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Heterogeneous clinical presentation in ICF syndrome:
correlation with underlying gene defects

Corry MR Weemaes*,1, Maarten JD van Tol2, Jun Wang3,20, Monique M van Ostaijen-ten Dam2,
Marja CJA van Eggermond4, Peter E Thijssen3, Caner Aytekin5, Nicola Brunetti-Pierri6, Mirjam van der Burg7,
E Graham Davies8, Alina Ferster9, Dieter Furthner10, Giorgio Gimelli11, Andy Gennery12,
Barbara Kloeckener-Gruissem13,14, Stephan Meyn15, Cynthia Powell16, Ismail Reisli17, Catharina Schuetz18,
Ansgar Schulz18, Andrea Shugar15, Peter J van den Elsen4,19 and Silvère M van der Maarel3

Immunodeficiency with centromeric instability and facial anomalies (ICF) syndrome is a primary immunodeficiency,

predominantly characterized by agammaglobulinemia or hypoimmunoglobulinemia, centromere instability and facial anomalies.

Mutations in two genes have been discovered to cause ICF syndrome: DNMT3B and ZBTB24. To characterize the clinical

features of this syndrome, as well as genotype–phenotype correlations, we compared clinical and genetic data of 44 ICF

patients. Of them, 23 had mutations in DNMT3B (ICF1), 13 patients had mutations in ZBTB24 (ICF2), whereas for 8 patients,

the gene defect has not yet been identified (ICFX). While at first sight these patients share the same immunological,

morphological and epigenetic hallmarks of the disease, systematic evaluation of all reported informative cases shows that: (1)

the humoral immunodeficiency is generally more pronounced in ICF1 patients, (2) B- and T-cell compartments are both

involved in ICF1 and ICF2, (3) ICF2 patients have a significantly higher incidence of intellectual disability and (4) congenital

malformations can be observed in some ICF1 and ICF2 cases. It is expected that these observations on prevalence and clinical

presentation will facilitate mutation-screening strategies and help in diagnostic counseling.
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INTRODUCTION

Immunodeficiency with centromeric instability and facial anomalies
(ICF syndrome) (MIM no. 242860) is a rare autosomal recessive
disease, characterized by immunodeficiency of variable extent, mild
facial anomalies and chromosome instability, involving the pericen-
tromeric regions of chromosomes 1, 9 and 16. Facial dysmorphisms
may include a round face, flat nasal bridge, hypertelorism, epicanthus,
up-turned nose, macroglossia, micrognathia and low-set ears. The
majority of ICF patients have a delay in walking and speech
development. The intelligence status is variable.1

Most patients suffer from hypogammaglobulinemia, or agamma-
globulinemia, which is the immunological hallmark of ICF syndrome.
Circulating B-cells in ICF patients have been reported to contain an
increased proportion of immature cells, a lack of memory cells and
are more prone to undergo apoptosis upon in vitro activation.

Interestingly, activation, differentiation and immunoglobulin class-
switch recombination driven by stimulation via the B-cell receptor
and CD40 appeared to be normal.2 Studies on T-cell function are
limited, and reported data suggest a normal proliferative response
upon mitogenic stimulation, the capability to support Pokeweed
mitogen (PWM)-induced immunoglobulin production by control
B-cells and a somewhat increased degree of apoptosis.3,4 Therefore,
the relative contribution of an intrinsic B-cell defect and a defective
T-cell function to the frequently observed dysgammaglobulinemia in
patients with ICF syndrome remains to be elucidated.
Approximately 50% of the ICF cases carry mutations in the DNA

