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The sex-specific associations of the aromatase gene
with Alzheimer’s disease and its interaction with
IL10 in the Epistasis Project

Christopher Medway*,1, Onofre Combarros2, Mario Cortina-Borja3, Helen T Butler4,
Carla A Ibrahim-Verbaas5,6, Renée F A G de Bruijn5,6, Peter J Koudstaal5, Cornelia M van Duijn6,
M Arfan Ikram5,6,7, Ignacio Mateo2, Pascual Sánchez-Juan2, Michael G Lehmann8, Reinhard Heun9,10,
Heike Kölsch9, Panos Deloukas11, Naomi Hammond11, Eliecer Coto12, Victoria Alvarez12, Patrick G Kehoe13,
Rachel Barber13, Gordon K Wilcock14, Kristelle Brown1, Olivia Belbin1, Donald R Warden8, A David Smith8,
Kevin Morgan1 and Donald J Lehmann8

Epistasis between interleukin-10 (IL10) and aromatase gene polymorphisms has previously been reported to modify the risk of

Alzheimer’s disease (AD). However, although the main effects of aromatase variants suggest a sex-specific effect in AD, there

has been insufficient power to detect sex-specific epistasis between these genes to date. Here we used the cohort of 1757 AD

patients and 6294 controls in the Epistasis Project. We replicated the previously reported main effects of aromatase

polymorphisms in AD risk in women, for example, adjusted odds ratio of disease for rs1065778 GG¼1.22 (95% confidence

interval: 1.01–1.48, P¼0.03). We also confirmed a reported epistatic interaction between IL10 rs1800896 and aromatase

(CYP19A1) rs1062033, again only in women: adjusted synergy factor¼1.94 (1.16–3.25, 0.01). Aromatase, a rate-limiting

enzyme in the synthesis of estrogens, is expressed in AD-relevant brain regions ,and is downregulated during the disease. IL-10 is

an anti-inflammatory cytokine. Given that estrogens have neuroprotective and anti-inflammatory activities and regulate microglial

cytokine production, epistasis is biologically plausible. Diminishing serum estrogen in postmenopausal women, coupled with

suboptimal brain estrogen synthesis, may contribute to the inflammatory state, that is a pathological hallmark of AD.
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INTRODUCTION

Aromatase catalyses the conversion of C19 androgens to C18 estro-
gens. It is expressed in various regions of the human brain.1–5 It is
found in neurons and in reactive astrocytes.3,5,6 Expression of
aromatase is altered in Alzheimer’s disease (AD).2,4,5 Estrogen has
many effects in the brain: neurotrophic, neuroprotective (reviewed
here7,8), neurogenerative,9,10 antiexitotoxic,11 antioxidative (reviewed
here12,13) and anti-inflammatory.14–16 In contrast, proinflammatory17

and other potentially neurotoxic actions of estrogen,18 depending on
the context and timing,19,20 have also been reported. There are sex
differences in these effects.21

In view of the importance of aromatase in the synthesis of estrogen
and the relevance to AD of estrogen’s actions in the brain, variations
in the aromatase gene, CYP19A1, may affect the risk of AD. Such
variations have been studied in AD22–27 with some contrasting
results22,25 and with suggestions of sex differences.26,27 The results

of Butler et al.27 were, however, broadly consistent with those of
Iivonen et al.,22 although only in women in the former study.
Combarros et al.24 reported an interaction between variants in
CYP19A1 and the gene for interleukin-10 (IL10), consistent with
estrogen’s reported actions in raising levels of the anti-inflammatory
cytokine, interleukin-10 (IL-10).28–31

We aimed to replicate the results of Butler et al.27 and Combarros
et al.24 in the Epistasis Project, with 1757 cases of AD and 6294
controls.32

