergence measures. An important property of such measures is that both the frequencies and logarithms of the

frequencies contribute in parallel, thus balancing the contributions from rare and common, and accommodating both deleterious

and protective, haplotypes. A simulation study under various scenarios shows that hapKL has well-controlled type I error rates

and good power compared with existing data mining methods. Application of hapKL to age-related macular degeneration (AMD)

shows a strong association of the complement factor H (CFH) gene with AMD, identifying several individual rare haplotypes with

strong signals.
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INTRODUCTION

Rare variants have been investigated intensely in the past few years for
their association with common diseases.1 The type of rare variants that
has been the main focus is single-nucleotide variants (SNVs), owing to
the development and rapid availability of next-generation sequencing
(NGS) technology. However, there is a continuing realization that rare
haplotype variants resulting from common SNVs may also have an
important role in understanding complex disease etiology.2–10 The
interest in detecting rare haplotype association with common diseases
is further fueled by the recognition that rare haplotype may tag rare
causal SNVs.7–10 There are advantages pursuing rare haplotypes
instead of rare SNVs. First, rare haplotypes frequently result from
common single-nucleotide polymorphisms (SNPs); therefore, focusing
on detection of rare haplotype association is much more economical
compared with using rare SNVs from NGS, as SNPs are available and
‘free’ from already amassed genome-wide association studies (GWAS).
Further, associated haplotypes may shed light on the underlying
disease causal mechanism, a feat unmatched by SNV-based collapsing
methods.
A number of new statistical methods have been proposed specifi-

cally to detect rare haplotype association because existing methods in
GWAS are typically not amendable to rare haplotypes.11 For example,
generalized linear model (GLM)-based methods12–14 may encounter
non-convergence in its expectation-maximization (EM) estimates
when challenged with rare haplotypes. Among such new approaches,
the majority use likelihood-based regularization methods (eg, Lasso15)
to weed out unassociated haplotypes3–5,7,8 so that those that are

associated with the disease, especially the rare ones, can be more
precisely estimated for their effects on the trait. However, owing to the
difficulty in evaluating the effect of the uncertainty of regularization
parameters on assessing association, the Bayesian counterpart of Lasso
has been proposed for studying rare haplotype association,6,9,10 as well
as the Bayesian hierarchical GLM approach.5

Regardless of whether a method is likelihood based or Bayesian
formulated, such a method relies on assuming an underlying model
connecting the haplotypes to the disease, which, unfortunately, is
unknown. Theoretically, it is possible to consider multiple hypothe-
sized models, and then either choose the most likely one or perform
model averaging, but such an approach will increase their computa-
tional intensity. Although tests for overall haplotype association using
common SNPs have been shown to be more powerful than rare SNV
collapsing methods,7,8 a major advantage of regularized haplotype
association methods is its ability of detecting individual haplotype
associations to shed light on underlying disease causal mechanisms.
However, for individual haplotype detection methods, it is necessary
to specify a base haplotype: a null haplotype that is not associated with
the disease. This is a major drawback as such a haplotype can be
elusive. Although the reference haplotype is typically assumed to
be the one with the largest frequency, such an assumption can be
erroneous and can lead to incorrect interpretation of results.6

Departing from the model-based methods discussed above is a two-
step, model-free, approach,16 which is simple and easy to implement.
However, the method is susceptible to the existence of both ‘risk’ and
‘protective’ haplotypes; the approach will lose power as the effects of
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these two types of haplotypes will cancel out one another.6,11 In this
paper, we attempt to reap the benefits of a simple nonparametric
approach without the need to specify a null haplotype, yet being able
to accommodate both risk and protective variants. Specifically, we
propose a model-free approach for detecting haplotype association
based on Kullback–Leibler divergence (hapKL) for case–control
samples. The idea is to compare haplotype frequencies for the cases
and the controls by computing symmetrical divergence measures. In
addition to being able to deal with haplotypes having effects of
opposite directions, another important property of such measures is
that both the frequencies and the logarithms of the frequencies
contribute in parallel, thus balancing the contributions from the rare
and the common haplotypes. Further, this framework allows us to
carry out both an overall test as well as tests for individual haplotype
effects. Most importantly, unlike model-based approaches, specifica-
tion of a null haplotype as a base haplotype is unnecessary. To validate
hapKL, we evaluate and compare it with a couple of existing methods
by carrying out a simulation study under various scenarios. We also
apply hapKL to a data set studying the genetic basis of age-related
macular degeneration (AMD). The result shows a strong association of
the complement factor H (CFH) gene with AMD, replicating
previously reported results. More importantly, hapKL also reveals
several individual haplotype associations, including not only a rare one
found in previous studies but also a couple other rare haplotypes with
strong signals. Most importantly, this real data analysis, in which a
‘null’ haplotype is not known a priori (unlike simulation studies),
provides a good example to demonstrate the advantage of hapKL
compared with model-based approaches.
Despite the fact that sequencing data are gradually becoming

