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Replication of the effect of SLC2A9 genetic variation
on serum uric acid levels in American Indians

V Saroja Voruganti*,1,2, Nora Franceschini3, Karin Haack2, Sandra Laston2, Jean W MacCluer2,
Jason G Umans4,5, Anthony G Comuzzie2, Kari E North3,6 and Shelley A Cole2

Increased serum uric acid (SUA) or hyperuricemia, a risk factor for gout, renal and cardiovascular diseases, is caused by

either increased production or decreased excretion of uric acid or a mix of both. The solute carrier protein 2 family, member

9 (SLC2A9) gene encodes a transporter that mediates urate flux across the renal proximal tubule. Genome-wide association

studies have consistently shown the association of single-nucleotide polymorphisms in this gene with SUA in majority

populations. American Indian participants of the Strong Heart Family Study, belonging to multigenerational families, have high

prevalence of hyperuricemia. We conducted measured genotype analyses, based on variance components decomposition method

and accounting for family relationships, to assess whether the association between SUA and SLC2A9 gene polymorphisms

generalized to American Indians (n¼3604) of this study. Seven polymorphisms were selected for genotyping based on their

association with SUA levels in other populations. A strong association was found between SLC2A9 gene polymorphisms and

SUA in all centers combined (P-values: 1.3 �10�31–5.1�10�23) and also when stratified by recruitment center; P-values:

1.2�10�14–1.0�10�5. These polymorphisms were also associated with the estimated glomerular filtration rate and serum

creatinine but not albumin–creatinine ratio. In summary, the association of polymorphisms in the uric acid transporter gene

with SUA levels extends to a new population of American Indians.
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INTRODUCTION

Uric acid is the end product of purine metabolism in humans and
higher primates. Increased serum uric acid (SUA), that is, hyperur-
icemia is a risk factor for gout and in some cases for nephrolithiasis.
As well, it may contribute to cardiometabolic disorders, such as type 2
diabetes,1 metabolic syndrome,2,3 cardiovascular disease (CVD) and
chronic kidney disease (CKD).4–8 The prevalence of hyperuricemia
and gout seems to have increased in the United States (US) during the
past two decades; by 2007–2008, the prevalence of gout was 3.9% and
that of hyperuricemia was about 21%.9 This increased prevalence may
be related to concomitant increases in obesity and hypertension along
with changes in diet and physical activity. Genetic factors also have a
key role in SUA variation. Several twin and family-based studies have
found SUA levels to be significantly heritable.10–12 Genome-wide
linkage scans10–13 and association studies (GWAS)14–19 in several
populations have consistently pointed to the important role of uric
acid transporters, particularly solute carrier protein 2 family, member
9 (SLC2A9), in the regulation of SUA. However, the relevance of these
genetic variants to minority populations is largely unknown.

Besides genetic factors, environmental factors, particularly diet,
disease state and certain medications seem to influence SUA.
Epidemiologic and diet studies have shown fluctuations in SUA with
increased intake of purine-rich foods, alcohol and fructose intake.
Experimental studies have suggested a role for fructose-induced

hyperuricemia in the development of insulin resistance, hypertension
and renal disease.6,20 Our preliminary work in the Strong Heart
Family Study (SHFS) revealed that SUA exceeded 4 mg/dl in B76%
of individuals.12 This is a matter of concern as SUA levels 44 mg/dl
have been associated with atherogenesis and stroke in individuals at
risk for diabetes or CVD.21,22 American Indians also have higher rates
of albuminuria and of CKD (ie, estimated glomerular filtration rate
(eGFR) o60 ml/(min/1.73 m2)) than the general US population due
primarily to an excess of diabetes and diabetic nephropathy.23,24

Furthermore, the prevalence of end-stage renal disease (ESRD) and
diabetic-ESRD are much higher (two and four times, respectively) in
American Indians than in the general US population.25

Therefore, we genotyped well-replicated single-nucleotide poly-
morphisms (SNPs) in SLC2A9 in the SHFS to assess their general-
izability to American Indians. As secondary aims, we also investigated
the association of these SNPs with renal phenotypes given the role of
SLC2A9 in renal urate transport and the effect of interaction between
SLC2A9 SNPs and environmental factors on SUA levels.

