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Analytical and simulation methods for estimating
the potential predictive ability of genetic profiling:
a comparison of methods and results

Suman Kundu1, Lennart C Karssen1 and A Cecile JW Janssens*,1

Various modeling methods have been proposed to estimate the potential predictive ability of polygenic risk variants that

predispose to various common diseases. However, it is unknown whether differences between them affect their conclusions on

predictive ability. We reviewed input parameters, assumptions and output of the five most common methods and compared their

estimates of the area under the receiver operating characteristic (ROC) curve (AUC) using hypothetical data representing effect

sizes and frequencies of genetic variants, population disease risk and number of variants. To assess the accuracy of the

estimated AUCs, we aimed to reproduce the AUCs of published empirical studies. All methods assumed that the combined

effect of genetic variants on disease risk followed a multiplicative risk model of independent genetic effects, but they either

assumed per allele, per genotype or dominant/recessive effects for the genetic variants. Modeling strategy and input parameters

differed. Methods used simulation analysis or analytical formulas with effect sizes quantified by odds ratios (ORs) or relative

risks. Estimated AUC values were similar for lower ORs (o1.2). When AUCs were larger (40.7) due to variants with strong

effects, differences in estimated AUCs between methods increased. The simulation methods accurately reproduced the AUC

values of empirical studies, but the analytical methods did not. We conclude that despite differences in input parameters,

the modeling methods estimate similar AUC for realistic values of the ORs. When one or more variants have stronger effects

and AUC values are higher, the simulation methods tend to be more accurate.
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INTRODUCTION

The success of genome-wide association studies has fueled interest in

genetic risk prediction of multifactorial diseases, such as type 2

diabetes, cardiovascular disease and non-familial cancers. The known

contribution of genetic variants to the prediction of most diseases is

still limited,1–2 as the variants identified to date together explain only

a small part of the heritability.3 Further research is needed to find out

the extent to which genetic variants can improve the prediction of

multifactorial diseases.
To investigate the potential predictive ability of genetic risk models,

researchers are using modeling studies to quantify the area under the

receiver operating characteristic (ROC) curve (AUC) as a measure of

discriminative accuracy.4–8 These studies have demonstrated that

hundreds of genetic variants are required to obtain an AUC of 0.70

when their effect sizes are small (odds ratio (OR) o1.2),5 and that the

upper limit of the AUC is determined by the heritability of the disease

and the population disease risk.5,9 For example, when the heritability

of the disease is 10% and the population disease risk is 20%, the

maximum AUC value that can be obtained by genetic risk models will

be around 0.80.5

The modeling methods published to date have similarities and
differences in terms of input parameters, underlying assumptions and

output produced. For example, all methods assume multiplicative

joint effects of genetic variants, but to express the effect sizes of the

variants some method use relative risks (RRs), whereas others use
ORs as input data. These differences may impact the AUC and lead to
different inferences about the predictive ability of genetic risk models,
but this impact is not obvious as AUC is known to be an insensitive
metric, unable to detect the contribution of significant risk factors.10

As it is unknown whether these differences between the modeling
strategies affect conclusions on the predictive ability, we reviewed
published modeling methods that intend to estimate the potential
predictive ability of genetic risk models. We compared the input
parameters, underlying assumptions and output, and investigated the
agreement of estimated AUCs between the methods in several
hypothetical scenarios. We also assessed the accuracy of estimated
AUCs by attempting to reproduce the AUC values reported in several
published empirical studies.

METHODS

Analytical and simulation methods
We compared the five published methods that aim to investigate the predictive

ability of genetic risk models by quantifying the AUC.4–8 The methods are

referred in this paper by the name of the first author. Three methods use

analytical formulas and two use simulations to obtain the AUC. First, the

analytic method by Lu7 calculates the frequencies and likelihood ratios of all

genotype combinations separately for cases and controls from the population

disease risk, and the RRs and frequencies of all genetic variants. The AUC

values are subsequently obtained from the distribution of likelihood ratios in
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cases and controls. Second, the analytic method by Moonesinghe4 obtains the