available in public databases such as dbGap (http://dbgap.ncbi.nlm.
nih.gov), such data are still much more limited compared with the
massive amount of already existing GWAS common SNP data, which
constitute a treasure trove, but unfortunately are still underutilized and
underanalyzed. The use of such data not only is economical (as no
additional genotyping is needed) but also is scientifically advantageous
in some cases as rare haplotypes constructed based on GWAS
common SNPs may tag multiple rare causal SNVs without
resequencing.7,8 Further, it has already been shown in the literature
that haplotype methods can be more powerful for detecting such rare
variant association compared with collapsing methods7,10 (hence, no
direct comparison of hapKL with collapsing methods are carried out
in this work). Most importantly, haplotype methods can identify
specific associated haplotypes and SNPs, thus making them informa-
tive for designing further experiments and studies to understand
causal mechanisms. In this work, we will use the AMD common SNP
data to illustrate the power of using common SNPs to detect rare
variant association. This is an especially good benchmark data set for
evaluating nonparametric methods such as hapKL, as rare associated
haplotypes have been successfully detected by modeling-based
methods.6,9

MATERIALS AND METHODS

The hapKL measures
In probability or information theory, the KL divergence,17 more popularly
known as relative entropy in computer science, is a nonsymmetric measure of
the ‘distance’ between two probability distributions F and G. Specifically,
for discrete distributions, the KL divergence of G= {Gi, i= 1, …} from
F= {Fi, i= 1, …} is defined as: ∑iFilog(Fi/Gi), which basically measures the
expected value of the logarithmic difference between F and G based on the
(true) probability distribution F. In our setting, neither the frequency
distribution among the cases nor that among the controls is the ‘true’

probability distribution. Therefore, we consider a symmetrized measure as
defined in the following.
Suppose there are a total of k haplotypes present in the case–control sample.

Let F ¼ fF1;y; Fkg and G ¼ fG1; y; Gkg be the haplotype frequency
distributions among the cases and controls, respectively, where Fi and Gi are
the frequencies of haplotype hi. The KL divergence for an overall association
measures the symmetrical difference:

hapKLall ¼
1

2

Xk
i¼1

Filog
Fi
Gi

þ
Xk
i¼1

Gilog
Gi

Fi

 !
� 1

2

Xk
i¼1

Fi � Gið Þlog Fi
Gi

 !

It is important to note that, in the above measure, both the haplotype
frequencies and the logarithms of the frequencies contribute in parallel, thus
balancing the contributions from the rare and the common haplotypes, making
it appropriate for detecting rare haplotype–disease association. The second
expression also facilitates the observation that effects of both directions
(deleterious and protective) can be accommodated. To see this more clearly,
suppose hi is a rare haplotype with Fi4Gi, then Fi−Gi will be small (positive),
whereas log(Fi/Gi) will typically be large (also positive). On the other hand,
suppose hj is a common haplotype with FjoGj, then Fj−Gj will be large (but
negative), whereas log(Fj/Gj) will typically be small (also negative). This will
make both (Fi−Gi) log(Fi/Gi) and (Fj−Gj) log(Fj/Gj) contribute fairly stable
positive values to hapKLall. Therefore, rare and common haplotypes, as well as
haplotypes with opposite effects, will all contribute to the test statistic
synergistically. Another desirable property of hapKL is that there is no need
to specify a reference, or base, haplotype. This is a major advantage since setting
the right base haplotype is a tricky issue.6 However, we note that upper
bound does not exist for hapKL;18 this point will be elaborated in the
Discussion section.
In addition to the overall measure of association, it is of importance to

investigate the effects of individual haplotypes on the disease. To achieve this
goal, we consider the individualized measure of association for haplotype hi:

hapKLi ¼
1

2
Fi log

Fi
Gi

þ Gilog
Gi

Fi

� �
; i ¼ 1;?; k;

which basically measures the discrepancy of the frequency of haplotype hi
between the cases and the controls. Thus, the KL divergence framework allows
us to devise not only an overall statistic but also individualized statistics to test
for association of specific haplotypes. The latter is extremely useful for detecting
epistatic interactions of multiple variants. Such results can shed light on the
underlying causal mechanisms and can aid in designing experiments to validate
findings.

