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Meta-analysis of SNPs involved in variance
heterogeneity using Levene’s test for equal variances

Wei Q Deng1, Senay Asma2 and Guillaume Paré*,1,2,3,4

Meta-analysis is a commonly used approach to increase the sample size for genome-wide association searches when individual

studies are otherwise underpowered. Here, we present a meta-analysis procedure to estimate the heterogeneity of the

quantitative trait variance attributable to genetic variants using Levene’s test without needing to exchange individual-level data.

The meta-analysis of Levene’s test offers the opportunity to combine the considerable sample size of a genome-wide meta-

analysis to identify the genetic basis of phenotypic variability and to prioritize single-nucleotide polymorphisms (SNPs) for

gene–gene and gene–environment interactions. The use of Levene’s test has several advantages, including robustness to

departure from the normality assumption, freedom from the influence of the main effects of SNPs, and no assumption of an

additive genetic model. We conducted a meta-analysis of the log-transformed body mass index of 5892 individuals and

identified a variant with a highly suggestive Levene’s test P-value of 4.28E-06 near the NEGR1 locus known to be associated

with extreme obesity.
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INTRODUCTION

Considering the effects on the phenotypic variance of quantitative
traits (that is, differences in the variance of a trait according to the
genotype), a sample size of the order of tens of thousands is
required for the association of single-nucleotide polymorphisms
(SNPs) at genome-wide significance levels (Po1E-06).1 The
effects on the phenotypic variance of quantitative traits are
likely to be equally modest, thus requiring large sample sizes to
identify. Among the statistical tests designed to detect variance
heterogeneity, Levene’s test2 has been shown to be robust to the
violation of the normality assumption and adequately powered
under other irregularities.3 Furthermore, Levene’s test, by design, is
not under the influence of any of the main effects of SNPs and
compares the pairwise differences in variance between genotype
groups, which encompass both linear and non-linear trends. For
instance, an analysis of 21 799 individuals from the Women’s
Genome Health Study first identified SNPs with a genome-wide
significant Levene’s test P-value for C-reactive protein (rs12753193,
P¼ 8.0E-11) and soluble ICAM-1 (rs738409, P¼ 1.9E-10;
rs1799969, P¼ 2.1E-09).4 Although it is feasible to analyze the
heterogeneity of variance in individually large studies, sufficient
sample sizes for the detection of variants with small effects can
only be practically reached through meta-analysis. Indeed, a recent
report has associated an FTO variant (rs7202116) with the
phenotypic variability of body mass index (BMI) (P¼ 2.4E-10;
N¼ 131 233) in a meta-analysis using the squared residual as the
response variable.5

In addition to finding genetic variants influencing phenotypic
variance, a meta-analysis of variance heterogeneity can also be used to

prioritize potentially interacting variants to test for gene–environment
and gene–gene interactions. The high-dimensional nature of genome-
wide data inevitably poses computational and statistical challenges,
such as multiple testing burden. Consequently, sample sizes of
individual genome-wide association studies have been largely under-
powered to detect interactions.6 Despite these challenges, there is a
pressing need to understand how genetic interactions contribute to
the ‘missing heritability’.7,8 The discovery of novel genetic interactions
through meta-analysis presents a promising strategy, as large
international consortia provide the adequate sample sizes and
methodologies for meta-analyzing interactions are quite well
developed.9,10 We have previously proposed a prioritization
scheme–variance prioritization–in the context of quantitative traits
based on the observation that the trait variance conditional on
genotypes will vary when an interaction is present,4 an active area of
methodological research.11–13 Prioritization is achieved by comparing
the variances of a quantitative trait conditional on the genotypes
using Levene’s test. As only SNPs with Levene’s test P-values that are
lower than a pre-determined threshold (typically a nominal
significance level at B0.05) are tested for interaction effects, the
underlying effect of multiple hypothesis testing is greatly reduced and
overall statistical power is increased accordingly, compared with an
exhaustive search for gene–gene or gene–environment interactions.
In this paper, we provide a framework for combining summary

statistics from multiple genome-wide studies to calculate the meta-
analyzed Levene’s test P-values for individual SNPs without needing
to exchange individual-level data. We then perform a genome-wide
search for SNPs involved in the heterogeneity of variance using log-
transformed BMI and height.
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MATERIALS AND METHODS
Consider a quantitative trait Y with N individuals, and Yi as the quantitative

trait when stratified according to the possible genotypes (i¼ 0, 1, or 2) of a

biallelic SNP. To obtain an equivalent of the exact Levene’s test statistic without

exchanging individual-level data, the following statistics are reported by the

study s (s¼ 1, 2, ... S) for each SNP:

(n0s, n1s, n2s): genotype counts, summing up to Ns

(Z0s, Z1s, Z2s): within genotype means of Z0, Z1, Z2
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2s): within genotype variances of Z0, Z1, Z2
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� and Yi is the group mean of Yi. The calculation of

Levene’s test statistic by simply combining samples assumes the following

natural weights: ois ¼ nisP
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The meta-analyzed Levene’s test statistic Lþ using only the summary statistics and

weights is (detailed derivation in S1):
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Under the null hypothesis of variance homogeneity, Lþ follows an

F-distribution with df1¼ 2 and df2¼N�3. Caution should be observed

regarding rare variants (minor allele frequency (MAF)o1%); a minimum of

two individuals is needed to estimate the variance in any observed genotype

group.

