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Sandwich corrected standard errors in family-based
genome-wide association studies

Camelia C Minică*,1, Conor V Dolan1, Maarten MD Kampert2, Dorret I Boomsma1 and Jacqueline M Vink1

Given the availability of genotype and phenotype data collected in family members, the question arises which estimator ensures

the most optimal use of such data in genome-wide scans. Using simulations, we compared the Unweighted Least Squares

(ULS) and Maximum Likelihood (ML) procedures. The former is implemented in Plink and uses a sandwich correction to correct

the standard errors for model misspecification of ignoring the clustering. The latter is implemented by fast linear mixed

procedures and models explicitly the familial resemblance. However, as it commits to a background model limited to additive

genetic and unshared environmental effects, it employs a misspecified model for traits with a shared environmental component.

We considered the performance of the two procedures in terms of type I and type II error rates, with correct and incorrect

model specification in ML. For traits characterized by moderate to large familial resemblance, using an ML procedure with a

correctly specified model for the conditional familial covariance matrix should be the strategy of choice. The potential loss in

power encountered by the sandwich corrected ULS procedure does not outweigh its computational convenience. Furthermore,

the ML procedure was quite robust under model misspecification in the simulated settings and appreciably more powerful than

the sandwich corrected ULS procedure. However, to correct for the effects of model misspecification in ML in circumstances

other than those considered here, we propose to use a sandwich correction. We show that the sandwich correction can be

formulated in terms of the fast ML method.
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INTRODUCTION

Given the availability of large datasets of genotyped and phenotyped
family members, it is of interest to determine which statistical test is
most efficient in genome-wide association studies (GWAS), where
computational efficiency and statistical power are important. One
option is to use Plink,1 which employs the standard Unweighted Least
Squares (ULS) estimator in combination with the ULS sandwich2,3 to
correct the standard errors for the model misspecification of ignoring
the clustering. This approach is non-iterative, and produces unbiased
estimates and correct standard errors, without the need to specify a
background covariance model. However, given clustered data, ULS is
not necessarily the most powerful estimator.4 Maximum Likelihood
(ML) is an important alternative, but is computationally more
demanding. Fast algorithms have been developed, but these employ
a model for the background covariance, which is limited to additive
genetic and unshared environmental effects.5,6 We note that shared
environmental effects are often found in lifestyle and psychiatric
phenotypes, such as substance use.7–10 This raises a practical question:
in conducting a family-based analysis, should one use the sandwich
corrected ULS, which is fast, robust and requires no model to be
specified for the background covariance matrix, or should one use ML,
which is efficient and fast, provided one commits to a background
model limited to additive genetic and unshared environmental effects?
In the latter case, one may ask whether discarding shared
environmental effects, affects the results of the ML procedure.11

The present aim is to compare the ULS procedure with the ML
procedure using simulated data. We consider the performance in
terms of type I and type II error rates, with correct and incorrect

background specification in ML. To correct for the effects of this
misspecification, we propose to use a sandwich correction (as in Plink1).
We show that the sandwich correction can be formulated in terms of
the fast ML method of Lippert et al.5

MATERIALS AND METHODS

Family-based model for genetic association
Let yij be the vector of observed phenotypes, where subscript j stands for

individual (j¼ 1yni) and subscript i stands for family (i¼ 1yN). Let gij be

the vector of observed genetic markers coded as an additive genetic model, as 0

(aa), 1 (Aa) or 2 (AA).12 We test the statistical association between each

observed genetic marker and the phenotype in an appropriate regression model:

yij ¼ b0 þ b1�g ij þ eij ð1Þ

where b0 represents the intercept, b1 is the regression coefficient and eij is

the residual term. Let k equal
PN
i

ni, bt equal the vector [b0 b1] and X equal

the k� 2 matrix with the first column the unit vector, and the second, the k

vector g containing the genetic information. Other covariates may be

included, if desired (for example, age, sex). The k vector of residuals

e¼ y�Xb is normally distributed with k� k background covariance matrix

V (positive definite), that is, e|gBN(0, V). We assume that V is block

diagonal (but see Lippert et al,5 Pirinen et al6 and Visscher et al13), with

diagonal blocks, Vi, representing the residual positive definite covariance

matrix of each family. An advantage of retaining the full matrix V (and not

reformulating the likelihood given the sparseness) is that the block diagonal

structure can be relaxed to accommodate distant genetic relatedness.5,6,14

This makes the linear mixed approach very flexible. We assume that the

elements in the diagonal blocks in V parameter vector h contains the

estimated elements of the conditional covariance matrix. Given MZ and DZ
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families, the covariance matrix Vi may be calculated conditional on