Assessment of significance
It can be easily seen that hapKLall and hapKLi are non-negative measures.
When F=G, hapKLall= 0 and hapKLi= 0 for any haplotype hi. Further, the
more discrepant the two distributions are, the larger the measure. Therefore, a
divergence significantly larger than expected under the null hypothesis
means significant association. Specifically, we use a Monte Carlo simulation
technique to assess whether there is a significantly large divergence. Treating all
observed data as a whole set, we randomly divide the set as case and control
samples to match the numbers in the original data. We then compute
hapKLball b ¼ 1;y; B, based on a total of B random samples to build the
null distribution. The P-value is computed as

PB
b¼1 I hapKLallohapKLball

� �
=B;

where I(·) is the usual indicator function taking the value of 1 or 0 depending
on whether the condition within the parentheses is satisfied or not. The P-value
for an individual haplotype can be computed similarly.

Computing haplotype frequency distributions
Our data are from GWAS SNPs, and therefore we only have genotypes, not
haplotype, data. Although haplotype may be inferred from genotypes, this is the
exception rather than the rule. Fortunately, hapKL only requires the frequency
distributions, not the individual haplotypes. EM algorithm is the most effective,
computationally efficient and frequently used method to estimate haplotype
frequency distributions based on SNP data. In particular, we use the R package
haplo.stats12 to compute the haplotype frequencies without filtering out rare
haplotypes. We perform this estimation separately for the case and control
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samples to obtain the frequency distributions F∗ (for the cases) and G∗ (for the
controls). To compute the hapKL measures, F and G are required to have the
same support. To achieve this, we let F and G be defined on the union of the
haplotypes appearing in F∗ and G∗. For any haplotype that only appears in G∗,
we allow for a very small frequency (say, ≤ 10− 6) in F, and vice versa. Finally, F
and G are renormalized to be proper probability distributions before they are
used in the hapKL calculation.

Software
The methods presented in this paper have been implemented in R, which can
be downloaded freely from http://www.stat.osu.edu/~statgen/SOFTWARE/
hapKL.

RESULTS

Simulation study
We carried out a simulation to thoroughly evaluate the performance of
hapKL, and to compare it with LBL6 and hapassoc,14 both logistic
regression modeling based. We perform three sets of simulation: the
first is to gauge the type I error rate of hapKL; the second is to
compare the performance with LBL and hapassoc; the last simulation
is to show that hapKL performs well when the underlying disease
model is not additive, a departure from the typical assumption in LBL
and hapassoc. To make it easier to compare with LBL and hapassoc,
we consider the same three haplotype settings that were used to
compare LBL with hapassoc,6 but with additional disease settings so
that not only type I error for individual haplotypes, but overall type I
error rates, can be ascertained to study hapKL more thoroughly.
Table 1 gives three haplotype settings (HS1, HS2 and HS3), that is,

haplotype distributions, with 6, 9 and 12 haplotypes, respectively. In
each setting, there are two rare haplotypes (frequency ≤ 0.01) for
devising various models to study the performance of hapKL for
handling rare haplotype associations. Specifically, our first set of
simulation considers a null model in which all the odds ratios (against
the unassociated reference haplotype, the last haplotype in each
setting) are set to be 1. The second set of simulation considers three
additive disease models: RR (rare-rare – both rare haplotypes are
causal with odds ratios of 3 and 2), RC (rare-common – one of the
rare haplotypes and one common haplotype are causal, also with odds
ratios of 3 and 2) and C (common – only one common haplotype is
causal with an odds ratio of 2). Our third, and last, set of simulation
entertains a model in which both rare haplotypes are causal (the RR
model), but the causal effect of the less rare haplotype exerts a
dominant effect on the disease (ie, one or two copies of the haplotype
will have the same effect on the disease), leading to the nonadditive RR
model. The purpose of this simulation is to evaluate the robustness of
hapKL to departure from additive model, and thus we do not present
results for LBL or hapassoc. For each haplotype setting and disease
model combination given in Table 1, we consider three sample sizes,
400, 1000 and 2000 individuals, with an equal number of cases and
controls. We set the number of random simulations B to be 500 in all
computation of P-values.