MATERIALS AND METHODS

Study population
The SHFS is a family-based genetic study in American Indians. It is an

extension of the Strong Heart Study which is a population-based observational

study of CVD and its risk factors in this population. More than 3600 members
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of multigenerational families (mean family size 40 individuals, range 5–100)

were enrolled from three centers located in Arizona, North and South Dakota

and Oklahoma. The Indian Health Service Institutional Review Board and the

institutional review boards from the participating centers and institutions

approved the SHFS protocol and all subjects gave informed consent. Study

design and methods of the SHFS are in accordance with institutional

guidelines and have been described previously.12,26

Genotyping data for one SNP (see below) used in this study was available

through the Population Architecture using Genomics and Epidemiology

(PAGE) consortium, which aims to examine putative causal variants across

various population groups such as African Americans, Asian Americans and

American Indians. The SHFS is a member of the Genetics Epidemiology of

Causal Variants Across the Life Course (CALiCo) consortium, which is in turn

member of the PAGE consortium.

Phenotyping
During a clinical visit, information related to anthropometry, alcohol intake,

medical history and medication use was obtained using a questionnaire.

Anthropometric measurements were obtained by standard reference proce-

dures described previously.12 Blood was collected after an overnight fast and

plasma and serum samples were stored at �80 1C until analyzed. SUA was

assayed in the SHFS central laboratory by the uricase method and serum

creatinine by an enzymatic method, both on the Vitros 950 platform (Ortho

Clinical Diagnostics, Rochester, NY, USA). Urine albumin content was

measured by a sensitive, nephelometric technique.27 Urine creatinine was

measured by the picric acid method.28 eGFR was computed using the

simplified (ie, four-variable) modified diet and renal disease (MDRD)

equation, omitting the ethnicity term, as we have reported previously:29

[eGFR [ml/(min/1.73 m2)]¼ 186� serum creatinine (mg/dl)�1.154� age

(years)�0.203� (1.212 if black)� (0.742 if female)].

Dietary assessment
Food intake was measured using a Block 119-item food frequency ques-

tionnaire (FFQ).30,31 The Block FFQ is a widely used, reliable and validated

FFQ.32 The Block database (Block Dietary Systems) was used to calculate the

average daily energy and macronutrient intakes of each study participant in

this study.33

SNP genotyping
Seven SNPs to be genotyped were selected based on their association with SUA

levels and replicability across populations. These are rs16890979, rs6832439,

rs6449213, rs13131257, rs737267, rs10805346 and rs12498956 (Supplementary

Figure 1). Description of all these variants can be found in the NCBI public

database (http://www.ncbi.nlm.nih.gov/projects/SNP/). One SNP (rs16890979)

was genotyped at the central DNA laboratory of CALiCo Consortium34 using

the TaqMan genotyping assays (Life Technologies, Carlsbad, CA, USA) and the

remaining six SNPs were genotyped at the SHFS Genetic Center using the

multiplex VeraCode technology from Illumina according to the manufacturer’s

protocol (Illumina, San Diego, CA, USA). Details of both techniques are

reported elsewhere.35,36 Cluster calls were checked for accuracy and genotypes

were exported as text files for further use in association analysis. Replica

samples were included as controls for genotyping and allele calling consistency.

