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A novel method, the Variant Impact On Linkage
Effect Test (VIOLET), leads to improved identification
of causal variants in linkage regions

Lisa J Martin*,1,2,3, Lili Ding2,3, Xue Zhang1, Ahmed H Kissebah4,5,9, Michael Olivier4,6,7

and D Woodrow Benson3,8

The Human Genome Project was expected to individualize medicine by rapidly advancing knowledge of common complex

disease through discovery of disease-causing genetic variants. However, this has proved challenging. Although linkage analysis

has identified replicated chromosomal regions, subsequent detection of causal variants for complex traits has been limited.

One explanation for this difficulty is that utilization of association to follow up linkage is problematic given that linkage and

association are not required to co-occur. Indeed, co-occurrence is likely to occur only in special circumstances, such as

Mendelian inheritance, but cannot be universally expected. To overcome this problem, we propose a novel method, the Variant

Impact On Linkage Effect Test (VIOLET), which differs from other quantitative methods in that it is designed to follow up

linkage by identifying variants that influence the variance explained by a quantitative trait locus. VIOLET’s performance was

compared with measured genotype and combined linkage association in two data sets with quantitative traits. Using simulated

data, VIOLET had high power to detect the causal variant and reduced false positives compared with standard methods. Using

real data, VIOLET identified a single variant, which explained 24% of linkage; this variant exhibited only nominal association

(P¼0.04) using measured genotype and was not identified by combined linkage association. These results demonstrate that

VIOLET is highly specific while retaining low false-negative results. In summary, VIOLET overcomes a barrier to gene discovery

and thus may be broadly applicable to identify underlying genetic etiology for traits exhibiting linkage.
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INTRODUCTION

The Human Genome Project was expected to advance knowledge of
the genetic basis of common complex disease. Unfortunately,
identification of disease-causing genetic variants in complex traits
has been challenging,1,2 a difficulty which may be related, in part,
to analytical strategies for gene discovery. Linkage and association are
analytic methods used in complex trait analysis.3 Although many
replicated linkage and association signals exist, except for a few
examples,4–6 peaks do not overlap. This overlap failure may be
fundamental to analytic differences in that linkage requires familial
segregation whereas association tests for co-occurrence.7 Further,
association pinpoints common variants with small effects, whereas
linkage identifies large chromosomal regions of moderate or large
effect.3 As such, overlap of linkage and association may occur only
in special circumstances, such as Mendelian inheritance, but cannot
be expected universally.
Various methods have been proposed to test whether a genetic

variant can account for an observed linkage signal.8–13 These methods
model linkage and association jointly and thus may fail to identify

variants when linkage and association are not co-occurring.
Thus, there is a need for methods that test for the effects of
variants on the linkage signal regardless of association.
To overcome this barrier, we propose a novel method, the Variant

Impact On Linkage Effect Test (VIOLET). VIOLET is unique because
it identifies genetic variants that impact the quantitative trait locus’
variance without any assumptions about association. Using simulated
and real data, we demonstrate that VIOLET has reduced false
positives but without corresponding increases in the false negatives
when compared with measured genotype and combined linkage
association. Thus, VIOLET may fill a gap in variant discovery.

METHODS

Data sets
To compare VIOLET with standard methods, simulated (Genetics Analysis

Workshop: GAW17) and real (Metabolic Risk Complications of Obesity Genes

Study: MRC-OB) data sets were used. GAW17 had regions with linkage and

association evidence.14,15 Using MRC-OB, linkage on 7q36 for triglycerides was

identified.16 After dense single-nucleotide polymorphism (SNP) genotyping,
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associations were found, but only a modest portion of the linkage was

explained.17,18

Simulated data set – GAW17-simulated data set. GAW17 used the 1000

Genomes19 exome sequence data14,15 to generate a data set with 697

individuals in 8 pedigrees. Fully informative markers were used to compute

identical-by-descent (IBD) allele sharing.15 A quantitative phenotype (Q1)

influenced by 39 SNPs in 9 genes was simulated. GAW17 data providers have

given permission for data use.