zygosity, but otherwise unstructured and homoskedastic. We denote this

the unstructured estimate of V(h). Alternatively, V may be parameterized,

that is, V(h), where the parameter vector h may contain shared (C) and

unshared (E) environmental variance components (s2C, s2E), and additive

(A) and dominance (D) variance components (s2A, s2D).15,16 In this case,

MZ and DZ relatedness is expressed in terms of these genetic variance

components.

Estimation
We compare tests of b1 based on ML estimation and ULS estimation, with

regular and sandwich corrected standard errors. The log-likelihood function is:

LogL h; bð Þ ¼ log 2pð Þ� 1=k V hð Þj j� 1=2exp � 1=2 y�Xbð ÞtV hð Þ� 1 y�Xbð Þ
� �h i

ð2Þ
where b represents the fixed effects, and h the random effects.17 Maximization

of the log-likelihood function subject to the correct specification of the

background structure, yields the ML estimate of b, b̂ML, which can be tested by

means of the Wald test.4,18 The parameterization of V(h) in the linear mixed

model, given family data, is well known.13,19–23

The ML estimator of b is based on solving b in the first order derivative of

the ML function with respect to b:

b̂ML ¼ XtV ĥ
� �� 1

X

� �� 1

XtV ĥ
� �� 1

y ð3Þ

If h is unknown, this requires iteration. Note that the covariance matrix

V ĥ
� �

can also be estimated once and then used as fixed in the generalized least

squares estimator (see, for example, Pirinen et al6 and Li et al24). The Wald test

of b1ML is based on var b̂ML

� �
¼ XtV ĥ

� �� 1

X

� �� 1

. ULS is a special case

with ĥ ¼ ŝ2E
� 	

, that is, V ĥ
� �

¼ ŝ2EI. The ULS estimator can be expressed

as:4,18,25

b̂ULS ¼ X tXð Þ� 1
Xty; ð4Þ

with

var b̂ULS

� �
¼ ŝ2E XtXð Þ� 1 ð5Þ

The ULS procedure involves misspecification in the case of family data, as

V ĥ
� �

¼ ŝ2EI is almost certainly incorrect. To correct the standard errors, we

employ the sandwich correction of var b̂ULS

� �
,1

var b̂R�ULS

� �
¼ XtXð Þ� 1

Xt y�Xbð Þ y�Xbð ÞtX X tXð Þ� 1 ð6Þ

We note that the sandwich correction is equally applicable to ML, given

misspecified V ĥm

� �
. For instance (eg, Dobson18):

var b̂R�ML

� �
¼ X tV ĥm

� �� 1

X

� �� 1

X tV ĥm

� �� 1

y�Xbð Þ y�Xbð ÞtV ĥm

� �� 1

X X tV ĥm

� �� 1

X

� �� 1

ð7Þ
where we employ the subscript m to denote misspecification.

Below we consider various tests of b1 in family data of two full sibs and MZ

and DZ twins with and without parents. First, we compare the ULS and ML

procedures given correct specification of the background in ML, that is,

h¼ [s2A, s2E]. Specifically, we consider the standard ULS and ML procedures

(ie, based on the so-called naive variance, which incorporates the assumption

that the background model is correctly specified). We also consider the

sandwich corrected ULS procedure (as in Plink1) and the sandwich corrected

ML procedure with the background V(h) conditioned on zygosity, but

otherwise unconstrained. That is, the family covariance matrix is freely

estimated within the MZ and DZ families, which is consistent with the true

model. We include the sandwich corrected ML procedure to investigate

whether robustification does result in an overcorrection when the underlying

model is in fact correct. Second, to assess the effects of misspecification, we

consider standard ML estimation, with the (true) background h¼ [s2A, s2C,
s2E] misspecified as (a) ĥm ¼ ŝ2A; ŝ

2
E

� 	
, or as (b) ĥm ¼ ŝ2C; ŝ

2
E

� 	
. In addition,

we use the misspecified V ĥm

� �
with ĥm ¼ ŝ2A; ŝ

2
E

� 	
(and the misspecified

V ĥm

� �
with ĥm ¼ ŝ2C; ŝ

2
E

� 	
) – estimated with standard ML using the incorrect

background model – in the sandwich corrected ML procedure. We also include

the standard and the sandwich corrected ULS procedures. Finally, we test b1
using the standard ML procedure, with the background correctly

parameterized (ie, estimating the variance components of the true model).