Measured genotype analysis
Genotype frequencies for each SNP were estimated allowing for non-

independence due to kinship37,38 and were tested for departures from

Hardy–Weinberg equilibrium in the software package, Sequential Oligogenic

Linkage Analysis Routines (SOLAR).37 Population stratification was tested

using the quantitative transmission disequilibrium test (QTDT).39–41 The

QTDT is based on the principle that population structure will affect only

between-family associations of the genotype with the trait mean. It compares a

model in which both between-family and within-family associations are freely

estimated to a model in which within-family association component is fixed at

0. The presence of stratification can be assumed when the estimates of

between-family is significantly different from within-family components.

Estimates of linkage disequilibrium (LD) between SNPs were determined by

calculating pair-wise D’ and r2 statistics. To investigate the association between

SLC2A9 SNPs and SUA levels, we employed a measured genotype analysis

(MGA),42 as implemented in SOLAR.37 This approach extends the classical

variance component-based biometrical model to account for both the random

effects of kinship and the main effects of SNP genotypes and has been

described in detail in Boerwinkle et al.42 The covariates age, sex, age� sex,

body mass index (BMI), eGFR, type 2 diabetes status, self-reported alcohol

intake and medications were included in the final model. Study site was used

as an additional covariate while analyzing SUA in all centers combined. Details

of the medication use are given in Table 1 and Voruganti et al.12

Bayesian quantitative trait nucleotide analysis
The MGA described above was used to assess association between SUA and

each SNP, analyzing one SNP at a time. However, multiple functional variants

will often exist within a chromosomal locus, and joint analysis of multiple

variants may be more powerful to detect their effects and to establish which of

the many polymorphisms within a region are the most likely to be functional.

The Bayesian Quantitative Trait Nucleotide (BQTN) approach,39 which is

essentially a Bayesian method, is based on an underlying measured genotype

model that permits joint analysis of multiple variants. The BQTN analysis was

implemented in SOLAR to statistically identify the most likely functional SNPs

associated with a phenotype. This method has been described in detail

elsewhere.37–39

SNP-by-environment interaction
The association model was extended to include a multiplicative environment-

by-SNP interaction term. The interaction between SNPs and non-genetic

factors was conducted using a one degree-of-freedom likelihood ratio test of a

single interaction term (SNP�E) as implemented in an unconditional logistic

regression. SUA was the dependent variable and SNPs were modeled using an

additive genetic model (coded as 0, 1 and 2) based on the number of rare

alleles. The model included SNP, environmental factor and SNP�
environmental factor terms as covariates. Age and sex were added as additional

covariates wherever appropriate. Participants were considered as hypertensive

if they were on hypertensive medications or had systolic blood pressure

Z140 mm Hg or had diastolic blood pressure Z90 mm Hg. Similarly, for

diabetes status, participants were considered as diabetic (as per ADA crtiteria)

if their fasting blood glucose was Z126 mg/dl or they were taking diabetic

medication. Age, protein and sugar intakes were modeled as continuous

variables, whereas sex, BMI, alcohol intake, hypertension and diabetes status

were modeled as dichotomous variables.

RESULTS

Baseline characteristics of all participants are shown in Table 1. A total
of 3604 (60% women) individuals participated in this study.
Hyperuricemia, as characterized by SUA47 mg/dl in men and
46 mg/dl in women, was present in 12, 21 and 17% of individuals
from Arizona, Dakota and Oklahoma, respectively, with men having
higher SUA levels than women in all centers. Of the individual
centers, participants from Arizona had higher eGFR, urinary
albumin–creatinine ratio (UACR), BMI, waist circumference and
percent body fat values even though they were younger than the
participants of the other two centers (Table 1). Participants with
hyperuricemia were of older age, had lower GFR and higher BMI,
waist circumference, blood pressure and triglycerides as well as lower
HDL levels.