It is common practice in meta-analysis to apply study-specific weights in

such a way that the combined estimate reflects the individual effects of varying

influences. An adjusted weight can be attained by multiplying the natural

weights by the desired adjustment Zis:

o
isadjusted ¼ Zis�ois; 0 � Zis � 1

g
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The corresponding P-value can be calculated from the test statistic, with the

adjusted weights replacing the natural weights. In other words, natural weights

are re-weighted by the adjustment Zis A[0,1] , where 1 corresponds to the

complete representation of the ith genotype in the sth study and 0 corresponds

to no representation in the meta-analysis.

We conducted a genome-wide meta-analysis of the variance heterogeneity

for log(BMI) and log(height) using three publicly available genome-wide

data sets from dbGap:14 MESA (Study accession: phs000209.v10.p2, http://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000209.v10.p2)

and GENEVA, including data from the NHS and HFPS (Study

accession:phs000091.v2.p1, http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/

study.cgi?study_id=phs000091.v2.p1.). For each data set, we performed

quality control of SNPs based on MAF (41%), Hardy–Weinberg equilibrium

(P41E-08) and the genotype call rate (495%) and filtered individuals based

on ethnicity (only European Caucasians) and relatedness (kinship coeffi-

cient40.025). In addition, individuals with diabetes were excluded from the

analysis of BMI to avoid reverse causation.

RESULTS

The quantile–quantile plots of the Levene’s test P-values suggested no
noticeable inflation of type I error rate in either the individual studies
or the meta-analysis (Supplementary Figure S2). We did not detect
SNPs with a meta-analyzed Levene’s test P-value (as shown in Figures
1a and e) that was lower than 5E-08 (ref. 15), which was attributed
to the small sample size, even with all the studies combined
(Supplementary Table S1). For SNPs with P-values that were lower
than 1E-05 (Table 1), we systematically searched for neighboring
SNPs associated at genome-wide significance levels with any traits or
disease in the catalog of published GWAS (http://www.genome.
gov/gwastudies/), filtering associations based on a maximum distance
of 500 kb and r240.8 or D’40.8. Among the 16 top hits for
log(BMI), rs12132044 in the intronic region of the NEGR1 gene
had a highly suggestive meta-analyzed Levene’s test P-value of 4.28E-
06 (Supplementary Figure S3). Notably, rs2815752 near the NEGR1

Figure 1 Distribution of meta-analyzed Levene’s test P-values according to study weights for log(height) and log(BMI). Illustrated in (a–d) is the quantile–

quantile plot of meta-analyzed Levene’s test P-values for log (height) with adjusted weights applied to the three studies (8114 individuals combined).

Illustrated in (e–h) is the quantile–quantile plot of meta-analyzed Levene’s test P-values for log (BMI) with adjusted weights applied to the three studies

(5892 individuals combined). Panels a and e assumed natural weights, that is, an adjustment of one for all three studies (equivalent to using all the

samples from the three studies). For illustrative purposes, we also performed meta-analysis using arbitrary adjustments. Panels b and f assumed an

adjustment of 1, 1, and 0 for MESA, NHS, and HPFS, respectively (equivalent to meta-analysis of only MESA and NHS). Panels c and g assumed

adjustment of 1, 1, and 0.8 for MESA, NHS, and HPFS, respectively. Panels d and h assumed adjustment of 1, 0.9, and 1 for MESA, NHS, and HPFS,

respectively.
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gene, which is known to be associated with BMI16 and severe obesity
in a pediatric cohort,5 was in weak LD (r2¼ 0.325; D’¼ 0.888;
Distance¼ 231.44 kb) with rs12132044 and also nominally
significant for variance heterogeneity (P¼ 0.0076). None of the
other top hits for log(BMI) or log(height) were correlated with
variants associated with other traits or diseases in their neighboring
regions (Supplementary Table S2). For illustrative purposes, we also
performed a meta-analysis using arbitrary adjustments. Similar
conclusions were reached when meta-analysis was performed with
study-specific weights (Figures 1b–d, f and g). Additional simulation
results on variance prioritization are provided (Supplementary Table
S3; Supplementary Figure S1 and S4).