methyltransferase 3B gene (DNMT3B) at chromosome 20q11.2.5,6

These cases have been designated as ICF1 patients.1 No genotype–
phenotype correlation was observed among patients with and without
DNMT3B mutations in an earlier study.1 Recently, mutations in the
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Haemato-Oncology Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium; 10Landesfrauen und Kinderklinik, Linz, Austria;
11Laboratorio di Citogenetica, Instituto G Gaslini, Genova, Italy; 12Department of Paediatric Immunology, Newcastle Upon Tyne Hospital, NHS Foundation Trust, United Kingdom
and Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK; 13Institute of Medical Molecular Genetics, University of Zurich, Zurich, Switzerland;
14Department of Biology, ETHZ, Zurich, Switzerland; 15Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada; 16Department of
Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 17Department of Pediatric Immunology and Allergy, Necmettin Erbakan University, Meram
Medical Faculty, Konya, Turkey; 18Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany; 19Department of Pathology, VU University
Medical Center, Amsterdam, The Netherlands
*Correspondence: Dr CMR Weemaes, Department of Pediatric Infectious Diseases and Immunology, Radboud University Nijmegen Medical Centre, PO Box 9101, Nijmegen
6500HB, The Netherlands. Tel: þ 31 24 3614430; Fax: þ31 24 3616428; E-mail: c.weemaes@cukz.umcn.nl
20Current address: Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.

Received 12 December 2012; revised 30 January 2013; accepted 6 February 2013; published online 13 March 2013

European Journal of Human Genetics (2013) 21, 1219–1225
& 2013 Macmillan Publishers Limited All rights reserved 1018-4813/13

www.nature.com/ejhg

http://dx.doi.org/10.1038/ejhg.2013.40
mailto:c.weemaes@cukz.umcn.nl
http://www.nature.com/ejhg


zinc-finger and BTB domain-containing 24 gene (ZBTB24) on
chromosome 6q21 were described in most DNMT3B mutation-
negative patients, and these cases were designated as ICF2
patients.7,8 Mutations in DNMT3B or ZBTB24 do not explain all
ICF patients and there remains a small group with unknown
etiology,7 here provisionally designated as ICFX. In ICF patients,
large, often centromeric, DNA repeats show reduced CpG
methylation, and ICF2 and ICFX patients differ from ICF1 patients
by the presence of additional a-satellite repeat hypomethylation.7,9

The aim of the present study is to identify possible differences in
the clinical presentation and immunological characteristics of patients
with ICF1, ICF2 and ICFX syndrome.

MATERIALS AND METHODS

Patients
At present, 66 patients have been included in the ICF registry. A computer-

assisted literature search using PubMed and EM-base was conducted in order

to identify and obtain data on patients with ICF syndrome. Supplementary

information was obtained from questionnaires completed by their referring

physicians. In 22 patients, molecular analysis was not performed; they were

excluded from this study. Data of patients previously reported in the literature

were updated (n¼ 37) and new patients (n¼ 7) have been included. Ethical

approval was obtained for the publication of these data.

Data collected included age at diagnosis, facial anomalies, psychomotor

development, hypotonia and gastrointestinal problems. The diagnosis of

immunodeficiency was primarily based on reductions of serum IgG, IgG

subclasses, IgA and/or IgM levels compared to age-matched controls.10

Agammaglobulinemia was defined as a decrease of IgG level below 2.5 g/l.

Special attention was drawn to frequency and type of infections, and laboratory

results reflecting the immunological status. Apart from serum immunoglobulin

levels, complete blood count, numbers of B-cell and T-cell subpopulations at

diagnosis and latest follow-up were included as well. Normal ranges for

lymphocyte numbers and subpopulations are from published data.11

Mutation analysis of DNMT3B and ZBTB24
For all new patients, all coding exons and intron–exon junctions for DNMT3B

and ZBTB24 were amplified from gDNA isolated from peripheral blood by

PCR and the PCR products were subjected to Sanger sequencing (LGTC,

Leiden, the Netherlands) as previously described.7 All described variants are

based on the reference DNMT3B (NM_006892.3) and ZBTB24

(NM_014797.2) accessions.

In vitro expansion of T-cells
Peripheral blood mononuclear cells (PBMCs) from patients and parents or

controls were isolated using a Ficoll-Isopaque gradient. To generate T-cell lines,

5� 105 or 1� 106 PBMCs were stimulated by polyclonal activation with 1mg/
ml phytohaemagglutinin (PHA; Welcome Diagnostics, Dartford, UK), and

irradiated allogeneic PBMCs (3000 rad) in RPMI 1640 (Life Technologies

Europe, Bleiswijk, the Netherlands) supplemented with 10% human AB serum,

20 IU/ml recombinant interleukin-2 (rIL-2; Novartis International, Basel,

Switzerland), 100 IU/ml streptomycin, 100 IU/ml penicillin and 2mM L-gluta-

mine. The number of viable T-cells were counted in a Bürker counting

chamber at day 7 or 9 following stimulation. An aliquot of 1� 106 of the

responding T-cells was re-stimulated with PHA, rIL-2 and irradiated allogeneic

PBMCs. After 7 or 9 days of re-stimulation, the number of responding T-cells

was determined again. Cell expansion was defined as the number of cells

present at the end of the 7–9-days culture period related to the number of cells

at the start of the first or second stimulation, respectively, which was set at 1.