Type I error. We first present the simulation results under the null
model to gauge the type I error rate of hapKL, both in terms of the
overall association test and as tests for the individual haplotypes.
Remember that for each sample simulated from the null setting, 500
permuted samples are obtained by permuting the affection status to
build the null distribution for computing the P-value, as described in
Materials and methods section. As such, the empirical type I error rate
is not guaranteed to be exactly the same as the nominal type I error
rate. Table 2 shows the percentage that a test is rejected (for overall
association and for each of the haplotypes). Provided in the table is

also a column named ‘Ave’, which provides the average of the type I
errors over all individual haplotypes. As one can see from the table, the
type I errors for the overall association and the average over individual
haplotypes under various haplotype settings and sample sizes are all
below 5%. The type I error rates for individual haplotypes vary a bit
around 5% (both above and below), which is expected given the
moderate number of simulations for computing the P-values and the
fact that there are haplotypes with rather small frequencies.

Power comparison. Our second set of simulation is to compare the
performance of hapKL with LBL and hapassoc in terms of power. We
also, as an aside, compare type I error rates on individual haplotypes
that are not associated with the disease. Recall that hapKL does not
rely on the assumption of an underlying model, whereas both LBL and
hapassoc are model based. Therefore, this study is mainly to
investigate whether hapKL is underpowered given its nonparametric

Table 1 Haplotype settings (frequency distributions) and odds ratios

under various association scenariosa

Additive

models

Haplotype setting Hap Freq Null model RR RC C Nonadditive
RR

HS1 01100 0.3 1 1 1 1 1

10100 0.005 1 3 3 1 3

11011 0.01 1 2 1 1 2b

11100 0.155 1 1 1 1 1

11111 0.11 1 1 2 2 1

10011 0.42 1 1 1 1 1

HS2 01010 0.06 1 1 1 1 1

01100 0.25 1 1 1 1 1

10000 0.08 1 1 2 2 1

10100 0.005 1 3 3 1 3

11011 0.01 1 2 1 1 2b

11100 0.09 1 1 1 1 1

11101 0.085 1 1 1 1 1

11111 0.1 1 1 1 1 1

10011 0.32 1 1 1 1 1

HS3 00111 0.07 1 1 1 1 1

01000 0.02 1 1 1 1 1

01011 0.05 1 1 1 1 1

01101 0.06 1 1 1 1 1

01110 0.14 1 1 1 1 1

10010 0.08 1 1 2 2 1

10100 0.005 1 3 3 1 3

11011 0.01 1 2 1 1 2b

11101 0.09 1 1 1 1 1

11110 0.13 1 1 1 1 1

11111 0.1 1 1 1 1 1

10001 0.245 1 1 1 1 1

aUnder the scenario where all odds ratios are 1 (null model), none of the haplotypes is
associated with the disease, and this scenario is used to assess the overall type I error of
hapKL. The three association scenarios are RR (rare-rare – two rare associated haplotypes), RC
(rare-common – one rare and one common associated haplotypes) and C (common – one
common associated haplotype). They are mainly used to evaluate power; however, they can also
be used to assess the type I errors for individual haplotypes not associated with the disease.
bThe effect of this haplotype under the nonadditive RR model acts dominantly. That is, an
individual carrying two copies of this haplotype has the same effect on the disease as an
individual carrying one copy and another haplotype that does not have an effect on the disease.
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nature. For this simulation study, the assumed disease model (additive
model, as it is typically the default) is the same as the simulation
model, thus giving an advantage to the two model-based approaches.
Further, both LBL and hapassoc require a reference haplotype, which
is also set to be the true reference haplotype in the simulation. The
results for the data simulated under the additive RR model are given in
Figure 1. As we can see from the figure, for all combination of
haplotype settings and sample sizes, all three methods have well-
controlled type I error rates for the haplotypes not associated with the
disease, fluctuating around the 5% nominal significance level marked
by the solid horizontal line. It can be seen that hapKL has greater
power than LBL and hapassoc for detecting the association of both
rare haplotypes for almost all haplotype settings and sample sizes,
except for the rarer haplotype under setting 3 when the sample size is
small. The results for the data simulated under the additive RC model
are given in Figure 2. For detecting the association with the common
haplotype, all three methods performed similarly, although hapKL is
slightly better for several of the setting and sample size combinations.
However, hapKL is being out-performed for detecting the rare
haplotype association under haplotype setting 1 when the sample
sizes are large (1000 and 2000). Finally, the results for data simulated
under the additive C model are given in Figure 3. All three methods
perform almost identically for detecting the only associated common
haplotype, but hapKL is clearly more powerful when the sample size is
small (400). All the results for LBL and hapassoc presented in the
figures are the same as in Biswas and Lin.6 Note that the type I error
for LBL is determined based on the Bayes factor, whereas the type I
error for hapassoc was obtained by setting an appropriate P-value
cutoff so that its type I error is similar to that of LBL for comparison
purpose. Further details can be found in Biswas and Lin.6 In summary,
even though LBL and hapassoc assume the true underlying model for
haplotype effects and true reference haplotype, hapKL, being a
nonparametric approach, outperforms them in some of the scenarios
and has comparable power/type I error in the other scenarios
investigated, without either assumptions.