METHODS

Study population
The Epistasis Project primarily aims to replicate interactions that have been

reported to affect the risk of AD. Sample-sets were drawn from narrow

geographical regions with relatively homogeneous, Caucasian populations, by

seven AD research groups: Bonn, Bristol, Nottingham, Oxford (OPTIMA),
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Oviedo, Rotterdam and Santander. Sample characteristics by geographical

region are given in Supplementary Table 1. All AD cases were diagnosed

‘definite’ or ‘probable’ by Consortium to Establish a Registry for Alzheimer’s

Disease (CERAD)33 or National Institute of Neurological and Communicative

Diseases and Stroke-Alzheimer’s Disease and Related Disorders (NINCDS-

ADRDA) criteria.34 AD cases were sporadic, that is possible autosomal

dominant cases were excluded, based on family history. The median ages

(interquartile ranges) of AD cases were 79.0 (73.0–85.2) and of controls were

76.9 (71.3–83.0) years. Research ethical approval was obtained by each of the

participating groups (Supplementary Table 2). Comprehensive details of

our sample-sets are given elsewhere.32

Genotyping
Genotyping for the six centres other than Rotterdam was performed at the

Wellcome Trust Sanger Institute, while the Rotterdam samples were genotyped

locally, both as previously described.35 For this study, Rotterdam genotyped

two single-nucleotide polymorphisms (SNPs), rs1065778 (CYP19A1 Intron 3

A/G) and rs1800896 (IL10-1082 G/A), and imputed three CYP19A1

polymorphisms; rs1062033 (Intron 1 C/G), rs700519 (Exon 7 C/T

(Arg264Cys)) and rs10046 (30 UTR T/C). One further SNP, rs1902586, failed

quality control and was omitted.

Statistical analysis
We analysed possible associations by fitting logistic regression models with AD

diagnosis as the outcome variable, controlling for study centre, age, sex and the

e4 allele of apolipoprotein E (APOEe4) in all analyses, using R Version 2.13.0

(R Foundation for Statistical Computing, Vienna, Austria). The adjusted

synergy factors36 were derived from the interaction terms in those models. We

controlled for heterogeneity among centres and over-dispersion as described

before.35 The studied SNPs are shown in Table 1. Comparisons of

allelic frequencies between North Europe and North Spain were obtained

with Fisher’s exact test. Linkage disequilibrium (LD) data were estimated

using the R library, genetics (http://cran.r-project.org/web/packages/genetics/

index.html). Power calculations were based on the observed synergy factor

values. All tests of significance and power calculations considered Po0.05 (two

sided) as significant.

Bioinformatic analysis
The possible function of polymorphisms was acquired by exploring the degree

of conservation in vertebrates using ECR (Evolutionary Conserved Regions)

browser,37 and TargetScan for miRNA binding sites.38 Additionally,

HaploReg39 was used to explore the regulatory function (transcription factor

binding, methylation patterns) of each SNP and proxies (r240.8) in 1000

Genomes pilot project data (CEU population).40 Searching for proxies, LD

blocks and calculating pair-wise LD were achieved with SNAP proxy, using

1000 genomes pilot project data (CEU).41

RESULTS

Preliminary analyses
Hardy–Weinberg analysis was performed for the four CYP19A1 SNPs
and for IL10-1082 G/A in AD cases and controls genotyped by Sanger

and by Rotterdam. None of those 20 results were out of Hardy–
Weinberg equilibrium (all P40.05).

Minor allele frequencies in controls for the five polymorphisms in
North Europe and North Spain are shown in Table 1. LD between the
four CYP19A1 polymorphisms is shown in Table 2. Three SNPs,
intron 1 C/G, intron 3 A/G and 30UTR T/C, were in close LD
(r2

Z0.7). The LD patterns in North Europe and North Spain were
similar (data not shown). Supplementary Table 3 gives the genotype
distributions of the five SNPs in AD cases and controls of each of the
seven centres.

Main effects of the four CYP19A1 SNPs: overall and stratified
by sex
The adjusted odds ratios of AD associated with the four CYP19A1
SNPs (including sex-specific effects) are shown in Table 3. The three
SNPs that were in LD were each associated with AD risk, only in
women. Supplementary Tables 4 and 5 give the equivalent data for
North Europe and North Spain. The main effects in women remained
consistent with Table 3 after the OPTIMA data, previously reported
by Butler et al.,27 had been removed; intron 1 GG (P¼ 0.02,
OR¼ 1.28 (1.03–1.59)), intron 3 GG (P¼ 0.06, OR¼ 1.21
(0.99–1.47)) and 30UTR TT (P¼ 0.04, OR¼ 1.22 (1.00–1.47)).