RESULTS

A total of 44 patients were included in the study: 23 with mutations in
DNMT3B (ICF1), 13 with mutations in ZBTB24 (ICF2) and 8
without detectable mutations in either gene (ICFX) (Table 1). ICF1
patients 15 and 16, 29 and 33, 35 and 36, 51 and 52, ICF2 patients 37

and 38, 62 and 63 and 64, and ICFX patients 13 and 14, 34 and 53 are
siblings. Sociodemographic and genetic data are summarized in
Table 1. Dysmorphic features, developmental and neurological
complications of the disease, infectious diseases and occurrence of
malignancies for the patients in each group are given in Table 2.

Genetics
A new DNMT3B (homozygous) mutation c.1918G4C (p.G640R) was
identified in patient 50 and we identified an already described
homozygous mutation, c.2450A4G (p.D817G), in patient 47. In
ZBTB24, homozygous mutations c.759C4G (p.T253X) and
c.958C4T (p.R320X) were found in patients 40 and 55, respectively,
of which the mutation found in patient 40 has not been described
before. Most ICF1 patients with mutations in DNMT3B carry missense
mutations in or near the catalytic domain (Table 1; Figure 1). None
are homozygous for nonsense alleles. In contrast, the majority of ICF2
patients have homozygous mutations in ZBTB24. There does not seem
to be a mutational hotspot in ZBTB24 and most mutations are
predicted to create a premature stop codon (Table 1; Figure 1).

Facial anomalies
Facial anomalies were observed in nearly all patients within the three
groups and the pattern of facial anomalies was overlapping between
ICF1, ICF2 and ICFX (Table 2). Only patient 25 in group 1 had no
facial anomalies, even when he grew older. Hypertelorism, flat nasal
bridge and epicanthus were the most common anomalies in all three
groups.

Growth and development
Failure to thrive occurred in some patients within all groups.
Macronodular cirrhosis developed in ICF1 patient 42 following
treatment for acute lymphoblastic leukemia and granulomatous
hepatitis in ICF2 patient 54. Motor delay was observed in B50%
of ICF1 patients, but in nearly every ICF2 patient. Speech delay was
observed in most patients of all the three groups. In addition,
intellectual disability was found in about half of the ICF1patients
(9/20), but in all patients with ICF2 (13/13) (P¼ 0.001; w2 test).
Several patients with ICFX were also intellectually disabled.

Congenital malformations
Congenital malformations were reported in seven patients with ICF1.
Cardiac anomalies were reported in three patients (two with a
ventricular septal defect and one with atrium septal defect). Cleft
lip, clinodactyly and syndactyly, choanal stenosis, hip dislocation and
a horseshoe kidney were all mentioned once in a patient. In ICF2,
cardiac anomalies were reported as well: once an atrium septal defect
and once an ascending aorta dilatation. Congenital hypothyroidism
affected ICF1 patient 42.

Cerebral malformations
Cerebral malformations, including corpus callosum hypoplasia and
macrocephaly, were reported in several ICF1 patients, and cortical
atrophy was mentioned in four patients. Focal cortical heterotopy has
been reported in ICF2 patient 40 as well as in ICFX patient 41.12 ICF2
patient 65 had a large cerebral arachnoidal cyst.13 ICF1 patient 42 had
a rod/cone retinal dystrophy. It is unclear whether this was
coincidental.

Infections
Severe infections (pneumonia, sepsis) occurred in majority of the
patients of all three groups. Opportunistic infections (Candida
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albicans, Pneumocystis jiroveci) were found in some patients within all
groups (Table 2).

