
SHORT REPORT

A modified two-stage approach for family-based
genome-wide association studies

Weijun Ma1, Ying Zhou*,1, Yajing Zhou1, Lili Chen1 and Zhen Gu2

Genome-wide association studies can provide researchers some reference on gene mapping of complex trait, a key point of

which is how to improve the power of association test. Recently, two-stage approaches are widely used to genome-wide

association analysis. In the first stage, a screening test is used to select markers, and in the second stage, a family-based

association test is performed based on a smaller set of the selected markers. Here, we modify an existing two-stage approach

and propose a new test statistic for the association analysis. Simulation studies are conducted to compare the type I error rates

and powers of the proposed approach with those of the existing two-stage approaches. Simulation results show that the new

two-stage approach has greater power than the other two-stage approaches to some extent.
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INTRODUCTION

Association analysis for single-gene disease is easy to perform in
general. But if the target trait is controlled by multiple loci (eg,
complex diseases), the genes are generally more difficult to detect in
practice. It can be said that the methods for detecting loci of complex
trait are not enough so far, and the powers of the existing methods are
relatively limited. Seeking powerful methods in current association
analysis is an important issue. Aiming at complex trait, multiple tests
are usually involved in association analysis, and how to control type I
error rate in analysis is its critical step. There are many marker loci in
human genome. When the genome-wide association analysis being
conducted, the general approaches for controlling type I error rate
may be more conservative, which will lead to limited power.1

Recently, many researchers are committed to how to improve the
power of test in genome-wide association analysis. In this respect,
two-stage and multi-stage approaches have been proposed in succes-
sion,2–9 and detecting loci of interest is divided into different stages.
The two-stage approaches proposed in Steen et al7 and Feng et al8 are
more representative. Steen et al7 proposed a two-stage approach for
family-based genome-wide association study. In the first stage, a
screening test is used to select markers, and in the second stage, a
family-based association test is performed based on a smaller set of
the selected markers. The two-stage approach is more powerful than
the traditional family-based association tests. Feng et al8 extended the
approach so that the test statistic can incorporate parental
information and can be applied to arbitrary pedigree structure.
Their results show that the two-stage approach that incorporates
phenotypes of the founders has correct type I error rates, and is more
powerful than the two-stage approach that only incorporates
information of children. Motivated by Feng et al’s method, Gu9

proposed a new test approach (ie, TTFPBSA). The difference
between the two methods is that the TTFP proposed by Feng et al8

uses information of the founders in the pedigrees in the first stage, but
not in the second stage, while the TTFPBSA proposed by Gu9

incorporates information of founders into both the screening test
and the association test. Although more information is used in Gu’s
method, this operation will lead to the dependence of the two test
statistics in the two stages, and therefore affect the power of the two-
stage approach.10,11

In this paper, based on Steen et al’s idea,7 we propose a new two-
stage approach, by modifying the existing statistics for family-based
association study. In the new approach, the information of the
founders in the pedigrees is incorporated into the screening statistic in
the first stage, but not into the association statistic in the second stage,
to guarantee the independence between them. Our simulation results
suggest that the proposed method performs well in the power of the
association test, and outperforms current methods.

METHODS
Suppose there are n pedigrees, and M SNP loci in their genome can be

genotyped, with the alleles denoting by 0 and 1 each.

We use the following notation: Ni, number of nuclear families in the ith

pedigree; nij, number of children in the jth nuclear family of the ith pedigree;

YijF, YijM and Yijk, respectively, denote the trait value of the father, the mother

and the kth child in the jth nuclear family of the ith pedigree; XijF, XijM and

Xijk, respectively, denote the genetic score of the father, the mother and the kth

child in the jth nuclear family of the ith pedigree; Y , the average trait value of

all the individuals; and �X, the average genotypic score of all the individuals.

Stage I: screening test
A screening test is employed to select L significant markers among the M

marker loci. For each of the M markers, we test the null hypothesis H0: no

association.

The screening test statistic we used is given by

Tscreen ¼

Pn
i¼ 1

UiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼ 1

U2
i

s ;
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where

Ui ¼
XNi

j¼ 1

Uij;

and

Uij¼
1

nij

Xnij
k¼ 1

ðYijk � �YÞð �Xij � �XÞþ ðYijF � �YÞðXijF � �XÞIijF

þðYijM � �YÞðXijM � �XÞIijM
where IijF¼ 1, if the father of the jth family in the ith pedigree is a founder of

this pedigree, and IijF¼ 0, otherwise; IijM is similarly defined for the mother;
�Xij¼ (XijFþXijM)/2, if parental genotypes are available, and �Xij¼ 1

nij

Pnij
k¼ 1

Xijk,

otherwise.