DISCUSSION

Analysis of the genetic basis of quantitative trait variance has recently
gained increasing interest. Differences in the variance of a quantitative
trait between genotypes of a SNP can be due to environmental
sensitivity, underlying gene–gene or gene–environment interactions,
or linkage disequilibrium with causal variants. Levene’s test can be
applied to meta-analysis of environmental sensitivity, which largely
rests on analysis of phenotypic variation. Notably, meta-Levene
identified a NEGR1 variant (rs12132044) such that the variance of
log(BMI) stratified by genotypes was related to its number of minor
alleles in a non-linear fashion, which would otherwise be under-
powered for detection using a linear model.

Even with the large sample size available from modern consortia,
statistical power to detect interactions remains modest, and thus there
is a need for prioritization methods. The computation of Levene’s test
P-values using only summary-level data facilitates the use of variance
prioritization in meta-analysis when individual-level data cannot be
obtained. In variance prioritization, SNPs with significant Levene’s
test P-values are prioritized and then directly tested for interaction
effects using the preferred interaction meta-analysis methods. Our
simulations (Supplementary Table S3) showed improvements in
power when using the optimal Levene’s test P-value thresholds.
Increased power was consistent with the reductions in the genetic
interaction search space resulting from the prioritization of SNPs.
Under most circumstances, the absolute power to detect an inter-
action is low, a priori, such that the relative increase in power is
substantial. This can be highly advantageous if hundreds or thousands
of interactions of small effect sizes underlie the genetics of complex
traits. On the other hand, the need for prioritization diminishes when
the interaction effect sizes are large and exhaustive search alone
provides satisfactory power. However, even in this scenario, the
performance of prioritization is either better than or at least
equivalent to the conventional exhaustive search. Finally, the strength
of association between the environmental covariate and the quanti-
tative trait is the main determinant of the gain in power
from prioritization, so situations where variance prioritization is
particularly favorable can be readily identified. Our simulations
(Supplementary Figure S4) also concurred with the theoretical

Table 1 SNPs with Levene’s test P-value lower than 1.0�10�5 from a meta-analysis of height and body mass index

SNP Chr Position (Kb)

Variance per 0, 1, and

2 minor alleles (MESA)

Variance per 0, 1, and

2 minor alleles (NHS)

Variance per 0, 1, and

2 minor alleles (HPFS) Nearest gene N0 N1 N2 Meta P-value

BMI

rs11206673 1 56098928 1.053 0.869 0.872 0.924 0.834 0.815 0.976 0.751 0.638 LOC100507652 3414 1555 159 2.45E-07

rs12058087 1 56091845 1.049 0.873 0.893 0.929 0.838 0.8 0.978 0.741 0.679 LOC100507652 3497 1531 166 7.11E-07

rs10493187 1 56093557 1.048 0.874 0.872 0.929 0.837 0.798 0.974 0.75 0.679 LOC100507652 3500 1527 169 7.45E-07

rs12118218 1 56093033 1.049 0.872 0.872 0.926 0.838 0.8 0.974 0.752 0.681 LOC100507652 3494 1534 167 9.87E-07

rs3851114 11 56923237 0.973 0.938 1.183 0.953 0.819 0.998 0.938 0.817 1.043 PRG2 1728 2549 919 1.02E-06

rs549630 11 56925282 0.983 0.934 1.191 0.933 0.824 1.003 0.937 0.816 1.083 PRG2 1960 2421 720 1.17E-06

rs6036589 20 23886338 1.014 0.914 1.225 0.933 0.801 1.145 0.943 0.781 1.188 GGTLC1 2968 1854 288 1.50E-06

rs4573554 1 56170625 1.067 0.892 0.884 0.949 0.837 0.793 0.988 0.768 0.92 LOC100507652 2878 1979 335 1.78E-06

rs4468206 1 56169950 1.066 0.891 0.928 0.95 0.837 0.793 0.989 0.768 0.92 LOC100507652 2880 1978 336 2.16E-06

rs12123418 1 56155982 1.042 0.888 0.83 0.94 0.832 0.782 0.955 0.764 0.592 LOC100507652 3506 1488 144 2.29E-06

rs555097 11 56919292 0.989 0.931 1.187 0.935 0.833 1.007 0.93 0.82 1.072 PRG2 2017 2449 730 3.78E-06

rs12119831 1 56164598 1.06 0.896 0.945 0.948 0.837 0.8 0.986 0.767 0.92 LOC100507652 2912 1953 330 4.10E-06

rs12132044 1 72306264 0.854 1.058 1.042 0.792 0.936 0.974 0.803 0.944 0.939 NEGR1 1647 2600 944 4.28E-06

rs6670350 1 56164394 1.057 0.895 0.947 0.948 0.838 0.8 0.986 0.767 0.92 LOC100507652 2912 1952 329 5.38E-06

rs3850552 1 57638259 1.14 0.887 1 1.009 0.845 0.829 1.005 0.9 0.699 DAB1 1755 2569 872 7.79E-06