Malignancy
Angiosarcoma has been described in one ICF1 patient14 and ICF1
patient 42 suffered from an acute lymphoblastic leukemia. Hodgkin
lymphoma was described in ICF2 patient 37.1

Immunodeficiency
Hypogammaglobulinemia or agammaglobulinemia was observed
in all but one ICF1 patients (Table 3, Supplementary Figure 1).
This boy, patient 2, had normal serum IgG and IgM levels.15

Agammaglobulinemia occurred in at least 14 patients. All 20 ICF1
patients with known data were IgA deficient. Three had normal
IgM levels.

Table 1 Sociodemographic and genetic data of all analyzed ICF patients

ICF1

Patient

no. References

Birth

year Sex Origin

Mutations in DNMT3B transcript

NM_006892.3 (protein NP_008823.1) Consw

Follow-

up

status

Age at

death

(years) Cause of death

1 1,15 1972 M English c.1987G4A; (p.G663S)/c.2177T4G; (p.V726G) No 14
2 1,23 1966 M Italian c.2441A4G; (p.H814R)/c.2452G4A; (p.V818M) No 12 Respiratory failure
7 1,24 F American c.1807G4A; p.A603T/c.2421-11G4A;

p.E806_R807insSTP
NR Lost

8 1,25 1985 M French 1 bp ins codon 53; (p.fsX158)/c.2301þ139G4A and
c.2302-212T4C and c.2421-91G4A;
(p.P746_R807del)

No 16 Respiratory failure

15 1,26 1992 M Dutch c.2177T4G; p.V726G Yes 8 Sepsis
16 1 1994 M Dutch c.2177T4G; p.V726G Yes 12 Encephalopathy
24 1,27 1988 F German c.1817T4C; (p.V606A)/c.610C4T; (p.Q204X) No 18 RSV after HSCT for

myelodysplastic
syndrome

25 1 1982 M English c.2296G4C; (p.A766P) (heterozygous) NR Lost
29 1 1996 F Turkish c.2421-11G4A; p.E806_R807insSTP Yes 3 Respiratory infection
30 1,14 1988 M Dutch/

Antillian
c.2096T4G (p.V699G)/c.160C4T (p.R54X) No 19 Angiosarcoma

31 1,28 1981 M Japanese c.88C4T; (p.Q30X)/c.2519G4A; (p.R832Q) No Lost
32 1,29 1995 F Libanese c.1754C4T (p.A585V) Yes Lost
33 1,16 2000 M Turkish c.2421–11G4A; p.E806_R807insSTP Yes
35 1,28 1997 F Japanese c.808T4C; (p.S270P) Yes Lost
36 1,28 2001 M Japanese c.808T4C; (p.S270P) Yes Lost
42 1 2004 M Jordanian c.2476C4T; (p.R826C) Yes
43 1,16 2004 F English c.2450A4G; (p.D817G)/c.1793T4C; (p.V598A) No
45 1 1989 F Austrian c.2292G4T; (p.R764S)/c.2342_2343del

(p.I781KfsX23)
No

47 1991 F Moroccan c.2450A4G; (p.D817G) Yes Lost
50 1995 F American c.1918G4C; (p.G640R) No Lost
51 30 M Moroccan c.2450A4G (p.D817G) Yes 0.75 Peritonitis, sepsis
52 30 F Moroccan c.2450A4G (p.D817G) Yes 2 Sepsis
58 31 2006 F Saudi c.2506G4A (p.V836M) NR 4 Sepsis