We consider both the type I and type II error rates.

Simulation details
We generated family data for MZ and DZ families consisting of two sibs and

MZ and DZ twins, with and without parents. Each simulated sample had a size

of 4000 individuals. We simulated a diallelic genetic variant (GV) in Hardy-

Weinberg equilibrium, with a minor allele frequency of 0.5, and explaining one

percent (1%) of the phenotypic variance. We simulated the background

covariance structure according to two models: (1) a model with additive (A)

and unshared (E) environmental effects, that is, an AE model, h¼ [s2A, s2E],
with h2¼s2A/(s2Aþ s2E) equal to 0.3, 0.5 or 0.7); (2) a model with additive

genetic, shared (C) and unshared environmental effects, that is, an ACE model,

h¼ [s2A, s2C, s2E], with h2¼s2A/s2ph¼ 0.2, s2C/s2ph¼ 0.6 and

s2E/s2ph¼ 0.2. We also considered an ACE model, with h2¼s2A/s2ph¼ 0.6,

s2C/s2ph¼ 0.2 and s2E/s2ph¼ 0.2 (see Tables 2 and 3, Supplementary Material).

These models were chosen to represent a range of complex phenotypes.

For example, data generated based on the parameter values in the first cell of

Table 1 are illustrative for family-based association studies of highly heritable

traits such as height in adults,26 whereas the data generated based on the

parameter values in Table 3 may inform genome-wide analyses of ACE traits,

such as initiation of substance use (eg, Vink et al7). We used the R package

MASS27 for data generation. We implemented the sandwich corrected ULS and

the sandwich corrected ML procedures in R. We obtained the standard ML

results using linear mixed modeling as implemented in the R-package nlme.28

Observed power equals the proportion of datasets out of 10 000 replications, in

which the P-value associated with the Wald test was smaller than our chosen

alpha¼ 10�7. Type I error rate was assessed at alpha¼ 0.05, 0.01, 0.001 and

0.0001, using 1 000 000 datasets, simulated under the null hypothesis of b1¼ 0.

Otherwise, given b1a0, we used 10 000 replications. Simulations were run on

the Lisa Computer Cluster (www.surfsara.nl). The R script used to obtain the

results is available at http://cameliaminica.nl/scripts.php.

RESULTS

Correctly specified background model: type I and type II error
rates
First we checked the distribution of the four Wald tests given b1¼ 0,
and the correct specification of the AE background, that is, h¼ [s2A,
s2E] (except standard ULS which assumes independence). As
expected, the null distributions of the ML-based Wald tests (standard
and sandwich corrected) and of the sandwich corrected ULS-based
Wald test were correct (see Table 1, Supplementary Material). In
contrast, the standard ULS procedure (without a sandwich correc-
tion) produced an excess of false positives. For instance, in the four
sibs condition and with a 70% heritable trait, the observed type I
error rate was 0.0024 given an alpha of 0.0001.
Given b1¼ �0.141 (b1 given the chosen effect size of 1%) and the

correct specification of the AE background covariance matrix in ML
(with h2¼ s2A/(s2Aþ s2E) equal to 0.3, 0.5 or 0.7), we obtained the
results in Table 1 concerning the power to detect the GV effect.
The mean parameter estimates as produced by ML and ULS are

equal, across all conditions. This is expected, as the estimators are all
asymptotically unbiased and consistent.4 The standard errors as
produced by the ML standard and by the sandwich corrected ML
are identical. This is expected, as both procedures are based on the
correct background covariance structure, be it correctly structured
(ie, h¼ [s2A, s2E]) or unstructured (the sandwich corrected ML).
Therefore, the use of the sandwich does not result in any
overcorrection. The ULS procedures are consistent, but differ in terms
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389