To identify regions exhibiting consistent evidence of linkage with Q1, all 200

simulations were evaluated. VEGFA, on chromosome 6p21.1, showed linkage

(median LOD¼ 3.1). Across chromosome 6, 856 SNPs were polymorphic,

including the causal variant, C6S2981.

Real data set – MCR-OB. MRC-OB was established in 1994, when families

were recruited from the Take Off Pounds Sensibly Inc. membership.16,20

Fasting plasma triglycerides were determined spectrophotometrically in

triplicate. A total of 2209 individuals from 507 families of Northern

European descent formed the cohort.16 All protocols were approved by the

Institutional Review Board of the Medical College of Wisconsin.

A genome-wide linkage scan identified a quantitative trait locus (QTL) on

chromosome 7q36 linked to triglycerides (LOD¼ 3.7).16 From the initial

cohort, 1235 individuals from 258 families contributing to the linkage were

selected for dense genotyping (Table 1) of 1048 tag SNPs using an Affymetrix

MegAllele custom-designed array (Affymetrix, Santa Clara, CA, USA).17,18,21

Additionally, 354 SNPs from chromosome 14 were available for analysis.

Chromosome 14 SNPs were used to determine VIOLET’s specificity. SNPs

exhibiting Mendelian inconsistencies were blanked.

Statistical methods

Data preparation. Q1 and triglycerides were examined for normality. Q1

exhibited a normal distribution, so no transformation was applied.

Triglyceride levels exhibited right skewing, so the data were natural log (ln)

transformed. Data were re-examined and observations exceeding 4 SD units

were removed.16

Measured Genotype Association (MGA). To test a SNP’s phenotypic effect, we

used MGA.22 Briefly, genotypes were assigned as 0, 1, and 2 according to the

number of minor alleles.23 To account for phenotypic correlation between

family members, variance component analysis in SOLAR was used (Texas

Biomedical Research Institute, San Antonio, TX, USA).24 Mixed effects models

are applied where fixed effects are covariates. Random effects are defined by

genetic and environmental deviations:

y¼ mþ bðSNPÞþ g þ e
MGAð Þ

O¼ 2Fs2g þ Is2e

where m is the grand mean, b is the SNP effect, and g and e are the genetic and

environmental deviations, respectively. Assuming g and e are uncorrelated

random normal variables with expectation 0, the phenotypic covariance of

relative pairs (O) can be partitioned into additive genetic and environmental

components, where F is the kinship matrix, I is the identity matrix, and

s2g and s2e are the variance due to additive genetic (g) and residual (e) effects,

respectively. To test a SNP effect, log likelihood of the model estimating the

SNP effect is compared with the log likelihood of the model in which the SNP

effect is constrained to zero. Assuming that trait values follow a multivariate

normal distribution, twice the difference in the log likelihoods of these two

models is asymptotically distributed as w21.

Combined Linkage Association (CLA). To test the impact of variants on the

QTL effect, we adapted a variance components CLA (implemented in

SOLAR).24 Briefly, the standard linkage model is defined by:24

y¼ mþ aþ g þ e

Linkageð Þ
O¼

Ŷ
s2a þ 2Fs2g þ Is2e

Where
Q̂

provides the predicted proportion of alleles that related individuals

share IBD at locus A and s2a is the variance due to locus A. The significance of

linkage is estimated through a LOD score, which is calculated by comparing

models with and without a. In this model, the grand mean account for the

trait mean but not for the SNP effects. CLA is a linkage model conditional on a

SNP fixed effect, such that:

y¼ mþ b SNPð Þþ aþ g þ e

CLAð Þ
O¼

Ŷ
s2a þ 2Fs2g þ Is2e

if a SNP accounts for all of the linkage, evidence of linkage should disappear;

pragmatically when the LOD score drops o0.5 indicating that the linkage is

fully explained.25

As both the simulated and the real data exhibited differences in the base

LOD score (simulation due to differences in replicates; real data due to some

missing genotype data), examination of the LOD score from CLA did not

provide a complete picture on the magnitude of change. To account for

these differences, percentage of LOD drop ((LODno SNP�LODSNP)/LODno SNP)

was examined. However, it is important to note that the percentage of LOD

drop is simply used to provide an assessment in the change in the LOD score

while accounting for the baseline LOD.