Interaction between CYP19A1 intron 1 GG versus CCþCG and
IL10-1082 AAþAG versus GG
Following Combarros et al.,24 we examined the interaction in AD risk
between CYP19A1 intron 1 GG versus CCþCG and IL10-1082
AAþAG versus GG. We replicated the interaction, but only in
women (Table 4). We also examined the effect of each of these two
genetic factors on the other factor’s association with AD in women
(Supplementary Table 6). We found that each factor was only
associated with AD risk in the presence of the other. Consistent with
Table 4, the sex-specific interaction remained significant (P¼ 0.04,
OR¼ 1.76 (1.02–3.03)) after the Santander data, previously reported
by Combarros et al.,24 had been removed.

Interactions with sex
Consistent with the above results (Table 4, and Supplementary
Table 6), we found a two-way interaction between CYP19A1 intron
1 C/G and sex (P¼ 0.03), and a similar trend for the interactions of
intron 3 A/G and 30 UTR T/C with sex (P¼ 0.1). We also found a
three-way interaction between CYP19A1 intron 1 C/G, IL10-1082 G/A
and sex, overall (P¼ 0.03) and in North Europe (P¼ 0.02), but not in
North Spain.

DISCUSSION

Out of the four CYP19A1 SNPs examined, three polymorphisms were
associated with AD risk in women; intron 1 C/G (rs1062033), intron

Table 1 Minor allele frequencies of studied polymorphisms

Minor allele frequencies in controls

Genes Polymorphisms North Europe North Spain Difference (p)

CYP19A1 rs1062033 (Intron 1 C/G) 5004/11392¼43.9% (G) 408/1002¼40.7% (G) 0.054

rs1065778 (Intron 3 A/G) 5657/11472¼49.3% (G) 479/1028¼46.6% (G) 0.10

rs700519 (Exon 7 C/T) (Arg264Cys) 419/11484¼3.6% (T) 18/988¼1.8% (T) 0.004

rs10046 (3’ UTR T/C) 5626/11468¼49.1% (C) 514/1006¼51.1% (C) 0.23

IL10 rs1800896 (-1082 G/A) 5614/11390¼49.3% (A) 566/994¼56.9% (A) o0.0001
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3 A/G (rs1065778) and 30 UTR T/C (rs10046) (Table 3), all of which
were in close LD (r2

Z0.7) (Table 2). These results were consistent
with Butler et al.,27 who also found several CYP19A1 polymorphisms
associated with AD in women, including two reported here (intron
3 A/G and 30 UTR T/C). A rarer 30-UTR polymorphism (rs4646)
within the same LD block (D0 ¼ 1.0) has also been significantly
associated with age at onset in women.26

Furthermore, we also replicated the statistical interaction between
CYP19A1 intron 1 C/G and IL10-1082 G/A reported by Combarros
et al.24 but again only in women (Table 4). The identification of a sex-
specific interaction in women is an original finding and withstands
correction for multiple testing (gender stratification) in the entire
data set. Our failure to detect this interaction in men would suggest a
sex-specific effect. However, we did not achieve sufficient power in the
male analysis to rule out a type-2 error. We found that each genotype
(CYP19A1 Intron 1 GG and IL10-1082 AAþAG) was only associated
with increased AD risk in the presence of the other (Supplementary
Table 6), consistent with true epistasis. This may explain why these
SNPs individually have shown inconsistent association with AD in the
past.25,42,43 Reanalysis of the reported main effects and interactions in
culled data sets (OPTIMA and Santander samples filtered as relevant)
confirms these replications are independent from Butler et al.27 and
Combarros et al.24

An interaction between IL10 and CYP19A1 is biologically plausible
in AD. Estrogen and IL-10 both serve to temper inflammation in
the brain,44 and neuroinflammation is a major pathological hallmark
of AD.45 Aromatase shows reduced expression in certain AD
brain regions.2 Estrogen may do too, but possibly only in women