European Journal of Human Genetics

www.surfsara.nl
http://cameliaminica.nl/scripts.php


of power. The power of the standard ULS procedure appears to be
greatest, but this is due to the fact that the standard errors are
underestimated, as mentioned above. The sandwich corrected ULS
procedure comes at a relative cost in terms of power (compared to ML).
The loss in power increases with the family clustering due to the
heritability of the trait. For example, in the four sibs condition, with a
70% heritable trait, the power of the sandwich corrected ULS procedure
is 35.1%, whereas the power of the ML procedures is about 64%.
Besides the heritability of the trait, the size of the family cluster has a

bearing on the power of ULS. For instance, given a 70% heritable trait,
the difference in power between the ML and ULS with a sandwich
correction is B30% and B35% when the sample consists of size 4
sibships and when it consists of two parents and four sibs, respectively
(see Table 1). Note also the difference in power between the two robust

methods as well (the sandwich corrected ULS and ML), with the
power of the sandwich corrected ML procedure being higher.

Misspecified background model
We evaluated consequences on type I and II error rates of misspecify-
ing the background model, V(h). We employed a background model
with additive genetic (s2A) and shared and unshared variance
components (s2C and s2E), and discarded the effects of s2A (ML
with an incorrect CE structured background) or s2C (ML with an
incorrect AE structured background), or discarded both s2A and s2C
(ULS with an incorrect E structured background). MLwith a correctly
specified background is also included. First we considered the type I
error rates, given b1¼ 0. Table 2 contains the results.
Based on these results, we conclude that the type I error rates of the

ML procedure are not greatly affected by the misspecification. The
misspecification ĥm ¼ ŝ2C; ŝ

2
E

� 	
is associated with a slight inflation

(eg, 0.0002, given alpha¼ 0.0001 in the two parents and four sibs
cell), but the ML with the CE structured sandwich corrects this
(0.00011). The misspecification ĥm ¼ ŝ2A; ŝ

2
E

� 	
hardly affects type I

error rates. As expected, the standard ULS procedure ĥm ¼ ŝ2E
� 	� �

produced incorrect type I error rates (for example, 0.008, given
alpha¼ 0.0001 in the four sibs cell). However, as above, the ULS
sandwich correction yields correct type I rates. The ML with an ACE
background is correctly specified and produces correct type I error
rates.
Table 3 contains the results relating to the power given b1a0 and

misspecified background. As expected, all modeling approaches
yielded similar mean estimates of b1, regardless of the specification
of the background structure. Given correct background specification
(h¼ [s2A, s2C, s2E]) and sibships size 4, the power is about 97.4%
(standard ML). The power of the standard ML procedure appears to
increase to about 98.2%, when s2A is discarded ĥm ¼ ŝ2C; ŝ

2
E

� 	� �
, but

this is spurious as it is due to the effect of the misspecification on the
type I error (see Table 2). This effect is likely to be more noticeable at
more stringent alpha levels (see also Minică et al29). The ML with a
CE structured sandwich, however, preserves the power equal to the
power of the (true) ML ACE model, without inflating the type I error
rate. Ignoring shared environmental effects, that is, dropping s2C in a
h¼ [s2A, s2C, s2E] model results in a loss in power. For instance, in
the four sibs condition, the power of the standard ML procedure
drops to about 88.1%, when s2C is discarded ĥm ¼ ŝ2A; ŝ

2
E

� 	� �
(similar results were obtained when dropping s2D in a h¼ [s2A,
s2D, s2E] model, where D stands for dominance; see Table 4
Supplementary Material). With an AE structured background, the
standard errors as produced by the standard and the sandwich
corrected ML are very similar, and so is the power. Given that the
latter correctly reflects the parameter variance in the presence of a
misspecified model, this result indicates that in the conditions
considered here this type of misspecification does not affect
estimation (ie, type I error rate is well controlled). However, this
is not a general finding. Consider the extreme misspecification of
the background employed by the ULS method. This has a clear
effect, which is reflected in the notable discrepancy observed
between the standard and the robust (correct) ULS standard errors
(ie, 0.022 vs 0.033). Finally, although both are correct, we note that
the sandwich corrected ML procedure is appreciably more powerful
than the sandwich corrected ULS procedure (for example, power of
88.1% for the sandwich corrected ML with a misspecified AE
structured background vs power of 16.4% for the sandwich corrected
ULS procedure). Results follow similar trends in the samples
consisting of two parents and four sibs.