ICF2
Patient
no. References

Birth
year Sex Origin

Mutations in ZBTB24 transcript NM_014797.2
(protein NP_055612.2) Consw

Follow-
up

status

Age at
death
(years) Cause of death

11 1,7,32 1987 F Scottish c.47C4G (p.S16X) Yes 13 Bronchopneumonia
17 1,7 1983 F Turkish c.958C4T (p.R320X) Yes 11 Pseudomonas sepsis
27 1,4,7 1981 M Italian c.1369C4T (p.R457X) No Lost
37 1,7,33 1998 M German c.833C4G (p.S278X)/c.1222T4G (p.C408G) No 4 M Hodgkin
38 1,7,33 2001 F German c.833C4G (p.S278X)/c.1222T4G (p.C408G) No
40 1,12 2000 M Turkish c.759C4G (p.T253X) Yes
49 7 2006 M Turkish c.917delA (p.N306IfsX4) Yes
54 7 1997 M Turkish c.501dup (p.V168SfsX28) Yes
55 2010 M Turkish c.958C4T (p.R320X) No
62 8 1997 M Lebanese c.396_397del; (p.H132QfsX20) No
63 8 1998 M Lebanese c.396_397del; (p.H132QfsX20) No
64 8 2003 M Lebanese c.396_397del; (p.H132QfsX20) No
65 13 2003 M Moroccan c.1222T4G (p.C408G) No

ICFX
Patient
no. References

Birth
year Sex Origin Mutations Consw

Follow-
up

status

Age at
death
(years) Cause of death

13 1,34 1960 F Italian Neg NR 40 Encephalitis
14 1,34 1959 M Italian Neg NR Lost
34 1,16 2000 F English Neg No
41 1,12 1986 M Turkish Neg Yes
48 2006 Turkish Neg Yes
53 2007 English Neg No
61 2008 Pakistani Neg NR
66 2012 Turkish Neg Yes

Abbreviations: consw, consanguinity; F, female; M, male; Neg, negative; NR, not reported.
Numbers refer to the aforementioned patient registry, bold numbers: patient/mutation which has not been described before.
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In ICF2, one patient had normal serum IgA and IgG levels,
concomitant with a normal distribution of IgG subclasses (patient 65,
Table 3).13 Of twelve ICF2 patients, half had hypogamma-
globulinemia, whereas the other half had agammaglobulinemia. IgA
was present in (sub)normal levels in seven patients. Likewise in seven
patients, IgM was present in a (sub)normal level, whereas four
patients had both IgA and IgM at normal concentrations (Table 3).
Six ICFX patients showed agammaglobulinemia (Table 3). One girl

(patient 13) with ICFX had only IgM deficiency, but some years
later she developed agammaglobulinemia during encephalitis due to
JC virus. Her older brother (patient 14) had normal serum
immunoglobulins.

In young children, the numbers of CD3þ , CD4þ and CD8þ cells
were normal both in ICF1 and ICF2 groups (Supplementary Table 1
and Supplementary Figure 2). T-cells become deficient in older
children and young adults with ICF1. Four of the ICF1 patients
developed a neutropenia and thrombocytopenia (patients 16, 25, 30
and 45) in the second decade; B- and T-cells were decreased as well
(Supplementary Figure 2). Bone marrow of patient 16 showed
hypoplasia.
Cell expansion after stimulation of PBMC’s containing comparable

numbers of T-cells with PHA/IL-2 and irradiated allogeneic feeders
for 7 or 9 days was significantly reduced in those ICF patients
investigated (ICF1: patients 42 and 45, ICF2: patients 49, 54, 55 and
65) compared with unrelated controls, parents or an unaffected
sibling (P¼ 0.028; Wilcoxon test, Table 4). Significantly reduced
expansion was also observed in a second round of stimulation for
7 or 9 days when ICF1 and ICF2 were considered as one group
(Table 4).

Treatment
Hematopoietic stem cell transplantation (HSCT) was performed in
three unrelated ICF1 patients (patients 24, 33 and 43) and in two
siblings (patients 34 and 53) with ICFX. Patient 24 received a HSCT
because of myelodysplasia; she died from a RSV infection. In the
other patients, HSCT was performed due to severe infections
associated with the immunodeficient status and was successful in all
cases.16 Remarkably, HSCT was not performed in ICF2 patients.