VIOLET. To test the significance of the impact of a variant on the QTL,

VIOLET builds upon CLA. However, VIOLET explicitly tests whether the

variance explained by the QTL changes with SNP inclusion. This is

operationalized by comparing the CLA model with a model that is identical

to the CLA model except that the s2a is constrained to be equal to the variance

due to the locus when the SNP effect is constrained to zero (s2a0). Thus

y¼ mþ b SNPð Þþ aþ g þ e

VIOETð Þ
O¼

Ŷ
s2a0 þ 2Fs2g þ Is2e

To test for significance, twice the difference in the log likelihoods of model

CLA and VIOLET are evaluated, this test statistic is named V. This statistic

differs from CLA because in CLA the major comparison is between a freely

estimated s2a0to one constrained to zero. Given that the likelihood function of

VIOLET’s model is a function of s2a0, which itself is a maximum likelihood

solution, Wilks’ Theorem on the asymptotic approximations of test statistic

distributions under the null hypothesis (that there is no difference in the

goodness-of-fit) may not hold. As such, V’s distribution under the null was

examined empirically to determine appropriate thresholds. For the real data,

we evaluated V derived when genotypes were randomly assigned across 1000

Table 1 Descriptive statistics for the take off pounds sensibly

(MCR-OB) cohort

Trait Original cohort

Follow-up cohort –

linking to 7q36

N 2209 1235

No. of Families 507 258

Family size (mean (range)) 5.0 (2–29) 4.8 (2–27)

Age (years) 48.12±15.10 47.92±14.80

Triglycerides 128.73±81.19 129.57±83.70

Ln triglycerides 4.71±0.53 4.71±0.54

Sex (% male) 23.5 23.8

Asthma (% Y) 8.5 9.5

Menopausal (% Post) 40.0 40.5

Estrogen use (% Y) 17.7 18.5

Ever smoke (% Y) 22.0 16.0

Cholesterol/LDL medications 3.5 2.9

Type 2 diabetes (% Y) 15.9 16.9

Diabetes medications (% Y) 5.2 5.7
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permutations; however, microsatellite data for linkage retained in their original

structure.

RESULTS

Simulated data from GAW17
To evaluate the performance of VIOLET, measured genotype, and
combined linkage association, two thresholds were utilized, 99%
power and multiple testing corrected type I error (P¼ 0.0000584).
The power threshold was set to the 1% quantile from causal SNPs
(V¼ 4.17 for VIOLET, w2¼ 33.16 for measured genotype, and
percentage of LOD drop¼ 90.98 for combined linkage association).
The type I error rate threshold was set to the 99.99416% quantile of
non-causal variants (V¼ 4.08, w2¼ 42.15, and percentage of LOD
drop¼ 97.61) (Table 2).

VIOLET. The V null distribution for non-causal variants is highly
skewed with 99.5% of observations falling below 0.13 (Figure 1).
Controlling for type I error (VZ4.08), the causal variant, C6S2981
(MAF¼ 0.033), was identified (median V¼ 8.73, range 2.50–16.10) in
198 out of 200 simulations (Figure 2a). In all but two simulations,
C6S2981 exhibited the highest V. Controlling for power (VZ4.17), we
detected a very low false-positive rate (9/171 000¼ 0.005%) (Table 2).
These results demonstrate that VIOLET has a high degree of
specificity, with little overlap in the distribution of V between non-
causal and causal variants.