Height

rs11224301 11 99959951 1.013 0.894 1.508 1.005 0.909 1.782 1.011 0.854 1.727 ARHGAP42 6857 1161 52 2.48E-06

rs10014562 4 168855855 1.068 0.906 1.099 0.986 0.954 1.234 1.011 0.901 1.231 ANXA10 3626 3582 869 2.70E-06

rs12919408 16 13831900 0.931 1.18 1.153 0.957 1.089 1.326 0.959 1.065 1.132 ERCC4 6005 1921 177 4.29E-06

rs2182965 10 130314001 0.951 1.092 0.973 0.942 1.092 1.123 0.931 1.091 0.993 MKI67 5044 2583 350 4.74E-06

rs7153476 14 68102983 0.973 1.05 0.906 0.915 1.044 0.981 0.917 1.056 0.916 RAD51L1 2163 4107 1837 5.12E-06

rs857179 16 13838131 0.928 1.186 1.155 0.962 1.078 1.261 0.959 1.061 1.169 ERCC4 5979 1942 182 7.09E-06

rs427118 6 92400922 1.038 0.928 1.124 0.997 0.96 1.107 0.981 0.93 1.199 MIR4643 3117 3809 1176 7.37E-06

rs16893439 4 15999108 0.937 1.082 0.965 0.946 1.074 0.913 0.919 1.041 1.256 LDB2 4416 3153 537 8.97E-06

rs1523354 3 20543327 1.037 1.009 0.802 1.085 0.949 0.851 1.063 0.928 0.933 SGOL1 3603 3540 962 9.26E-06

rs10769948 11 8718358 1.019 0.936 1.107 1.046 0.957 1 1.04 0.867 1.252 ST5 2519 3966 1528 9.93E-06

Abbreviations: BMI, body mass index; SNP, single-nucleotide polymorphism.
Minor allele frequency and Levene’s test P-value estimated from individual studies were recorded along with the combined Levene’s test P-value (meta-analyzed P-value) and pooled genotype
counts. N0, N1, and N2 represent the pooled genotype counts in the major allele homozygote, heterozygote, and minor allele homozygote group, respectively.
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framework of variance prioritization4,11, according to which the
sample size, number of SNPs, MAF, and the proportion of variance
explained by the interactions and the covariate influenced the
statistical power of variance prioritization.
Beyond allowing the implementation of variance prioritization to

select SNPs for a meta-analysis of genetic interactions or environ-
mental sensitivity, there are many other potential applications of the
meta-analysis of Levene’s test. For example, the homogeneity of
variance assumption underlying many statistical models is usually
examined using Levene’s test. The meta-analysis of the main effects
often relies on the assumption of a common variance among the
different levels of a factor, and meta-analysis of Levene’s test can be
conveniently adopted as a quality control step prior to main effects
analysis. Meta-analysis of Levene’s test is not limited to stratification
by genotype; it can also be used to investigate the heterogeneity of
phenotypic variance across a wide range of environmental factors.
A few limitations are worth considering. First, the required

summary statistics are not typically reported in existing GWAS
meta-analyses, and the generation of such statistics entails further
analytic efforts among individual research centers. However,
calculation of summary statistics can be simply executed at research
centers using our PLINK R plug-in17 scripts (PLINK v.1.07;
http://pngu.mgh.harvard.edu/purcell/plink/). Second, meta-analysis
frequently uses imputation methods to produce a common set of
SNPs among studies genotyped on different platforms. Imputed SNPs
are usually assigned a probability score based on the expected number
of minor alleles, in which case individuals cannot be stratified into
discrete genotypes. To address this concern, we suggest using a best-
guess model whereby participants may be classified according to the
most likely genotype. However, further statistical methodologies to
incorporate probabilistic genotypes under the current framework are
required. Finally, population stratification presents a major challenge
to the meta-analysis of population-based GWAS. We observed that
meta-analysis of Levene’s test in a multi-ethnic population can lead to
false positive results when no precaution is taken (data not shown).
Although our method does not explicitly address this problem, one
solution would be to compute the required summary statistics from
the principal-component-adjusted traits.
In conclusion, we have presented a mathematical framework for

meta-analysis of Levene’s test that can be used for environmental
sensitivity or variance prioritization in meta-analysis. The use of
Levene’s test is advantageous as it is robust to departures from the

normality assumption, is not influenced by the main effects of SNPs,
and does not assume an additive genetic model. Finally, meta-analysis
of Levene’s test can be adapted to more general contexts of variance
analysis and has utility beyond the field of genetics.
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