AUC using a formula that requires RRs and frequencies for dominant or

recessive effects of the variants. This method approximates the distributions of

the number of risk genotypes for cases and controls by normal distributions

that are subsequently used to obtain the AUC value. Third, the analytical

method by Gail8 computes the RRs of all possible genotype combinations for

the entire population and for cases, and uses these distributions to obtain the

AUC. The simulation methods by Pepe6 and Janssens5 both first construct

genotype data for individuals of a hypothetical population according to the

frequencies of the genetic variants. Based on these data and the ORs, they

estimate the disease risk, which is then used to obtain the disease status for

each individual in the hypothetical data set. Using the estimated disease risks

and disease status, the methods finally calculate the AUC value. These two

methods differ in how the genetic effects of the variants are considered. The

method by Pepe requires per allele frequencies and ORs to construct individual

genotype data, and estimates disease risks using a logistic regression equation,

whereas the method by Janssens can use per genotype, per allele or dominant/

recessive effect of the risk allele to construct genotype data, and estimates

disease risks using Bayes’ theorem.

We documented the modeling strategy, input parameters, assumptions and

output. To ensure that all these items were assessed for all methods, a checklist

of the documented items was made and the five methods were reviewed again.

If an item was not explicitly mentioned, deductive reasoning was used to

document it. For example, if a method constructed the combined effect of all

genetic variants by multiplying the effects of each single variant, we recorded

that the method assumed independent genetic effects. Data extraction was

done by two researchers (SK, LCK) independently and discrepancies were

discussed with a third researcher (ACJWJ).

Table 1 presents an overview of the modeling strategy, input parameters,

assumptions and output of the methods. To obtain AUC values, the methods

use different input parameters. All methods require effect estimates and

frequencies of the genetic variants included, but the effect sizes of genetic

variants have to be entered differently. The method by Lu can handle ORs and

RRs, whereas the methods by Pepe, Janssens and Gail require ORs and the

methods by Moonesinghe requires RRs. All but two methods require an

estimate of the population risks, and the simulation models additionally need a

specification of the population size.

All methods assume that (i) the combined effect of the genetic variants on

disease risk follows a multiplicative (ie, log-additive) risk model; (ii) genetic

variants inherit independently, that is, no linkage disequilibrium between

the variants; (iii) genetic variants have independent effects on the disease

risk, which indicates no interaction among variants. Furthermore, if

methods need to convert allele frequencies into genotype frequencies,

they additionally assume that all genotypes and allele frequencies are in

Hardy–Weinberg Equilibrium. Two methods assume that the disease is rare.

Finally, the methods differ in how genetic variants need to be included.

Two methods assume per allele (additive) effects of the risk allele, one

assumes that the effects vary between genotypes and one assumes dominant

or recessive effects of the risk alleles. The fifth method does not make any

assumptions about the genetic effects and allows these to vary between the

variants considered.

We had selected methods that obtain the AUC as a measure of predictive

ability, but most methods can obtain other predictive measures of (genetic)

risk models as well. Moonesinghe’s method provides a formula to specifically

calculate the AUC, but all other methods can be used to obtain other plots and

metrics as well, such as risk distributions and predictiveness curves. The

simulation methods can be used to compare risk models by, for example,

reclassification measures.

Data analysis and data generation
To investigate the agreement in estimated AUCs, we applied the five methods

in various hypothetical scenarios. Scenarios were defined as any combination

of (i) the number of genetic variants included, chosen to be 10 or 50; (ii) the

OR of the risk allele, set to 1.1, 1.4 or 2.0; (iii) the risk allele frequency, set to

0.05 or 0.25; and (iv) the disease risk in the population, set to 1 or 25%, as

listed in Table 2. In these hypothetical scenarios, we assumed that all genetic

variants had the same risk allele frequencies and ORs.