Association of SLC2A9 SNPs with SUA levels and renal phenotypes
The SLC2A9 SNPs were strongly associated with SUA levels (Table 2)
with P-values of 1.0� 10�5–1.3� 10�31. All centers combined
showed the strongest associations followed by Oklahoma, Arizona
and Dakotas, with effect sizes of 2.7–6.4%. The overall variance of all
SNPs taking the LD structure within the gene into account was 5.4,
4.6, 4 and 5.3% for all centers combined, Arizona, Dakotas and
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Oklahoma, respectively. Their allele frequencies and the effect sizes
(proportion of residual phenotypic variance explained by the SNP)
are shown in Table 2, and the genotype-specific means of SUA levels
are shown in Supplementary Table 1. QTDT for population stratifica-
tion showed the absence of population stratification for these SNPs.
LD pattern showed that there was strong LD (40.9) (Supplementary
Figure 1) between the missense variant rs16890979 and three SNPs
rs6832439, rs737267 and rs13131257. In analyses combining all three
centers, SLC2A9 SNPs were also significantly associated with renal
function assessed by either serum creatinine or eGFR. However, they
were not associated with UACR (Table 3). None of the SNPs were
associated with renal phenotypes in individual centers
(Supplementary Table 2).

BQTN analysis
The BQTN analysis identifies a SNP or SNPs that are most likely to be
functional either by itself or in combination with other SNPs or in
high LD with a functional SNP. In the current analyses, SNPs
rs10805346 and rs6449213 showed posterior probability of 1, which
indicates that these SNPs are most likely to be functional or in high
LD with a functional SNP with respect to their effects on SUA.

SNP-by-environment interaction
On the basis of the BQTN results, we found that SNPs rs10805346
and rs6449213 showed high probability of having a functional effect
on SUA levels. Therefore, we assessed rs10805346 and rs6449213 for
the SNP-by-environment interaction effects on SUA levels (Table 4).
Significant interaction effects on SUA levels were found for sex in all
centers combined and individual centers. Age and alcohol intake had
a significant interaction effect in all centers combined; however,

they were not significant for individual centers. Protein intake showed
a significant interaction in Arizona whereas it showed a trend toward
significance in all centers combined (Table 4).

DISCUSSION

The major findings of this study are the strong associations of seven
SLC2A9 SNPs, previously described in other populations, with SUA
levels in American Indians indicating the generalizability of these
associations to a minority population. In addition, we also found a
significant association of these SLC2A9 SNPs with renal function
assessed by either serum creatinine or eGFR. A limitation of this study
is that we could not test for the association of these variants with gout
as we do not have gout prevalence and diagnosis data.

Originally identified as a glucose transporter, SLC2A9 (or GLUT9)
was later found to be a key uric acid transporter.44–46 Studies in
rodents and other molecular observations indicate an important role
for SLC2A9 in proximal tubular urate absorption.47,48 Genome-wide
(GWAS) and candidate association studies have found strong
association of SLC2A9 SNPs with SUA levels.14–19 These studies
were mainly conducted in Caucasian, African American and Asian
populations. However, none of the studies were conducted in
American Indians, a population in which the prevalence of
hyperuricemia seems to be much higher than other populations.14–18

The BQTN approach helps statistically narrow down the variants or
regions for further molecular and functional analyses by identifying
SNP or SNPs that are most likely to be functional or in high LD with
a functional SNP. Our BQTN findings demonstrated strong support
for rs10805346 and rs6449213 in the variation in SUA levels. These
SNPs have been consistently shown to be associated with SUA levels
in various GWAS and candidate gene association studies.14–19 We also

Table 1 Distribution of SUA levels and cardio-renal-related phenotypes

Phenotypea All Arizona Dakotas Oklahoma

N (% male) 3604 (40) 1215 (38) 1186 (41) 1203 (42)

Serum uric acid (mg/dl) 5.14 (1.5) 4.87 (1.5) 5.34 (1.5) 5.22 (1.5)

Age (years) 39.96 (17.03) 37.21 (16.0) 39.04 (17.1) 43.65 (17.3)

eGFR (ml/(min/1.73 m2))b 99.98 (28.0) 111.42 (31.4) 95.61 (24.6) 92.78 (23.5)