Nonadditive RR model. To demonstrate that hapKL still performs
well when the underlying model is nonadditive, we considered the RR
scenario in which both associated haplotypes are rare but the effect of
the haplotype with an odds ratio of 2 does not confer risk additively.

The results, given in Table 3, show that the average type I errors across
all nonassociated haplotypes is well under control at around the
nominal level of 5% for all sample sizes (rows with odds ratio being 1).
When the sample size is 2000, there is considerable power for detecting
the haplotype with an odds ratio of 3, even though it is rarer compared
with the other associated haplotype, similar to earlier results (Figure 1)
when additive models were considered.

Application to AMD
AMD, which affects tens of millions of elderly individuals worldwide,
is a late-onset common eye condition that can lead to vision loss and
even blindness. GWAS have identified several SNPs in the CFH gene
on chromosome 1 to be associated with AMD.19 Haplotype analyses
have also been carried out using GWAS SNPs spanning the CFH gene
in an attempt to discern the causal mechanism.6,11,20 In particular,
Spencer et al11 identified three 8-SNP common haplotypes, one
confers strong risk effect on, and two are protective against, AMD
using a traditional score test.12 They also reported deleterious effect of
a pooled variant (pooling over all rare haplotypes resulted from the
eight SNPs). On the other hand, Biswas and Lin6 used LBL to perform
haplotype analysis so that the effects of individual rare haplotypes can
be ascertained. They considered a region spanned by seven SNPs
implicated in previous studies, five from Spencer et al11 and two
from Klein et al.19 These seven SNPs are, in their chromosomal
order, rs3753394 (chr1.hg19:g.196620917C4T), rs800292 (chr1.hg19:
g.196673103G4A), rs203674 (chr1.hg19:g.196684625G4T), rs3753396
(chr1.hg19:g.196695742A4G), rs380390 (chr1.hg19:g.196701051G4C),
rs1329428 (chr1.hg19:g.196702810C4T) and rs1065489 (chr1.hg19:
g.196709774G4T), with the fifth and the sixth SNPs reported in
the Klein study19 and the remaining from the Spencer study.11 The
sample analyzed by LBL consisted of 315 cases and 149 controls. The
SNPs were genotyped on the Affymetrix 100K and Illumnina 100K
platforms, and were made available by the National Eye Institute
through dbGaP (http://www.ncbi.nlm.nih.gov/gap; phs000001.v3.p1).
Taking haplotype TGTGCCT as the base (neutral) haplotype (same
haplotype used in Spencer et al11), LBL identified three risk haplo-
types: the most common one (CGGAGCG) matches up with the
nucleotides of the five SNPs (CGGA–G) on the risk haplotype
identified by Spencer et al;11 the other two are TGGAGCG (close to
being rare; overall frequency= 0.075) and CGTGCCT (rare haplotype;

Table 2 Empirical type I error rate (percentage) at 5% nominal level for the null model

Individual haplotypesa

Hap setting Sample size Overall assoc b Ave c h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