In fact, in this stage we choose the same test statistic as the one in Feng

et al.8 Under the null hypothesis of no association, the screening test statistic

follow a standard normal distribution. From the M tests, we obtain L markers

with the smallest P-values, where L is a pre-specified number, and we will

discuss the value of L later.

Stage II: association test
We conduct multiple tests for the L selected markers, thus we can further

detect the gene loci associated with the target trait.

The new association test statistic we proposed is as follows

Tassociation ¼

Pn
i¼ 1

ViffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼ 1

V2
i

s

where

Vi ¼
XNi

j¼ 1

Vij;

Vij ¼
1

nij

Xnij
k¼ 1

ðYijk � �YijÞðXijk � �XijÞ

and

�Xij ¼
1

nij

Xnij
k¼ 1

Xijk; �Yij ¼
1

nij

Xnij
k¼ 1

Yijk:

Under the null hypothesis of no association, the association statistic

Tassociation asymptotically follows a standard normal distribution. We use the

association statistic to test each of the L selected markers and declare a marker

is significant at a level of a, if the P-value of the Tassociation at this marker is less

than the threshold dLa, which is determined by the procedures for controlling

the false discovery rate (FDR).8,12

To control the FDR at a level of a, the cutoff can be chosen dLa as follows: let
p(1), p(2), y, p(L) be the ordered P-values when we apply the Tassociation to the L

selected markers, then dLa¼max{ p(i): p(i)r ia/L}.
The new approach is called RTTFP. Note that the two test statistics in the

two stages has the relationship between covariance between groups and

covariance within groups, which is similar to the relationship between sum

of squares between groups and sum of squares within groups in analysis of

variance. Therefore, the two test statistics are independent to each other, and

correspondingly the two-stage tests are independent to each other.

SIMULATION STUDIES

Simulation design
We randomly generated genotype and phenotype data of pedigrees as
given in Figure 1. For the data, we considered the type I error rates
and the powers of the three methods: the TTFP, the TTFPBSA and the
RTTFP. At the same time, to demonstrate it is not suitable to
incorporate information of the founders in the second stage of the
TTFP, we also compare the statistic in which founder information are

incorporated in the second stage of the TTFP. We named the method
by TTFFP.
To better compare these four methods, we apply the similar

sampling design in Feng et al.8 To assess the type I error rates, we
generate data under the null hypothesis of no association. First, we
generate genotypes under the Hardy–Weinberg equilibrium and
linkage equilibrium. This means that we generate each allele and
each marker independently. The frequency of the minor allele at each
marker is randomly sampled between 0.1 and 0.4. Under these
conditions, we can generate genotype data of all individuals for 50
pedigrees. Second, we generate phenotype data of all individuals. Let
Y1¼ (yF, yM) denote the trait values of the parents and Y2¼
(y1, y2,y,ym) denote the trait values of the m children. Assume
(Y1, Y2) follow a normal distribution with a mean vector of zero and
variance–covariance matrix of

�¼

1 0 r ::: r
0 1 r ::: r
r r 1 ::: r
..
. ..

. ..
. . .

. ..
.

r r r ::: 1

0
BBBBB@

1
CCCCCA

It is easy to see from the above variance–covariance matrix that yF and
yM are independent, parents with children and children with children
are correlated with the correlation coefficient r. We can first generate
data of Y1, and then generate data of Y2 conditional on the values of
Y1. In our simulations, we also set different cases of heritability
(h2¼ 0.03, 0.05, 0.07).
To ascertain the appropriate number of the selected loci in the first

stage, we vary the value of L from 1 to M (M¼ 100, 1000), and
compute the corresponding FDR (or power) for each test. In each
scenario, we use the average of 1000 replications to estimate the FDR
for each method. The analysis results are shown in Figures 2–4 (for
each M, see the sub-figure about FDR).
For power comparisons, we need to regenerate pedigree data under

H1. We generate genotype data as described previously and then the
trait value of the kth member is given by the linear model below:

yk ¼ bxk þ ek;

where the value of b here is determined by the value of heritability h2

and disease models.
After the simulated data of 50 pedigrees are generated, we

respectively compute the test powers by the four methods, and use
the average of 1000 replications to estimate the power for each
method. The corresponding results of the powers are shown in
Figures 2–4 (for each M, see the sub-figure about power).

Evaluation on type I error rates
The sub-figures about FDR in Figures 2–4 show that when significant
level a is 0.05, the type I error rates of the TTFP, the TTFPBSA and
the RTTFP can be basically controlled within a reasonable range,
however, the type I error rates of the TTFFP cannot be controlled.