Table 1 Overview of input parameters, assumptions and output of the modeling methods

First authorRef Pepe6 Janssens5 Lu7 Moonesinghe4 Gail8

Modeling strategy Simulation Simulation Analytic formula Analytic formula Analytic formula

Input parameters

Population risk Yes Yes Yes No Noa

Variant effect estimate (RR/ OR) Yes (OR) Yes (OR) Yes (RR/OR) Yes (RR) Yes (OR)

Variant frequency Yes Yes Yes Yes Yes

Population size Yes Yes No No No

Assumptions

Multiplicative risk model Yes Yes Yes Yes Yes

No linkage disequilibrium Yes Yes Yes Yes Yes

Independent effects Yes Yes Yes Yes Yes

HWEb Yes Yesc No No Yes

Rare disease No No No Yes Yes

Genetic effects Per allele All Per genotype Dominant or recessive Per allele

Output parameters

Create data set Yes Yes No No No

AUC Yes Yes Yes Yes Yes

Other output possibled Risk distribution curves

Predictiveness curve

Reclassification measures

Risk distribution curves

Predictiveness curve

Reclassification measures

Risk distribution curves

Predictiveness curve

No Risk distribution curves

Predictiveness curve

Abbreviations: AUC, area under the receiver operating characteristic curve; HWE, Hardy–Weinberg equilibrium; OR, odds ratio; RR, relative risk.
aThe formula includes a constant k, indicating the absolute risk of disease or incidence for individuals who have the lowest RR, which can be obtained from the population risk. Yet, the exact
value of k is not required to obtain AUC as AUC is independent of disease risk.
bHWE is assumed for the distribution of genotypes in the total population.
cHWE is only assumed when genetic effects are entered as per allele effects.
dOutput that can be obtained using the method, but which was not necessarily proposed in the original paper.
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To assess the accuracy of the estimated AUCs, we investigated whether the

methods could accurately reproduce AUCs of published empirical studies

(Table 3). We selected studies that assessed the AUC of genetic risk models and

reported the ORs and frequencies of genetic variants included in the model.

Population disease risks were taken from the empirical studies listed in Table 3

or from other epidemiological studies if they were not listed in the original

paper. As random factors, such as rounding of values and random deviations

from Hardy–Weinberg Equilibrium, may have impacted the empirical AUC,

we conclude that the methods accurately reproduce the empirical studies when

the predicted AUC is similar to the empirical AUC, but not necessarily exactly

the same.

As the methods differ in how genetic variants need to be entered in the

method, as per allele, per genotype or dominant/recessive effects of the risk

alleles, transformations were needed when the specified and required frequen-

cies and risk estimates did not match. Specified values of the frequencies, ORs

and population risk were used to construct a (3� 2) genotype by disease status

contingency table, from which all required frequencies and risk ratios (OR/RR)

were calculated. Hardy–Weinberg Equilibrium was assumed to obtain geno-

type frequencies when allele frequencies were specified.

For the simulation methods, genetic variants and disease status were

constructed for 100 000 individuals and all simulations were repeated 100

times to obtain robust estimates of the AUC. Presented AUC estimates

are averages of the 100 runs. All analyses were performed using software

written in the R language (version 2.12.1).11 Extensive details together

with the mathematical explanation of the five methods and the source

codes or references to the source codes are provided in the Supplemental

Material.

RESULTS

Table 2 shows the estimated AUC values obtained by the five methods
for the hypothetical scenarios. As expected, higher risk allele
frequencies, higher ORs and larger number of genetic variants yielded
higher AUC values for all methods. The differences in AUC between
the methods were larger when the AUC values were higher; for
example, when higher ORs or more genetic variants were considered.
The AUC values calculated using the simulation methods were
identical up to two decimals in most scenarios. The analytical method
of Moonesinghe consistently produced lower AUC values than the
simulation methods, particularly when recessive effects of the variants
were assumed. The same results were observed when the risk allele
frequency was 75%, with the exception that the recessive model
estimated higher AUC values than the dominant model (data not
shown). The analytical method of Lu yielded lower AUC estimates
than the simulation methods when AUCs were higher (40.80). The
analytical method of Gail obtained similar AUC values as the
simulation methods when the disease risk was 5%, but overestimated
the AUC when the disease risk was 25%. Both the methods by Lu and
Gail were unable to compute the AUC when the number of genetic
variants was 50.