HS1 400 3 2.67 3 2 3 2 2 4

1000 3 4.5 7 2 2 5 6 5

2000 2 4 4 4 3 4 4 5

HS2 400 4 4 5 1 5 4 4 7 7 2 1

1000 4 4.11 3 7 7 1 4 4 6 1 4

2000 2 3.78 2 2 5 5 4 5 3 5 3

HS3 400 1 3.08 4 2 4 3 5 3 6 1 4 2 1 2

1000 3 3.92 5 7 4 4 2 4 3 5 3 5 3 2

2000 3 3.6 2 6 2 3 0 7 1 4 4 5 6 4

aNotation for haplotypes for each setting, with those having frequencies o0.05 (rare haplotypes) within parentheses: HS1 – h1=h01100, h2= (h10100), h3= (h11011), h4=11100, h5=11111,
h6=10011; HS2 – h1=01010, h2=01100, h3=10000, h4= (10100), h5= (11011), h6=11100, h7=11101, h8=11111, h9=10011; HS3 – h1=00111, h2=01000, h3=01011,
h4=01101, h5=01100, h6=10010, h7= (10100), h8= (11011), h9=11101, h10=11110, h11=11111, h12=10001. bType I error rate for overall association for the region spanned by the
five SNPs. cThe average type I error rate averaging over the type I error rates for all individual haplotypes.
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overall frequency= 0.011). They further identified a rare protective
haplotype TGTACTG (overall frequency= 0.046), whose nucleotides
at the fifth and sixth SNPs (——CT-) are complementary to the two
risk variants identified by Klein et al.19 Further details on the
haplotypes can be found in the literature.11,19,20

We applied hapKL, with 10000 random simulations, to the same
data set analyzed by LBL, but without setting any base haplotype to be
more objective, and an interesting picture emerged. First, the so-called
‘neutral’ haplotype TGTGCCT assumed in the LBL analysis turns out
to be marginally significant (P-value= 0.065) as a protective haplotype
(Table 4). (Note that this haplotype was selected as ‘neutral’ haplotype
in the LBL analysis6 because it is not rare and the frequencies for the
cases and controls are similar.) As such, the effects of other haplotypes
that are also protective would be reduced in the LBL analysis and
might be missed. Indeed, in addition to haplotype TGTACTG, hapKL
also identified three other protective haplotypes (CGTACTG,
CATACTG and TGTGCCG), with the last one being rare (Table 4).
The nucleotides of the five SNPs from the Spencer study11 in the two
common protective haplotypes, in fact, are the same as the

corresponding nucleotides in the two common associated haplotypes
reported there. For risk haplotypes, hapKL also identified CGGAGCG
to be highly significant, consistent with the results from the earlier
studies.6,11 The rare haplotype, CGTGCCT, identified by LBL, is also
implicated by hapKL to be marginally significant. On the other hand,
haplotype TGGAGCG has a P-value of 0.0959 from hapKL, although
LBL’s results indicated that it was highly significant. These results are
not surprising because the effect of a risk-leaning haplotype would
typically be magnified using LBL if a protective (leaning) haplotype
was assumed to be neutral. An additional risk haplotype identified by
hapKL is TGTACTT, which is extremely rare with haplotype
frequency in the cases and controls estimated to be 0.01 and 0,
respectively. In addition to individual haplotypes, hapKL also provided
the result for an overall test of association, which is extremely
significant with a P-value of 0.0001.

DISCUSSION

Detecting uncommon causal variants with common SNPs has gained
increasing attention because it has the potential to detect rare causal
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Figure 1 Power/type I error (percentage) for detecting individual haplotype associations under the RR (two rare associated haplotypes) model. The
arrangement of haplotypes on the x axis is provided below. Note that the specification of a reference haplotype is necessary for LBL and hapassoc (HA) (but
not for hapKL). As a consequence, even though there are 6, 9 and 12 haplotypes in haplotype setting 1 (HS1), haplotype setting 2 (HS2) and haplotype
setting 3 (HS3), respectively, power/type I error are plotted for only 5, 8 and 11 haplotypes. This is also true for Figures 2 and 3. HS1: (1, 2, 3, 4, 5)=
(01100, 10100, 11011, 11100, 11111), with haplotype 10011 treated as the reference haplotype and hence not appearing in the figure. Further,
haplotypes 1, 4 and 5 are not associated the disease. HS2: (1, 2, 3, 4, 5, 6, 7, 8)= (01010, 01100, 10000, 10100, 11011, 11100, 11101, 11111),
with haplotype 10011 treated as the reference. Further, haplotypes 1–3 and 6–8 are not associated with the disease. HS3: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11)= (00111, 01000, 01011, 01101, 01110, 10010, 10100, 11011, 11101, 11110, 11111), with 10001 as the reference. Further, haplotypes 1–6
and 9–11 are not associated with the disease.
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variants without the need to perform sequencing-based regenotyping.
Departing from the majority of existing methods that are model based,
we propose hapKL in this paper, which is model free and is based on
measuring the distance between the cases and the controls in terms of
the distributions of haplotypes or individual haplotype using relative
entropy. This approach can detect both overall association and
associations of individual haplotypes with deleterious or protective
effects in a single analysis instead of only focusing on one of them as in
existing methods, thereby increasing its versatility. Our simulation
study shows that hapKL has well-controlled type I error and its model-
free nature does not render it underpowered compared with two
model-based methods, LBL and hapassoc, even when the analysis
model was set to be the same as the simulation model for LBL and
hapassoc. Furthermore, because hapKL is nonparametric, the results
are not sensitive to the underlying disease model, and there is no need
to assess the effect due to model uncertainty. However, given the
simulation is limited in scope, we by no means claim superiority of
hapKL to model-based approaches in general. In the contrary, hapKL
is unable to accommodate covariates, which may lead to inflated type I
error if confounders exist, as we discussed below. It would be of
interest to compare all rare variant haplotype association approaches,