UACR (mg/g)c 46.47 (180.5) 61.33 (219.4) 38.84 (151.9) 39.29 (162.1)

BMI (kg/m2)d 32.14 (7.6) 35.13 (8.2) 30.17 (6.8) 31.15 (6.9)

Waist circumference (cm) 104.36 (18.1) 111.54 (18.6) 99.47 (17.0) 101.95 (16.3)

Body fat (%) 37.32 (10.2) 41.43 (9.7) 34.21 (10.0) 36.29 (9.4)

Systolic blood pressure (mm Hg) 122.39 (16.5) 120.80 (16.5) 119.87 (15.3) 126.53 (16.9)

Diastolic blood pressure (mm Hg) 76.19 (11.1) 76.52 (11.3) 75.22 (10.5) 76.84 (11.5)

Total cholesterol (mg/dl) 180.04 (34.8) 173.86 (32.4) 180.95 (35.6) 185.37 (35.5)

High-density lipoprotein cholesterol (mg/dl) 50.59 (14.2) 48.43 (13.7) 50.62 (13.5) 52.77 (14.9)

Triglycerides (mg/dl) 158.96 (93.4) 162.28 (93.6) 150.62 (92.4) 163.80 (93.8)

Hypertensive (%) 31.6 33.9 23.7 37.3

Diabetic (%) 22.7 32.9 14.3 20.5

Medication use (yes %)

Aspirin 12.9 11.5 15.7 12.1

Sulfonyureas 10 14.7 9.9 5.3

Metformin 7.9 12.1 5.4 6.1

ACE inhibitors 14.5 16.6 11.7 15.3

Beta blockers 4.0 3.5 4.0 4.4

Calcium channel blockers 5.8 6.3 4.5 6.6

Hydrochlorothiazide 7.2 5.9 5.7 10.1

aMean (standard deviation).
bEstimated glomerular filtration rate.
cUrinary albumin–creatinine ratio.
dBody mass index.
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observed that the missense polymorphism rs16890979 and SNPs in
high LD with it had zero or very low posterior probability of having a
functional effect on SUA levels.

The strong association of SLC2A9 SNPs with serum creatinine and
eGFR but not with UACR appears to be novel and may contribute to
understanding the role of uric acid in pathogenesis of CKD. Elevated
SUA has been associated with prevalent and progressive loss of renal
function, though there has been much controversy regarding its role
in pathogenesis given the possibility of confounding due to its
association with the metabolic syndrome as well as its renal excretion.
We found that alleles of rs16890979, rs6832439, rs737267 and
rs13131257, that were associated with lower SUA levels, were
associated with higher eGFR. The relationship between uric acid
and kidney function seems to be two-sided. On one hand, decline in
GFR (kidney function parameter) may lead to elevation of uric acid,
on the other hand, increase in uric acid seems to alter glomerular
function through renal vasoconstriction and increased renin expres-
sion.49 Further, this seems to be dependent on diabetic nephropathy,

despite the high prevalence of type 2 diabetes in our population, since
there is no association of the transporter variants with albuminuria.
Population studies conducted so far have found a strong association
of SLC2A9 SNPs with SUA levels but not with renal function.
Our results are in accord with several recent studies in which SUA
was predictive of incident CKD, defined by decrements in eGFR.50,51

In our study, we found that SLC2A9 SNPs in individual centers were
not associated with renal phenotypes. This may be due to genetic
heterogeneity between the study centers which stems from the fact
that the three study centers are recruited from local tribal
communities that are geographically separate and which do not
overlap between centers. Thus, the phenotypic and genotypic
heterogeneity, including allele frequency and effect size differences
between the three centers, is likely due to both genetic and
environmental differences.