Figure 1 The pedigree structure used in the simulation studies.
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Comparing with the case of M¼ 100, the values of FDRs for each
method decrease when M¼ 1000 to some extent. Besides, when
M¼ 100 and the value of L is o20, the TTFP gives larger FDRs in
fact. In addition, these figures also report that the FDRs of each
method show similar trend for different cases of heritability.

Evaluation on powers
The sub-figures about power in Figures 2–4 clearly show that in most
cases our RTTFP is more powerful among the four methods.
Although the TTFP has a little higher powers for smaller L, it is
accompanied with larger FDRs at the same time. The powers of the
TTFPBSA are the lowest among all methods, so the method does not
obtain higher powers on the basis of the TTFP. The powers of the
TTFFP are very close to the ones of the TTFP. Unfortunately, however,
the TTFFP could not control type I error rate, so it is difficult to use
in practice. The powers of all methods show the trend of decrease
with increasing of L. However, by contrast the powers of the RTTFP
decrease stationarily as L increase.

Feng et al8 considered the choice for L and suggested that a value
between 10 and 20 is a good choice for L. From our simulation
results, we obtain the similar conclusion. Figures 2–4 show that the
RTTFP is more powerful when L equals to 10 or so.
The simulation results also show that the heritability is also an

important factor that impacts the association test. Figures 2–4 show
that powers of various methods gradually increase as the heritability
increases. At the same time, in each heritability case (eg, h2¼ 0.07, see
Figure 4), the powers of each method all decrease correspondingly
with the value of M increasing from 100 to 1000. It is as expected,
because identifying more markers for the same sample size in
association analysis is more difficult from statistical viewpoint.
Besides, simulation results for data of nuclear families are similar to

those for the pedigree data. In fact, the nuclear family situation is
nothing but a special case of the pedigree structure, therefore, the
corresponding conclusions should be consistent.
The proposed method can be applied to the trios data, in which

case the two-step method will be reduced into one-step method
(screening test). Through choosing appropriate value of L, we can also
identity those significant trait loci. Of course, more children in each
observed family will provide more association information, and
therefore improve the power of test.
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Figure 2 Type I error rates and powers of the four methods for pedigree

data (h2¼0.03). Note: TTFP, the method proposed by Feng et al;8 TTFFP,

the method in which founder information are incorporated in the second

stage of the TTFP; TTFPBSA, the method proposed by Gu;9 and RTTFP, the

new method proposed in this paper.
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data (h2¼0.05). See note in Figure 2 for abbreviation details.
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DISCUSSION

Currently, researchers have made much progress in genome-wide
association studies which provides certain reference for gene mapping
of complex disease. To overcome the impact of population stratifica-
tion on the association test, researchers have proposed many different
methods. For example, one-stage approach, two-stage approach, and
so on. Among them, one-stage approach tests all markers simulta-
neously, the power of which is generally not high. Therefore, people
increasingly take advantage of the two-stage approaches in family-
based association studies.7,8

The idea of adding information of the founders into a statistic
seems feasible in association analysis, however, how to construct the
new statistic is crucial. In this paper, we present a new association test
approach which is an improvement on the two-stage method in
literature.8 It is fit for the gene mapping of complex trait in family-
based genome-wide analysis. The new method is more powerful than
the current methods to some extent, because we not only ensure the
independence between two step tests, but also we reasonably use all
the data information.

At the same time, we demonstrate the method proposed by Gu.9

Although she seems to use more data information, the actual results
of test are unsatisfactory. One main reason is that the two tests
between the two steps are not independent. In each simulation case,
we also consider the TTFFP method. The multiple test results show
that the type I error rates of the TTFFP are difficult to be controlled.
Even this method is more powerful, in practice we cannot apply it, as
its screening process is too coarse.
Our simulation results show that when the number of markers in

analysis is about 1000, the value of L equals to 10 or so is a good
choice. At this time, the RTTFP method has higher power. Of course,
this conclusion is directly obtained through the simulation analysis.
In fact, we can utilize some model selection criteria such as the AIC
criterion,13 BIC criteria,14 and so on, to get the theoretical optimal
value of L. In all scenarios of our simulation, when L exceeds some
value the RTTFP method has the highest power among all methods.
Our method also has shortcomings. For example, we do not embed

an algorithm for finding the optimal value of L into the test, which is
a common problem of the TTFP and the TTFPBSA. These issues will
be explored in our future research to find more effective methods of
mapping genes of complex traits in the genome-wide analysis.
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Figure 4 Type I error rates and powers of the four methods for pedigree

data (h2¼0.07). See note in Figure 2 for abbreviation details.
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