both model based and model free, to reach a more definitive
conclusion. However, this is out of the scope of the current paper,
as our main goal of this contribution is to demonstrate the advantage
of hapKL without the need to specifying a base haplotype, and to draw
attention to the potential problem from a model-based approach had
a baseline haplotype been specified incorrectly, as we discuss next.
HapKL is free of the concept of a reference haplotype, the most

important advantage compared with its model-based counterparts.
Selection of a reference haplotype is an extremely tricky issue; as we
saw in our analysis of the AMD data, the selection of a reference
haplotype is a subjective decision and can have a great impact on the
outcomes. The default reference haplotype, as in the LBL software, is
typically set to be the one with the largest frequency, but this can have
a detrimental effect if such a haplotype is either a deleterious or a
protective one. This was correctly recognized in the earlier studies;6,11

as the most frequent haplotype (CGGAGCG) was a risk one for AMD,
the base haplotype in the LBL analysis was set to be a different
haplotype (TGGSGCG). Nevertheless, even if a haplotype is carefully
selected to minimize its chance of being an associated haplotype, its
neutrality is not guaranteed as we saw in the AMD example. In
general, if a protective-leaning haplotype is selected as the reference
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Figure 2 Power/type I error (percentage) for detecting individual haplotype associations under the RC (one rare and one common associated haplotypes)
model. The arrangement of haplotypes on the x axis is as follows: HS1 – (1, 2, 3, 4, 5)= (11011, 11111, 10100, 01100, 11011), with haplotype 10011
treated as the reference haplotype and hence not appearing in the figure. Further, haplotypes 1, 4 and 5 are not, whereas halotypes 2 (common) and 3 (rare)
are, associated with the disease. HS2 – (1, 2, 3, 4, 5, 6, 7, 8)= (01010, 11011, 10000, 10100, 01100, 11100, 11101, 11111), with haplotype
10011 treated as the reference. Further, haplotypes 1, 2 and 5–8 are not, whereas haplotypes 3 (common) and 4 (rare) are, associated with the disease.
HS3 – (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)= (00111, 01000, 01011, 01101, 01110, 10010, 10100, 11011, 11101, 11110, 11111), with 10001 as the
reference. Further, haplotypes 1–5 and 8–11 are not, whereas halotypes 6 (common) and 7 (rare) are, associated with the disease.
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haplotype, the effects of other protective haplotypes would be reduced,
whereas the effects of risk haplotypes would be intensity. The
uncovering of three additional protective haplotypes that match the
partial result in Spencer et al11 using hapKL substantiates this
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Figure 3 Power/type I error (percentage) for detecting individual haplotype associations under the C (one common associated haplotype) model. The
arrangement of haplotypes on the x axis is as follows: HS1 – (1, 2, 3, 4, 5)= (11011, 11111, 01100, 10100, 11011), with haplotype 10011 treated as
the reference haplotype and hence not appearing in the figure. Further, haplotypes 1 and 3–5 are not associated with the disease. HS2 – (1, 2, 3, 4, 5, 6,
7, 8)= (01010, 11011, 10000, 10100, 01100, 11100, 11101, 11111), with haplotype 10011 treated as the reference. Further, haplotypes 1, 2 and 4–8
are not associated with the disease. HS3 – (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)= (00111, 01000, 01011, 01101, 01110, 10010, 10100, 11011, 11101,
11110, 11111), with 10001 as the reference. Further, haplotypes 1–5 and 7–11 are not associated with the disease.

Table 3 Powera and type I errorb (percentage) at 5% nominal level for

a model with nonadditive haplotype effects

Sample size

Haplotype setting Odds ratio Frequency 400 1000 2000

HS1 3 0.005 25 59 89

2 0.010 32 51 72

1 — 2.5 4.75 5.25

HS2 3 0.005 28 55 89

2 0.010 14 30 59

1 — 4.14 4.29 4.29

HS3 3 0.005 21 47 85

2 0.010 22 29 64

1 — 3 3.9 4

Note that frequencies for these individual haplotypes are available in Table 1.
aLines with odds ratios 4 1 denote power.
bLine with odds ration being 1 denote average type I error rate over all unassociated
haplotypes.