SUA is known to vary with age, sex, adiposity, insulin resistance or
diabetes and is associated with hypertension as well. In addition to its
regulation by renal excretion, it varies with diets such as those rich in
purine and fructose which increase SUA, by increasing its precursor
pool, while alcohol intake increases SUA by decreasing its excretion.
In the Third National Health and Nutrition Examination Survey
(NHANES, 1988–1994), intake of meat and seafood was positively
associated with SUA whereas dairy intake was inversely associated
with SUA.52 Importantly, consumption of processed and unprocessed
red meat was found to be high in our SHFS cohort.33 Therefore, we
tested gene-by-environment interaction for the two polymorphisms
that showed the highest probability of functional effect, with eight
environmental variables that may affect SUA levels. We found
significant interactions with sex, age, alcohol and protein intake.
Association with SUA levels was stronger in women than in men
replicating previously reported sex differences in individuals of
European ancestry.18,19 By contrast, a study in African Americans
and European Americans found only nominal interaction effects for
rs16890979 (missense polymorphism) with sex and none with BMI,
alcohol intake or diabetes.15 Sex seems to be the strongest factor in

Table 2 Center-specific associations of SUA levels (mg/dl) with SLC2A9 SNP

All Arizona Dakotas Oklahoma

SNP

Risk allele/

frequency Effect size (%)a P-value

Risk allele/

frequency

Effect

size (%) P-value

Risk allele/

frequency

Effect

size (%) P-value

Risk allele/

frequency

Effect

size (%) P-value

rs16890979 A/0.47 4.6 1.3E�31 A/0.55 3.8 3.8E�11 A/0.42 3.2 1.1E�8 A/0.43 5.1 7.8E�13

Post. Probb 0 0.12 0 0

rs6832439 A/0.47 4.5 7.7E�31 A/0.55 3.8 2.8E�11 A/0.41 3.3 1.5E�8 A/0.47 4.8 7.2E�12

Post. Probb 0 0.09 0 0

rs6449213 G/0.28 4.5 1.5E�29 G/0.37 3.0 1.6E�11 G/0.20 3.3 2.8E�9 G/0.27 6.4 1.2E�14

Post. Probb 1.0 0.10 1.0 1.0

rs13131257 A/0.48 4.5 1.8E�29 A/0.56 4.2 5.8E�12 A/0.42 3.3 5.0E�8 A/0.46 4.1 2.6E�10

Post. Probb 0 0.43 0 0

rs737267 A/0.49 4.4 2.9E�29 A/0.56 4.1 9.1E�12 A/0.45 3.1 4.5E�8 A/0.48 4.4 1.1E�10

Post. Probb 0 0.21 0 0

rs10805346 A/0.29 4.1 5.4E�28 A/0.21 4.1 2.4E�11 A/0.39 3.3 1.4E�8 A/0.34 2.7 1.6E�8

Post. Probb 1.0 1.0 1.0 0

rs12498956 C/0.47 3.4 5.1E�23 C/0.43 3.3 5.9E�10 C/0.49 2.1 1.0E�5 C/0.49 4.1 1.1E�9

Post. Probb 0 0.05 0 0

aEffect size – proportion of residual phenotypic variance that is explained by the SNP.
bPost. Prob – posterior probability of a functional effect. Posterior probability of 40.95 is considered as statistically significant evidence of functional effect.
Final model included covariates age, sex, age� sex, body mass index (BMI), eGFR, type 2 diabetes status, self-reported alcohol intake and medications.