480 years old.46 Estrogen treatment induces microglial IL-10
expression, and decreases the production of proinflammatory
cytokines.14–16,28 Conversely estrogen depletion, either through
ovariectomy or aromatase knockout, induces proinflammatory
cytokine synthesis.44,47 The molecular basis of this interaction is
complex. Microglia and astrocytes express estrogen receptors (ERa,
ERb), and downstream regulation of cytokine transcription via
altered phosphorylation of AP-1 interacting proteins has been
posited.44,48 Alternatively, estrogen may modify the availability of
transcription factor NFkB, either directly or indirectly via the
stability of the inhibitory binding protein (IkB), reducing cytokine
and cytokine receptor transcription.49

The brain is sexually dimorphic; androgens and estrogens are
neuroprotective (reviewed here7,8) in males and females, respectively,
and show sex-specific effects on neural connectivity, development and
Ab neurotoxicity.21,50 In addition to controlling inflammation,
estrogen regulates neuronal mitochondrial function and glucose
metabolism, vital for cell survival.51 Indeed, sex-specific effects are
common in AD, including incidence,52 neuropathology21 and risk
factors.53 Aromatase variants have previously been shown to have sex-
specific effects on hypertension,54 which is a risk factor for cognitive
decline and AD.55,56

Table 2 Linkage disequilibrium between four CYP19A1

polymorphisms in controlsa

Intron

1 C/G

Intron

3 A/G

Exon 7 C/T

(Arg264Cys)

30 UTR

T/C

Intron 1 C/G - - - - - - - 0.975 0.957 0.957

Intron 3 A/G 0.764 - - - - - - - 0.983 0.979

Exon 7 C/T (Arg264Cys) 0.026 0.034 - - - - - - - 0.984

30 UTR T/C 0.689 0.895 0.036 - - - - - - -

The upper right section gives D0 values and the lower left gives r2.
Results in bold indicate r2Z0.7 (lower left section).
aA similar pattern was seen in North Europe and North Spain.

Table 3 Odds ratios of AD associated with four CYP19A1 SNPs

Numbers Adjusteda odds ratios of AD (95% CI, P)
SNPs Models AD Control Overall Women Men

Intron 1 C/Gb GG versus 316 1211 1.11 (0.94–1.31, 0.23) 1.28 (1.04–1.56, 0.02) 0.86 (0.64–1.17, 0.34)

CCþCG 1278 4986

Intron 3 A/Gb GG versus 421 1518 1.12 (0.96–1.30, 0.15) 1.22 (1.01–1.48, 0.03) 0.95 (0.73–1.25, 0.73)

AA þAG 1264 4732

Exon 7 C/T (Arg264Cys) TTþCT 91 426 0.89 (0.68–1.18, 0.43) 0.90 (0.63–1.28, 0.56) 0.88 (0.54–1.44, 0.61)

versus CC 1590 5810

30 UTR T/Cb TT versus 472 1626 1.12 (0.96–1.30, 0.14) 1.22 (1.02–1.46, 0.03) 0.96 (0.73–1.24, 0.74)

CCþCT 1209 4611

See Supplementary Tables 4 and 5 for the equivalent data for North Europe and North Spain.
AD, Alzheimer’s disease; SNP, single-nucleotide polymorphism; CI, confidence interval.
Results in bold are significant at Po0.05.
aControlling for centre, age, sex and the e4 allele of apolipoprotein E.
bThese three SNPs were in close linkage disequilibrium (Table 2).

Table 4 Interaction in AD risk between CYP19A1 intron 1 GG versus

CCþCG and IL10 -1082 AAþ AG versus GG

Numbers

Data set AD Controls Powera

Adjustedb synergy factors

(95% CI, P)

Women

All 948 3553 89% 1.94 (1.16–3.25, 0.01)

North Europe 656 3236 82% 1.91 (1.10–3.32, 0.02)

North Spain 292 317 29% 1.38 (0.35–5.55, 0.65)

Men

All 566 2585 75% 0.79 (0.39–1.59, 0.51)

North Europe 407 2426 66% 0.61 (0.29–1.31, 0.21)

North Spain 159 159 21% 1.67 (0.30–9.46, 0.56)