DISCUSSION

The hallmarks of ICF syndrome are the triad of immunodeficiency,
centromeric instability and facial dysmorphisms. Not surprisingly,
these are present in all three groups. Specifically, patients with ICF1 or
ICF2 were found to have a similar phenotype. They have the same
facial anomalies, a frequent occurrence of developmental delay and a
high incidence of severe respiratory and opportunistic infections.
These symptoms are also present in ICFX patients with unresolved
gene defect. However, despite these common characteristics, subtle
differences in immune defects, congenital malformation and intell-
ectual function were observed among the three groups.
Immunodeficiency is severe in ICF syndrome and most patients die

at young age, usually in the first or second decade. However, humoral
immunodeficiency is generally more pronounced in patients with
ICF1 compared with ICF2. In ICF1, all but one patients suffer from
agammaglobulinemia or hypogammaglobulinemia, and all are IgA
deficient. An ICF1 case with a mild phenotype was recently also
reported to have a homozygous c.2308A4G (pK770E) mutation in
DNMT3B.8 In ICF2, immunoglobulin class deficiencies are less
extreme: one patient has normal serum immunoglobulins and six
of them have normal levels of IgA and/or IgM. Blanco-Betancourt
et al.2 studied two ICF1 patients and two DNMT3B mutation-
negative ICF patients; three of these patients had agamma-
globulinemia. The peripheral blood of these patients contained only
naive B-cells, with an immature phenotype, possibly due to an
accumulation of new bone marrow B-cell emigrants but no memory
B-cells. They proposed that disturbance of peripheral B-cell
maturation contributes to agammaglobulinemia in ICF syndrome.
In vitro, B-cells of the patients were competent in class-switch
recombination and immunoglobulin secretion upon stimulation via
CD40L in the presence of IL-4. In line with these data, IgA and IgG
are present in some ICF2 patients in this study. In one patient (patient
65), the switch is (nearly) normal, based on normal serum IgA and
IgG levels (Table 3). Notably, the latter patient is the only ICF2 case

Table 2 Overview of clinical data of the patients

Condition ICF1 ICF2 ICFX

Number of patients 23 13 8

Deceased 11 3 1

Age range (years) 0.75–19 years 4–13 years 40 years

Facial anomalies

Hypertelorism 14/18 7/13 6/6

Flat nasal bridge 13/16 8/9 5/5

Epicanthus 14/17 7/8 6/7

Up-turned nose 6/9 4/7 4/6

Macroglossia 5/11 1/5 3/6

Telecanthus 3/11 2/4 3/5

Micrognathia 5/12 3/8 3/6

Low-set ears 6/14 5/7 5/5

Round face 8/10 6/8 4/6

Total incidence 21/22 13/13 7/7

Growth and development

Gestional age o37 weeks 3/20 1/7 0/5

Birth weight op10 9/20 4/6 4/5

Failure to thrive 8 3 2

Delay in motor development 9/16 7/8 4/6

Delay in speech development 14/16 11/13 4/6

Malformations

Congenital 7 2

Cerebral 2 2 1

Intelligence

Normal 11/20 0/13 3/7

Retardation 9/20 13/13 4/7

Neurology

Seizures 3 1

Gastrointestinal problems

Diarrhea 7/14 2/6 2/3

Infections

Otitis 8/13 2/6 1

Bronchopneumonia 16/16 5/7 3

Sepsis 5 1 1

Candida infection 4 2 2

Pneumocystis jerovici 2 2 2

Malignancy 2 1

Indicated are the number of patients displaying the respective trait/total number of patients of
which data on the respective trait is reported.

Genotype-phenotype correlations in ICF syndrome
CMR Weemaes et al

1222

European Journal of Human Genetics



reported to date harboring two missense mutations in ZBTB24: all
other ICF2 patients have at least one premature stop codon. This
indicates the crucial role of ZBTB24 in antibody production.
With respect to cellular immunity, the number of T-cells is normal

in young ICF1 and ICF2 children (below the age of 10 years).
However, once older with a long follow-up period, ICF1 patients
(patients 16, 25, 30 and 45) display a decline in the numbers of T-cells
in the second decade of life, when they develop neutropenia and
thrombocytopenia as well (Supplementary Figure 2). Interestingly, it
has been suggested that these features, together with development of
cerebral atrophy, are reminiscent of systemic lupus erythematosus
(SLE),1 which is linked to DNA hypomethylation.17 However, mRNA
levels of DNMT3B in T-cells of SLE patients are comparably low as
that in normal controls.18 In mice, it has been reported that Dnmt3a
and Dnmt3b function as de novo methyltransferases during
hematopoietic differentiation, and therefore have a critical role in
hematopoietic stem cell self-renewal.19 In line with this notion,
mutations in the aforementioned four ICF1 patients are located in
the same region (patient 16: p.V726G, patient 25: p.A766P, patient 30:
p.V699G and patient 45: p.R764S/p.I781KfsX23), all of which are
supposed to reduce the overall stability of DNMT3B protein.20 In
contrast, no decline of peripheral counts of neutrophils and
thrombocytes has been observed in patients with ICF2 (two of
them are 410 years old) or ICFX.
A possible T-cell defect has not been demonstrated in ICF patients