Table 3 Association of SLC2A9 SNP with renal function in combined

centers sample

Serum creatinine Estimated GFR Albumin/creatinine ratio

SNPs

Effect sizea

(%) P-value

Effect size

(%) P-value

Effect size

(%) P-value

rs16890979 0.53 0.0013 0.52 0.0015 0.13 0.066

rs6832439 0.54 0.0017 0.52 0.0019 0.16 0.051

rs6449213 0.27 0.0028 0.22 0.08 0.01 0.639

rs13131257 0.60 0.00007 0.58 0.0009 0.14 0.050

rs737267 0.46 0.004 0.44 0.0044 0.14 0.056

rs10805346 0.68 0.00005 0.69 0.00008 0.14 0.102

rs12498956 0.23 0.058 0.24 0.047 0.07 0.153

aEffect size – proportion of residual phenotypic variance that is explained by the SNP.
Final model included covariates age, sex, age� sex, age2 and age2� sex.
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our interaction analyses and therefore we analyzed the association of
these two SNPs in men and women separately as well as pre- and
post-menopausal women. We found it to be strongly associated with
SUA in all these groups. The interaction of SLC2A9 SNPs with sex is a
replication of previously reported studies in Caucasians and African
Americans.15,18,19 We found a significant interaction of rs6449213
genotype with alcohol and protein intakes, neither have been
previously reported.

In summary, we report strong association of SLC2A9 SNPs with
both SUA levels and eGFR in American Indians. However, given the
high rates of hyperuricemia and CKD in American Indians and their
contributions to the excess of CVD in this population, further
research on the variants affecting these phenotypes may suggest novel
therapeutic targets for disease prevention.
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Table 4 SNP-by-environment interaction effect on SUA levels

Environmental variable rs10805346 rs6449213

Main effects Interaction effects Main effects Interaction effects

All b (SE)a P-value b (SE)a P-value b (SE) P-value b (SE) P-value

Age 0.28 (0.05) 5.0E�24 0.003 (0.001) 1.9E�2 –0.31 (0.03) 7.4E�28 �0.003 (0.001) 1.9E�2

Sex 0.17 (0.04) 1.3E�6 0.16 (0.04) 2.1E�4 �0.16 (0.04) 9.0E�6 �0.20 (0.04) 8.2E�6

BMI 0.29 (0.03) 7.9E�26 0.028 (0.03) 0.39 �0.31 (0.03) 1.1E�28 �0.013 (0.03) 0.69

Diabetes status 0.27 (0.03) 1.5E�18 0.045 (0.06) 0.45 �0.31 (0.03) 1.4E�22 �0.014 (0.06) 0.81

Hypertension status 0/27 (0.03) 1.3E�16 0.07 (0.05) 0.21 �0.29 (0.03) 2.1E�19 �0.04 (0.05) 0.39

Alcohol intake 0.30 (0.04) 2.9E�14 �0.04 (0.05) 0.44 �0.37 (0.04) 5.7E�20 0.11 (0.04) 0.03

Dietary intake %b

Protein 0.29 (0.03) 8.1E�23 �0.0005 (0.0003) 0.13 �0.30 (0.03) 2.8E�25 0.0006 (0.0004) 0.09

Simple sugars 0.29 (0.03) 5.7E�23 0.0009 (0.002) 0.32 �0.31 (0.03) 1.4E�26 0.002 (0.003) 0.38

Arizona

Age 0.31 (0.06) 2.6E�8 0.004 (0.003) 0.22 �0.26 (0.04) 6.7E�9 0.00005 (0.003) 0.99

Sex 0.19 (0.08) 1.2E�2 0.23 (0.09) 1.3E�2 �0.12 (0.06) 5.9E�2 –0.17 (0.07) 2.4E�2

BMI 0.30 (0.05) 4.9E�8 0.022 (0.08) 0.78 �0.25 (0.04) 3.7E�8 �0.024 (0.06) 0.70

Diabetes status 0.33 (0.06) 3.0E�7 �0.09 (0.11) 0.40 �0.31 (0.05) 2.8E�9 0.11 (0.09) 0.21

Hypertension status 0.30 (0.07) 3.8E�6 0.016 (0.011) 0.88 �0.24 (0.05) 5.5E�6 �0.03 (0.09) 0.74

Alcohol intake 0.37 (0.08) 4.1E�6 �0.11 (0.10) 0.28 �0.27 (0.07) 9.4E�5 0.027 (0.08) 0.75