Table 1 Power (alpha¼10�7) and parameter estimates for the ML

linear mixed (standard and sandwich corrected) and the ULS

(standard and sandwich corrected) procedures

Family structure

ML standard

true model

Sandwich

corrected

ULS

Sandwich corrected

ML (unstructured)

ULS

standard

h2¼70%

Two parents and four sibs

Mean (b1) �0.141 �0.141 �0.141 �0.141

Mean (SE) 0.025 0.031 0.025 0.022

Mean (t-value) �5.60 �4.62 �5.67 �6.35

Power 60.3 24.4 62.6 76.8

Four sibs

Mean (b1) �0.141 �0.141 �0.141 �0.141

Mean (SE) 0.025 0.029 0.025 0.022

Mean (t-value) �5.70 �4.95 �5.73 �6.35

Power 63.5 35.1 64.9 78.9

h2¼50%

Two parents and four sibs

Mean (b1) �0.141 �0.141 �0.141 �0.141

Mean (SE) 0.025 0.028 0.025 0.022

Mean (t-value) �5.56 �4.96 �5.62 �6.34

Power 59.1 36.4 61.5 78.4

Four sibs

Mean (b1) �0.141 �0.141 �0.141 �0.141

Mean (SE) 0.025 0.027 0.025 0.022

Mean (t-value) �5.68 �5.25 �5.71 �6.34

Power 63.1 46.6 65.0 80.0

h2¼30%

Two parents and four sibs

Mean (b1) �0.141 �0.141 �0.141 �0.141

Mean (SE) 0.025 0.026 0.025 0.022

Mean (t-value) �5.68 �5.40 �5.74 �6.34

Power 64.0 53.2 66.0 80.8

Four sibs

Mean (b1) �0.142 �0.142 �0.142 �0.142

Mean (SE) 0.024 0.025 0.024 0.022

Mean (t-value) �5.81 �5.63 �5.84 �6.36

Power 67.8 61.3 69.2 81.4

Abbreviations: ML, maximum likelihood; SE, standard error; ULS, unweighted least squares.
We simulated a genetic marker having an effect of 1% explained phenotypic variance and a
minor allele frequency¼0.5. The sample consisted of N¼4000 individuals. The trait was
simulated according to an AE background model (the true model) given various heritabilities
(h2) (10000 simulated samples for each cell). The background model in the ML procedure
is correctly specified (true or saturated, ie, unstructured).
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Given that these results pertain to averages over replications, we
also looked at how often the ML t-values actually exceed the sandwich
corrected ULS t-values, considering also the smaller effect sizes to be
expected in GWAS. This might be of interest as it will provide an
indication on how the two estimators are expected to perform in
individual studies involving family data. Dots above the diagonal in
Figure 1 show how often the ML-based Wald test is larger than the
sandwich corrected ULS-based Wald test, given decline in the size of
the genetic effect.
Figure 1 top left shows that the ML (true AE model) almost always

produces a larger test statistic, when the effect size is relatively large
(effect size of 1% explained phenotypic variance) and the sample is large
enough to capture it. In the example, in just about 7.5% of the samples
the sandwich corrected ULS test statistic was larger. However, as the
effect size decreases, one can observe more and more sandwich corrected
ULS-based Wald tests larger than those estimated by the ML procedure
(as illustrated in Figure 1 top right). It can be seen that under the null
model (Figure 1, bottom) no differences occur between the two
estimation methods, which is as expected provided both are correct.

FaST-LMM formulation of the ML sandwich correction
The sandwich correction is computationally relatively simple and
quick in the standard formulation of the linear mixed model. We note

that the fast full information ML mixed procedures5,6 are equally
amenable to a sandwich correction. The ML sandwich can be
presented as follows:

var b̂R�ML

� �
¼ XtV ĥ

� �� 1

X

� �� 1

X tV ĥ
� �� 1

y�Xbð Þ y�Xbð ÞtV ĥ
� �� 1

X X tV ĥ
� �� 1

X

� �� 1

ð8Þ

Given random effects ĥ ¼ ŝ2a ; ŝ
2
e

� 	
, the background covariance matrix

is reformulated as V hð Þ ¼ s2a�K þ s2e�I

 �

¼ s2a� K þ d�Ið Þ
� 	

, where
K is the genetic relationship matrix (positive semi-definite), I is the
identity matrix and d¼ sa2/se2. Lippert et al5 (see also Pirinen et al6)
formulate the covariance matrix as follows:

V hð Þ ¼ s2a� USU t þ d�UIU tð Þ
� 	

¼ s2a�U Sþ d�Ið ÞU t
� 	

ð9Þ

where K¼USUt is the eigen value decomposition of K, with U, the
eigenvectors, orthonormal, and S diagonal (eigenvalues). The matrix
d*I, being diagonal and constant, can be written as d*UIUt. The
inverse is:

V hð Þ� 1¼ s� 2
a �U Sþ d�Ið Þ� 1U t

� 	
ð10Þ

Note that the addition of off-diagonal terms in se2*I, that is, terms
accommodating shared environmental effects, would render the
method invalid, as then the eigenvectors of the environmental

Table 3 Power (given alpha¼10�7) and parameter estimates for the ML (standard and sandwich corrected) and the ULS (standard and

sandwich corrected) procedures

Family structure

ML standard

ACE model (true)

ML standard AE

model (false)

ML standard CE

model (false)

Sandwich corrected ML

(false: AE structured)

Sandwich corrected ML

(false: CE structured)

ULS standard E

model (false)

Sandwich corrected

ULS E model (false)

Two parents and four sibs

Mean (b1) �0.141 �0.141 �0.141 �0.141 �0.141 �0.141 �0.141

Mean (SE) 0.019 0.021 0.018 0.021 0.019 0.022 0.037

Mean (t-value) �7.54 �6.59 �7.89 �6.6 �7.44 �6.33 �3.86

Power 98.6 89.4 99.2 89.4 98.1 73.0 7.5

Four sibs

Mean (b1) �0.141 �0.141 �0.142 �0.141 �0.142 �0.141 �0.141

Mean (SE) 0.019 0.022 0.019 0.022 0.020 0.022 0.033

Mean (t-value) �7.27 �6.49 �7.49 �6.50 �7.25 �6.36 �4.33

Power 97.4 88.1 98.2 88.0 97.1 75.9 16.4

Abbreviations: ML, maximum likelihood; SE, standard error; ULS, unweighted least squares.
The background model is (a) correctly specified (true) or (b) misspecified. Background covariance matrix was generated according to an ACE model (h2¼0.2, c2¼0.6). The genetic marker
explained 1% phenotypic variance and had a minor allele frequency¼0.5. The samples consisted of N¼4000 individuals (10000 simulated datasets per cell).

Table 2 Type I error rates for the ML linear mixed (standard and sandwich corrected) and the ULS (standard and sandwich corrected)

procedures

Family structure Alpha

ML standard

ACE model

(true)

ML standard

AE model

(false)

ML standard

CE model

(false)

Sandwich corrected

ML (false: AE

structured)

Sandwich corrected

ML (false: CE

structured)

ULS standard

E model

(false)

Sandwich corrected

ULS E model

(false)

Two parents and four sibs 0.05 0.049 0.049 0.06 0.05 0.049 0.2 0.051

0.01 0.010 0.010 0.015 0.010 0.010 0.11 0.010

0.001 0.0010 0.00097 0.0019 0.00097 0.0010 0.045 0.0011

0.0001 0.0001 0.00009 0.0002 0.0001 0.00011 0.018 0.00012

Four sibs 0.05 0.05 0.05 0.057 0.05 0.05 0.18 0.05

0.01 0.01 0.01 0.0127 0.01 0.01 0.08 0.01

0.001 0.001 0.001 0.0014 0.001 0.001 0.025 0.001

0.0001 0.0001 0.00012 0.00018 0.00012 0.00012 0.008 0.0001

Abbreviations: ML, maximum likelihood; ULS, unweighted least squares.
The background model is (a) correctly specified (true) or (b) misspecified. Background covariance matrix was generated according to an ACE model (h2¼0.2, c2¼0.6). The samples comprised
4000 individuals (1000000 simulated datasets per cell).
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covariance matrix cannot be chosen to equal U. In terms of this
treatment of the matrix V(h), the sandwich can be written:

var b̂R�ML

� �
¼ s2a� XtU Sþ d�Ið Þ� 1U tX

� 	� 1
s� 2
a �XtU Sþ d�Ið Þ� 1�

U ty�U tXbð Þ U ty�U tXbð Þt�

s� 2
a �X tU Sþ d�Ið Þ� 1� 	t�s2a� XtU Sþ d�Ið Þ� 1U tX

� 	� 1

ð11Þ

In implementing this, the fact that (Sþ d*I)�1 is diagonal may be
exploited to increase computational efficiency.