as yet. However, opportunistic infections with Pneumocystis and
Candida albicans occurred in several ICF patients irrespective of the
group, pointing to a functional T-cell defect. In mice carrying the
same missense mutations in Dnmt3b identified in ICF1 patients,
massive apoptosis of T-cells was observed in the thymus. This T-cell
apoptosis appears to occur a few hours after birth, as the thymocyte
profiles were normal in embryonic and newborn mice. Flowcyto-
metric analysis of CD4, CD8 and TCRb expression revealed no
developmental defect of the T-cells in the thymus of newborn mice.21

Likewise, in young ICF patients, the numbers of CD3þ T-cells,
CD4þ and CD8þ T-cell subsets are normal, irrespective of the group.
However, in vitro stimulation of PBMCs with PHA/IL-2 and
irradiated allogeneic feeders revealed that the expansion of T-cells
was reduced in all ICF1 and ICF2 cases investigated. This decreased
expansion was maintained in a second round of stimulation,
indicating an intrinsic T-cell defect in ICF1 and ICF2 patients, for
instance a disturbed cell cycle progression. Alternatively, the reduction
in T-cell numbers after stimulation could also be caused by an
increased susceptibility to apoptosis of ICF1 and ICF2 T-cells, which
is in line with the results obtained with splenocytes of Dnmt3b
mutant mice.21

All ICF2 patients are intellectually disabled, and nearly all have a
delay in development of walking and initial speech. In contrast, only
half of the patients with ICF1 are intellectually disabled. Data from the
Allen Brain Atlas (www.brain-map.org) shows that ZBTB24 is highly
expressed in the caudate nucleus, an important part of the brain’s
learning and memory system, and may explain the high incidence of
intellectual disability in ICF2. In a study with transgenic mice, it has
been suggested that Dnmt3b is important for the early phase of
neurogenesis.22 Cerebral malformations were demonstrated in some
ICF patients, belonging to both ICF1 and ICF2 patient groups.
Congenital malformations are only found in a few patients. Mouse

models for ICF syndrome, either Dnmt3b knockout mice or mice
carrying homozygous Dnmt3b mutations identified in ICF1 patients,
demonstrated that Dnmt3b is essential for embryonic development.
Dnmt3b deficiency results in embryonic lethality in mice aged
E14.5–E16.5, with multiple tissue defects including ventricular septal
defect.21 In agreement, congenital heart defects were also observed in
three patients with DNMT3B mutations. Furthermore, two ICF2
patients carrying mutations in ZBTB24 had a cardiac defect,
suggesting the effects of this gene on embryonic development.
In summary, with the identification of ZBTB24 mutations in

DNMT3B mutation-negative ICF cases, it is now possible to classify

Figure 1 Schematic representation of the DNMT3B and ZBTB24 proteins, and their domains with the mutations identified in ICF1 and ICF2 patients

included in this study.
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ICF patients into three groups: ICF1 with mutations in DNMT3, ICF2
with mutations in ZBTB24 and ICFX patients with an unknown gene
defect. In our study cohort, including two mutations not reported
before, ICF1 is the most prevalent (52%), followed by ICF2 (30%).
Clinically, the most striking differences are the more pronounced
humoral immunodeficiency in ICF1 patients, the absence of

congenital malformations in ICFX patients and the significantly
higher incidence of intellectual disability in ICF2 patients. These
observations on prevalence and clinical presentation may facilitate
prioritization of mutation screening, and can be useful in diagnostic
counseling as well. Although focus has been on the B-cell compart-
ment, our studies indicate that the immunodeficiency in patients with
ICF syndrome is not restricted to a B-cell defect, but also involves the
T-cell compartment.
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