Results in bold are significant at Po0.05.
AD, Alzheimer’s disease; CI, confidence interval.
aTo detect a synergy factor of 1.9 at P¼0.05.
bControlling for centre, age, sex and the e4 allele of apolipoprotein E.
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While androgens gradually diminish with age in men (bottoming
out at 80 years), the menopause marks a rapid drop in the
estrogen baseline.46,50 Reduced serum estrogen in postmenopausal
women has been widely reported to increase the risk of AD and
induces AD-related neuropathological changes.46,57 Furthermore,
given that brain estrogen levels also include brain-synthesised
hormones,1 a combination of insufficient local synthesis and
postmenopausal decline may be pathologically relevant. Indeed,
aromatase is expressed in AD-relevant brain regions, and regions
important for memory.58,59 Hippocampal aromatase expression is
increased in postmenopausal women, but may be decreased
in AD.4 Furthermore, AD pathology in ovariectomised APP23 mice
was significantly exacerbated by aromatase knockout.57 Also the
inhibition of aromatase increases hippocampal Ab immuno-
reactivity in female 3xTgAD mice only.60

However, estrogen has also been reported to be damaging in some
contexts.61 Treatment with estrogen (hormone replacement therapy)
may increase the risk of AD in women 465years old.62 Also, higher
levels of estrogen have been reported in women with AD than in
controls.63 However, these apparent discrepancies may be reconciled
by estrogen showing a ‘healthy cell bias’; treatment may be
neuroprotective, if commenced shortly after menopause.61 Another
age-related effect is the report of reduced levels of estrogen in women
with AD, but only in those 480 years old.46 In view of these
suggested age-related effects of estrogen’s actions,61 we also examined
whether there were any differences in our results between older and
younger postmenopausal women. We found no differences in the
main effects of our CYP19A1 SNPs (data not shown), but we did find
that the interaction with IL10-1082 was restricted to women 475
years old: adjusted synergy factor¼ 2.29 (95% confidence interval:
1.24–4.21, P¼ 0.008); compared with women o75 years old: 1.00
(0.28–3.51, 1.00). These age differences are consistent with the
epidemiological evidence of greater susceptibility of women than
men to AD only in the very old, for example, 480 years old.52,64–66

Recent meta-analysis suggests that the IL10-1082 A allele is
associated with AD risk,67,68 and is correlated with elevated
circulating IL-10.42,69 The-1082 SNP is located 1058 bp upstream of
IL10 in a 6.9 kb LD block (r240.8) encompassing the entire IL-10
gene. While -1082 itself is not conserved, a conserved 30UTR
polymorphism in high LD (rs3024496, r2¼ 0.97) and within a
region of miRNA regulation, is an intriguing functional candidate.

Variants within the studied CYP19A1 LD block modify estrogen
concentration in postmenopausal women; rs10046 (T/C), rs11575899
(�/TCT)) and a (TTTA)7 microsatellite in intron 4 affect serum
estrogen levels.70–72 Consistent with this, allelic association between
the 30UTR (rs10046) C allele and reduced CYP19A1 mRNA
expression has previously been established in breast cancer tissue.73

Neither intron 1 (rs1062033) nor the assayed CYP19A1 SNPs in LD
are conserved in vertebrates, or fall within predicted functional sites
(splice site boundaries, miRNA sites). Searching the flanking poly-
morphisms (1000 Genomes pilot project, CEU) within the 54.4 kb LD
block (r240.8) encompassing the 30end of CYP19A1 failed to
prioritise any causal variants. This does not rule out a combination
of rarer polymorphisms, in imperfect but complete LD (D0 ¼ 1.0),
having functional effects. Indeed, a fourth polymorphism assayed
here, rs700519, is a missense mutation (predicted damaging by SIFT).
While this SNP is in LD with the other assayed CYP19A1 poly-
morphisms (D040.9), a low population frequency (Table 1) means
we do not have sufficient power to test for the association. However,
rs700519 does not affect serum estrogen concentration in postmeno-
pausal women.74

In summary, we have replicated the epistatic interaction between
IL10 and CYP19A1 polymorphisms, which increases the risk of AD.
Furthermore, we have identified a sex-specific effect limited to
females. Although the specific function of these mutations is
unknown, they may act as a proxy for reduced IL-10 and estrogen
synthesis, which are anti-inflammatory and neuroprotective agents,
and relevant to AD.
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