Comparison of VIOLET with MGA and CLA. Like VIOLET, MGA
and CLA identified C6S2981 (median P-value¼ 2.1� 10�14,
LOD¼ 0) (Figure 2). All methods had high power to detect
C6S2981 (Table 2) when controlling for type I error. MGA and
CLA exhibited 93% and 88% power to detect C6S2981 as compared
with 99% power for VIOLET. Further, when evaluating the percentage
of LOD drop, there was 93% power.
When controlling for power, VIOLETexhibited fewer false positives

than the other methods. Out of 200 replicates, VIOLET identified 9
false positives, whereas MGA identified 58 and CLA identified 106
using the LOD and 37 using LOD drop. Importantly, two non-causal
SNPs were identified as associated using MGA after Bonferroni
correction in over half of the simulations (median P-values¼
2.1� 10�5 and 3.0� 10�7; Figure 2b).

Real data from MCR-OB – analysis of linkage for serum
triglycerides
Dense genotyping. Dense genotyping was performed on 1235 indi-
viduals. There were 1023 and 352 polymorphic SNPs on chromo-
somes 7 and 14, respectively. There were no major phenotypic

Table 2 False-positive and false-negative rates for MGA, CLA, and VIOLET using GAW 17-simulated data

VIOLET MGA CLA
Statistic V w2 LOD % LOD drop

Constant power (99%) Threshold 4.17 33.16 0.53 90.98

# 9 58 106 37

Type I error (%) 0.005 0.034 0.062 0.022

Constant type I error (5.8�10�5) Threshold 4.08 42.45 0.04 97.61

# 2 14 24 14

Power 99% 93% 88% 93%

Results were from 200 simulations, each with 856 SNPs, one of which was causal. Constant power thresholds derived from the 1% quantile of the causal SNPs. Constant type I error thresholds
derived from the 99.99416% quantile of non-causal variants.

Figure 1 Distribution of the VIOLET test statistic (V) in non-causal variants.

Results were from 200 simulations, each with 855 non causal SNPs.

Figure 2 Comparison of results using the Genetics Analysis Workshop 17

(GAW17) simulated data set. Panel a presents VIOLET, panel b presents

MGA, and panel c presents CLA. All data are presented as the median
results from 200 simulated replicates. The black dot identifies C6S2981,

the causal variant.
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differences between the full cohort and the dense genotyping
(Table 1). The chromosome 7 LOD score was 8.2, which is higher
than the full cohort as families were selected because they positively
contributed to the linkage.

VIOLET. When using VIOLET, one SNP (rs39179) exhibited an
increased test statistic (V¼ 9.0; Figure 3a); beyond rs39179 there is no
evidence of a variant contributing to the linkage (mean Vexcluding
rs39179¼ 0.000003±0.000081; Figure 3a). When evaluating 1000
permutations of rs39179, mean V¼ 0.0007±0.0019, with no value
exceeding 0.02 (empirical P-valueo0.001). When 352 SNPs from
chromosome 14 were examined, there is no evidence that these
variants account for the chromosome 7 linkage (Vo0.02), suggesting
a high degree of specificity for V.

Comparison of VIOLETwith MGA and CLA. Neither MGA nor CLA
identified any significant variant (Bonferroni corrected P-value
(Po0.000048) and adjusted LODo0.5, respectively). Using MGA,
109 chromosome 7 variants exhibited nominal evidence of association
(Pr0.05; Figure 3b); minimum P-value¼ 0.00007. Using CLA, the
mean percentage of LOD drop (±SD) was 0.008±0.014 with a range
of 0–0.24 (Figure 3c). Interestingly, the SNP identified by VIOLET
(rs39179) exhibits the largest percentage of LOD drop; the nominal
P-value from the measured genotype approach was 0.04. When MGA
P-values are ranked, 88 other SNPs showed stronger association than
rs39179. When examining an unlinked chromosome 14 region, both
VIOLET and CLA exhibited little evidence of an effect (CLA mean
LOD drop¼ 0.001±0.01). However, using MGA, 23 SNPS exhibited

nominal association; no SNPs reached Bonferroni correction
(Po0.00014, minimum P-value¼ 0.0015).