Table 4 Potential risk or protective haplotypes for AMD

Haplotypea Direction Case freq Control freq P-value

CGGAGCG Risk 0.5779 0.3151 o0.0001

CGTACTG Protective 0.0560 0.1477 0.0002

CGTGCCT Risk 0.0143 0.0000 0.0344

CATACTG Protective 0.0889 0.1654 0.0018

TGTACTG Protective 0.0269 0.0861 0.0010

TGTACTT Risk 0.0111 0.0000 0.0124

TGTGCCG Protective 0.0000 0.0102 0.0135

TGTGCCTb Protective 0.1306 0.1793 0.0652

TGGAGCGb Risk 0.0844 0.0532 0.0959

aHaplotypes in the top segment are found to be significantly associated with AMD by hapKL. In the
bottom segment, the two haplotypes that are not significant at the 5% level, but are listed for ease
of comparison with results in LBL6 to illustrate the effect of the selection of a base haplotype.
bThese two are base haplotype and significant haplotype, respectively in LBL analysis.
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theoretical analysis. Conversely, if a risk haplotype is designated as the
reference haplotype, then the effects of other risk haplotype would be
reduced, while the effects of protective haplotype would be increased.
Therefore, a method such as hapKL without the need to subjectively
select a reference haplotype is more objective and preferred if the
power of the method is comparable to other methods.
There has been a myriad of new statistical methods proposed for

detecting association of rare variants with common diseases. These
methods may be generally classified as ‘collapsing’ based and
‘haplotyping’ based, with the former being applicable to rare SNVs
from sequencing data, whereas the latter proposed primarily for using
the ‘old’ GWAS common SNP data. Collapsing-based methods,
without a doubt, constitute the predominant class, composed of most
of the rare variant association methods proposed to date.21–25

However, recent works have suggested that haplotyping-based meth-
ods may offer advantages and can be more powerful than collapsing
methods for some underlying disease settings.7,8,10 It is in that vein
that hapKL is proposed to further explore the benefits of haplotyping-
based approaches using existing common SNP data for detecting rare
variants that are associated with common diseases without the need to
rely on newer sequencing data. The results presented in this paper
indicate that hapKL provides an enrichment to the toolkit of haplotype
approaches.
Despite the major advantages discussed above, hapKL has its own

limitations. First, from a theoretical point of view, the measure hapKL
does not have an upper bound, as we mentioned earlier. This
undesirable property makes it difficult to assess significance in
practice, necessitating the use of a Monte Carlo simulation technique
to assess whether a divergence is significantly large than expected
under the null hypothesis of no association, as we have done in this
paper. This adds to the computational cost, especially if the number of
haplotypes is large. For example, for the AMD data, there are 16
haplotypes with nonzero frequencies, and an analysis with 500 Monte
Carlo simulations for computing the P-values required 79.43 s on a
Red Hat Enterprise Linux with a Pentium 4, 3.0 GHz processor.
(In comparison, the LBL analysis took 76.13 s.) Given the advantage of
nonparametric approaches for detecting rare haplotype–disease asso-
ciation, especially its ability to identify a null haplotype for subsequent
analysis, it would be of interest to explore other divergence measures.
In particular, a class of divergence measures based on the Shannon
entropy, such as the Jensen–Shannon divergence measure, which does
have an upper bound,26 is most promising, as measures with an upper
bound may be exploited for the assessment of significance, especially if
the bound is tight.
Second, for model-based methods, covariates, such as environ-

mental risk factors, can be accommodated; however, this is not
possible in hapKL. The inability of KL for incorporating covariates
may lead to false positives if confounders exist. On the other hand, for
model-based approaches, if the model or even just the reference
haplotype is specified incorrectly, the results can also be erroneous. As
such, a potential alternative is to combine these two types of
procedures to achieve a better solution. In other words, it would be
advisable to run hapKL first to ascertain which haplotypes are
unassociated and select the most appropriate one from this pool of
candidates as the reference haplotype in a model-based approach to
mitigate the effect of an incorrectly selected neutral haplotype. In this
regard, one may view hapKL as a preliminary screening tool to aid the
selection of a base haplotype before a more elaborate, model-based,
analysis that can incorporate environmental and other factors.
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