Dietary intake %b

Protein 0.29 (0.06) 2.8E�7 �0.001 (0.0006) 0.09 �0.25 (0.05) 4.4E�8 0.0013 (0.0006) 0.02

Simple sugars 0.29 (0.006) 4.5E�7 �0.005 (0.006) 0.37 �0.26 (0.05) 2.3E�8 �0.001 (0.004) 0.82

Dakotas

Age 0.25 (0.05) 3.7E�8 0.003 (0.002) 0.16 –0.30 (0.06) 2.9E�7 �0.003 (0.003) 0.26

Sex 0.20 (0.06) 5.6E�4 0.039 (0.07) 0.59 �0.13 (0.07) 0.08 �0.30 (0.09) 6.3E�4

BMI 0.25 (0.04) 3.4E�8 0.07 (0.05) 0.19 �0.29 (0.06) 2.2E�7 �0.027 (0.06) 0.68

Diabetes status 0.25 (0.05) 5.1E�7 0.05 (0.11) 0.64 �0.29 (0.06) 2.4E�6 �0.10 (0.15) 0.51

Hypertension status 0.22 (0.05) 1.6E�5 0.14 (0.09) 0.12 �0.31 (0.06) 1.3E�6 0.056 (0.11) 0.63

Alcohol intake 0.24 (0.07) 8.7E�4 0.010 (0.08) 0.91 0.25 (0.04)

Dietary intake %b

Protein 0.26 (09.05) 5.2E�8 �0.0007 (0.0005) 0.10 �0.28 (0.06) 4.7E�6 0.0002 (0.0008) 0.84

Simple sugars 0.26 (0.05) 3.8E�8 0.0056 (0.005) 0.24 �0.29 (0.06) 1.5E�6 0.0037 (0.005) 0.49

Oklahoma

Age 0.27 (0.05) 5.0E�8 0.002 (0.002) 0.53 �0.35 (0.05) 1.1E�12 �0.004 (0.002) 0.09

Sex 0.09 (0.06) 0.11 0.23 (0.08) 2.3E�3 �0.21 (0.06) 6.5E�4 �0.17 (0.08) 2.7E�2

BMI 0.27 (0.05) 1.1E�8 �0.09 (0.06) 0.09 –0.35 (0.05) 4.2E�13 0.05 (0.06) 0.34

Diabetes status 0.27 (0.05) 7.7E�7 �0.003 (0.11) 0.98 �0.33 (0.05) 9.7E�10 �0.05 (0.10) 0.63

Hypertension status 0.27 (0.06) 2.8E�06 �0.029 (0.09) 0.75 �0.32 (0.06) 4.1E�8 �0.062 (0.09) 0.48

Alcohol intake 0.24 (0.06) 1.1E�4 0.046 (0.09) 0.61 �0.37 (0.06) 2.6E�9 0.07 (0.09) 0.41

Dietary intake %b

Protein 0.26 (0.05) 1.0E�7 0.0006 (0.0007) 0.39 �0.34 (0.05) 5.6E�12 0.0003 (0.0007) 0.68

Simple sugars 0.28 (0.05) 2.2E�8 �0.007 (0.004) 0.08 �0.34 (0.05) 2.9E�12 0.006 (0.004) 0.12

aBeta coefficient (standard error).
bPercent of total calories.
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15 Dehghan A, Köttgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F et al: Association of
three genetic loci with uric acid concentration and risk of gout: a genome-wide
association study. Lancet 2008; 372: 1953–1961.

16 Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M et al: Genome-wide
association study identifies genes for biomarkers of cardiovascular disease: serum
urate and dyslipidemia. Am J Hum Genet 2008; 82: 139–149.

17 Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN et al: SLC2A9 is a newly
identified urate transporter influencing serum urate concentration, urate excretion and
gout. Nat Genet 2008; 40: 437–442.
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