DISCUSSION

We compared the standard and sandwich corrected ULS and ML
procedures, in the context of family-based association analysis
of a normally distributed phenotype. Conditional on the correct
specification of the background, the standard ML procedure is
appreciably more powerful than the sandwich corrected ULS
procedure. The actual difference in power depends on the magnitude
of the residual correlations, but increases with greater family
resemblance.
We also considered the sensitivity of ML to model misspecification.

Model misspecification involves the mismatch between the true

Figure 1 Wald tests produced by the sandwich corrected ULS procedure compared with the test statistic obtained based on full information maximum-

likelihood (standard ML) estimation method. We simulated 1000 datasets consisting of 500 MZ and 500 DZ four-sib families, and we varied the effect size

of the genetic effect (1%, 0.25% and the null model). The heritability of the trait was h2¼70%. The dots above the diagonal show the number of times

the standard ML procedure produced a larger test statistic.
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background covariance model (say, an ACE or ADE trait) and the
background model used in the analyses (a CE or AE model).
This may occur in using fast ML procedures, which employ the

background covariance matrix necessarily limited to additive genetic
(A) and unshared environmental (E) effects.5,30 The standard ML
procedure was quite robust under model misspecification in the
simulated settings, and appreciably more powerful than the sandwich
corrected ULS procedure. However, for circumstances other than
those considered here, a sandwich correction is equally applicable to
ML to correctly capture the parameter variance in the presence of
model misspecification. The sandwich corrected standard errors may
also be employed as a means to get an indication of the effects of
background misspecification on the type I error rate (ie, the larger the
discrepancy between the naive and sandwich corrected standard
errors, the more likely the type I error rate of the procedure
without a sandwich to be affected31).
In the present paper, we considered a normally distributed

phenotype. Our conclusions apply equally to generalized linear
modeling of binary traits, such as disease status. To demonstrate this,
we included in the Supplementary Material (Supplementary Tables 5
and 6) results based on continuous and dichotomized (median –
split) phenotypes. With respect to binary phenotypes, we note that a
general (rather than generalized) linear model is often used in
analyzing such variables (eg, Zhou and Stephens32). Cogent arguments
have been presented that the linear model may suffice in the analysis
of binary phenotypes.5,6

Although relatively simple to implement and more efficient than
the sandwich corrected ULS in correcting for model misspecification,
to our knowledge the ML sandwich correction has not yet been
implemented by any of the current software for GWAS that can
handle family data. With respect to implementation, we note that
generalized estimating equations (gee) procedure, as implemented in
R33 has four useful aspects. First, it has a choice of background
models, which includes the independence model and exchangeable
model (the latter is equivalent to the CE model in linear mixed
modeling). Second, it includes sandwich corrected standard errors of
the parameters b. Third, gee covers generalized linear model. Fourth,
as gee is a library it can be accessed from Plink1 and so provides a
computationally feasible strategy for running genome-wide scans in
family data. An annotated R script to do this is available at http://
cameliaminica.nl/scripts.php.
In conclusion, for traits characterized by moderate to large familial

resemblance, using ML with a correctly specified model for the
familial covariance matrix should be the strategy of choice. For such
traits, the potential loss in power encountered by the sandwich
corrected ULS procedure does not outweigh its computational
convenience. Using a fast ML algorithm that commits to a back-
ground model limited to additive and unshared environmental effects
is acceptable even if shared environment has an influence on the
phenotype of interest. That is, in the settings considered here, type I
error rate of the standard ML was hardly affected by model
misspecification. However, a sandwich correction is still of interest
when employing ML in genome-wide scans, because (a) it produces
correct standard errors regardless of whether the model is correctly
parameterized or misspecified; hence it should be useful for situations
other than those considered here, (b) it does not result in any
overcorrection when the background model is in fact correctly
specified, (c) as shown above, it is computationally cheap and can
easily be incorporated in the fast ML procedures, and (d) it is a useful
diagnostic tool for assessing model misspecification.31 Currently,
Plink often is the preferred software when consortia share GWA

results for meta-analyses. When including data from cohorts that
include relatives, one should realize that the corrected standard errors
while in many circumstances larger than the ML standard errors, are
accurate, and so therefore are its type I and II error rates. For ordinary
GWAS (ie, not family based), Plink is as good as FastLMM (as then
ULS and ML are identical).
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