Table 3 presents the estimated AUCs for the scenarios that used the
frequencies and ORs of genetic variants and population risks obtained
from published empirical studies. The estimated AUCs using the
simulation methods and the analytic methods of Gail and Lu were

Table 2 Estimated area under the ROC curve for hypothetical values of the input parameters

Estimated AUC

Simulation Analytical

Pepe Janssens Lu Moonesinghe Gail
Odds ratio Risk allele frequency (%) Population disease risk (%) Number of genes Dominant Recessive

1.1 5 1 10 0.53 0.53 0.52 0.53 0.51 0.52

50 0.56 0.56 —a 0.56 0.52 —a

25 10 0.53 0.53 0.52 0.52 0.51 0.52

50 0.56 0.56 —a 0.54 0.51 —a

25 1 10 0.55 0.55 0.55 0.55 0.53 0.55

50 0.62 0.61 —a 0.61 0.57 —a

25 10 0.55 0.55 0.55 0.53 0.52 0.55

50 0.61 0.61 —a 0.58 0.56 —a

1.4 5 1 10 0.60 0.60 0.59 0.60 0.53 0.59

50 0.71 0.71 —a 0.71 0.57 —a

25 10 0.59 0.59 0.59 0.57 0.52 0.59

50 0.69 0.69 —a 0.66 0.55 —a

25 1 10 0.68 0.68 0.68 0.67 0.62 0.68

50 0.85 0.85 —a 0.83 0.76 —a

25 10 0.67 0.67 0.67 0.63 0.59 0.68

50 0.81 0.81 —a 0.77 0.70 —a

2.0 5 1 10 0.70 0.70 0.70 0.70 0.58 0.70

50 0.87 0.88 —a 0.89 0.67 —a

25 10 0.68 0.68 0.66 0.65 0.55 0.70

50 0.82 0.82 —a 0.81 0.62 —a

25 1 10 0.84 0.84 0.84 0.82 0.75 0.84

50 0.97 0.97 —a 0.98 0.94 —a

25 10 0.80 0.80 0.60 0.76 0.69 0.84

50 0.93 0.93 —a 0.94 0.87 —a

Abbreviations: AUC, area under receiver operating characteristic curve; ROC, receiver operating characteristic.
aAUC cannot be obtained because of insufficient computer memory.
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always consistent with those of the empirical studies, but the
analytical method of Moonesinghe underestimated all empirical
AUCs. When the number of genetic variants was 15 or higher, the
analytical methods by Gail and Lu were unable to compute the AUC
because of computer memory limitations.

DISCUSSION

This paper provides a review of the five methods that have been
proposed to investigate the potential predictive ability of genetic risk
models by quantifying the AUC that can be expected. The five
modeling methods use the same main assumptions, but they differed
with regard to the modeling strategy. Estimates of the AUC differed
between the methods when one or more variants had stronger effects
and absolute AUC values were higher. The two simulation methods
always obtained the same estimates and both accurately reproduced
the AUCs of published empirical studies.

Modeling studies are used to estimate the potential predictive
ability of genetic risk models on the basis of hypothetical epidemio-
logical data. When the modeling is based on published ORs and
frequencies rather than on hypothetical values for variants, some
methods may be more flexible than others. If the coding of genetic
variants differs between what is assumed in the method and what is
published in the literature, transformations are needed. These
transformations, such as converting the data into dominant/recessive
effects of the risk alleles, may not be valid in reality and in our
examples, and may explain the differences in estimated and published
AUC values when transformations were applied, for example, for the
method by Moonesinghe (Table 3). These transformations may have
contributed to the differences in AUC values between the methods.

Although the methods share similar assumptions, they differ in the
way the AUC is obtained. Some details in the calculation can be
considered as limitations of the methods. For example, the analytic
methods by Gail and Lu are not able to obtain the AUC for larger
number of genetic variants because they calculate the frequencies of
all possible combinations of the genotypes. As the number of combi-