DISCUSSION

Identification of causal variants accounting for linkage has been
difficult.26–32 This is a problem because failure to identify causal
variants within linkage regions may impede gene discovery. Part of
the difficulty may be related to the analytical strategy using
association-based methods to follow up linkage. Using association-
based methods to follow up linkage signals may miss variants with
little evidence of association but substantial effects on the linkage
signal. Thus, we propose a novel method, VIOLET, to examine the
impact of a specific variant on linkage without any assumptions
about association. VIOLET has considerable advantage over MGA
because only variants contributing to the linkage are identified.
Additionally, VIOLET offers an advantage over CLA, as it provides
a formal test statistic to evaluate the significance of variants that do
not completely explain a linkage peak. This is accomplished
by comparing two models whose only difference is the proportion
of variation explained at a locus. We demonstrate that VIOLET
identifies variants underlying linkage in a highly specific manner. As
such, VIOLET may expedite casual variant discovery.
Using simulated data, VIOLET had higher power and lower type I

error as compared with MGA and CLA. A major challenge with
the simulated data was that there was a single causal SNP contributing
to the linkage for a quantitative phenotype, as such all methods
performed well. Further, it is important to note that for both the
simulated and the real data set, the variant identified had MAFo5%.
Variants of lower frequency are of concern in association (including
MGA) studies due to possible stratification. Thus, future studies
should examine VIOLET’s performance in scenarios when multiple
variants contribute to the linkage, when variation is non-additive,33

when the outcome is dichotomous,34 and when causal variants differ
in frequency.
Using MCR-OB data, VIOLET was applied to a linkage peak on

chromosome 7.16 Although this region has been densely genotyped,
MGA yielded associations that explained little of the observed
linkage.17,18 Using VIOLET, a single SNP (rs39179) accounting for
24% of the LOD score was identified (but it did not reach the
traditional CLA threshold). This SNP was only nominally associated
in MGA (P¼ 0.04) and was ranked eighty-ninth in the P-value
ranking. However, causal variants do not always result in the highest
ranking P-values.35 The problem with this scenario is that based
on MGA results there are too many promising candidates to be
experimentally validated; thus only the top ranking associations are
likely to be examined for biological plausibility. Indeed, our research
team had not considered rs39179 (minor allele frequency 2.6% in our
cohort; present in 25 of the 258 families and explained 0.7% of the
variation in triglycerides) a promising candidate and rather focused
on other SNPs.17,18 Our results suggest that either rs39179 or SNPs in
strong linkage disequilibrium (LD) with rs39179 may be causal. Using
SNAP,36 a single ungenotyped SNP (rs10276884) in strong LD with
rs39179 was identified. This variant is in the promoter of DPP6 and
predicted to change a SF2/ASF motif. Clearly, additional studies are
required.
It may seem counterintuitive that linkage would not require

association as there are examples of association and linkage over-
lapping.4,6,37,38 However, for complex traits, linkage and association
overlap may be the exception. Mouse strain-dependent variability
supports such lack of overlap.39–43 Indeed, fibronectin defects cause
cardiovascular malformations;44 but there is substantial phenotypic

Figure 3 Comparison of results using data from the Metabolic Risk

Complications of Obesity Genes Study (MCR-OB) Study. Panel a presents

VIOLET, panel b presents MGA, and panel c presents CLA. The black dot

represents the variant, rs39179, accounting for a 24% LOD drop.

Variant impact on linkage effect test
LJ Martin et al

246

European Journal of Human Genetics



heterogeneity by strain.42,45 Thus, even for severe genetic changes such
as gene deletion, other loci may contribute to the phenotype. As
complex traits are expected to be the combination of multiple genetic
factors, lack of strong association is not unexpected. Indeed, most
genome-wide association studies exhibit small effects.1,2 However,
VIOLET tests the impact of a variant on linkage in a highly specific
manner and thus is optimally positioned to identify variants that
contribute to the linkage regardless of association evidence.

CONCLUSION

In summary, we propose a novel method, VIOLET, to follow up
linkage. This method differs from the MGA and CLA because
VIOLET measures the change in the estimate of the linkage effect
when the SNP is included. Using real and simulated data, VIOLET is
shown to be highly specific and reduce false-negative findings when
following up linkage.
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