nations grows exponentially with increasing number of variants, at
one point these methods reach the limits of computer memory.
Using a computer with a 2.33-GHz processor and 2-GB RAM,
we observed that the AUC could not be computed when the number
of variants exceeded 14. When the number of genetic variants is
larger, Gail’s method can still be used by assuming a log-normal
distribution of RRs for the genotype combinations in the population.
Another example is that most methods assume the variants to have
either per allele, per genotype or dominant/recessive effects, rather
than allowing the effects to differ between them. Most empirical risk
prediction studies these days consider weighted risk allele counts
(weighted risk scores) when the number of variants is large, which is
similar to the assumption of per allele effects. Assuming per genotype
effects is more flexible, as it simultaneously expresses the per allele
effects or dominant/recessive effects of the variants. Yet, solely
assuming dominant/recessive effects of risk variants may not ade-
quately express allelic effects and hence explain why the method of
Moonesinghe underestimated the AUC values when assuming reces-
sive effects. Even though AUC is known as an insensitive metric,10

these differences in assumptions about the genetic effects had
substantial impact on the observed AUC value.

We reviewed five methods that estimate the AUC of prediction
models. There are two other modeling approaches for the predictive
ability of genetic risk models that we did not evaluate because they do
not estimate AUC based on published epidemiological data of genetic
variants, that is, on ORs and frequencies. First, in a theoretical paper
on the predictive ability of multiple genetic variants, Pharoah et al12

described how genetic profiling yields a distribution of risk that can
be useful for selecting high-risk groups in disease prevention. Second,
Wray et al13 described three different models for genetic risk
prediction that assume different underlying distribution of the
disease risk in the population. The methods by Pharoah et al and
Wray et al use the same assumptions as the five discussed methods,
including a multiplicative risk model for joint effects and independent
effects of genetic variants.

Table 3 Estimated area under the ROC curve for input parameters from published empirical studies

Estimated AUC

Simulation Analytical

Moonesinghe Gail

Genetic

effects

First

authorRef Disease outcome

Population

disease

risk (%)Ref

Number of

genetic

variants

Published

AUC

Pepe

per

allele

Janssens

All

Lu

per

genotype Dominant Recessive

per

allele

Per genotype Van Hoek14 Type 2 diabetes 2014 18 0.60 0.59 0.59 —a 0.56 0.57 —a

Per allele Mealiffe15 Breast cancer 12.1516 7 0.59 0.59 0.59 0.59 0.57 0.56 0.59

Helfand17 Prostate cancer 16.2216 9 0.66 0.68 0.68 0.68 0.63 0.62 0.68

Hu18 Type 2 diabetes 2014 11 0.62 0.63 0.63 0.63 0.58 0.59 0.63

Lin19 Type 2 diabetes 2014 15 0.59 0.61 0.61 —a 0.58 0.57 —a

Takahashi20 Osteoarthritis (knee) 27.812 3 0.55 0.56 0.56 0.56 0.53 0.53 0.56

Qi22 Type 2 diabetes 2014 17 0.62 0.64 0.64 —a 0.60 0.58 —a

Combination of

per genotype and

dominant/ recessive

Seddon23 Age-related

macular

degeneration

6.524 14 0.82 —b 0.81 0.80 0.77 0.72 —b

Abbreviations: AUC, area under receiver operating characteristic curve; ROC, receiver operating characteristic.
aAUC cannot be obtained because of insufficient computer memory.
bPer allele odds ratios and frequencies cannot be reconstructed from the dominant/recessive data.
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All methods are methodologically simple and use assumptions that
are generally reasonable. They assume that the combined effect of the
genetic variants on disease risk follows a multiplicative risk model
with independent effects (ie, no statistical interaction terms are
included in the model) and that genetic variants inherit independently.
Inclusion of gene–gene and gene–environment interactions may further
improve the predictive ability of the methods. Although all five methods
might be improved by including these extensions, their performance so
far seems adequate given current understanding of the joint contribu-
tion of genetic variants to the disease risk. Currently many empirical
studies calculate weighted risk scores where the differences in the
effects between risk alleles are acknowledged. Of the modeling studies,
some explicitly obtain weighted risks scores,5,6,8 whereas others consider
different effect sizes for risk alleles in other ways.4,7

In conclusion, the five most commonly used methods for
quantifying the AUC of genetic risk prediction models have similar
assumptions, but differ with regard to the input parameters required
and the AUC values estimated. The simulation methods yielded
consistent AUC estimates and both accurately replicated published
empirical AUC values. The simulation studies provide valuable insight
into the potential predictive ability of genetic risk prediction.
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