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De novo microduplication of the FMR1 gene in a
patient with developmental delay, epilepsy

and hyperactivity

Jaime Vengoechea*’1’2’3, Aditi S Parikh!?%, Shulin Zhangl’5 and Flora Tassone®’

Loss-of-function due to expansion of a CGG repeat located in the 5’UTR of the FMR1 gene is the most frequent cause of fragile
X syndrome. Less than 1% of individuals with fragile X syndrome have been reported to have a partial or full deletion

or point mutation of the FMR1 gene. However, whether a copy number gain of the FMR1 gene could result in certain clinical
phenotypes has not been fully investigated. Here, we report the case of a child who presented with developmental delay starting
at 9 months of age, fine motor and speech delay, progressive seizures since 18 months of age and hyperactivity. Molecular
workup identified a de novo microduplication in the Xq27.3 region, including the FMR1 gene and the ASFMR1 gene. The
expression level of the FMR1 gene in peripheral blood did not differ from that of the controls. In addition, an inherited 363-kb
duplication on the chromosome 1q44 region and an inherited deletion of 168 kb on the chromosome 4p15.31 region were
detected. It is not clear whether these inherited copy number variations (CNVs) also have a modifying role in the clinical

phenotype of this patient.
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INTRODUCTION

Fragile X syndrome (FXS), caused by loss-of-function of the FMRI
gene, has been recognized as the most frequent cause of X-linked
mental retardation and autism spectrum disorders.! FXS is caused
by a full mutation, an expansion of CGG trinucleotide repeats (>200
CGG repeats) in the 5’UTR of the FMRI gene. Individuals harboring
an allele with 55-200 CGG repeats are premutation carriers. The
FMRI full mutation causes a broad spectrum of symptoms, including
intellectual disabilities, autism spectrum disorders, social anxiety,
hyperarousal, inattention, impulsivity and hyperactivity.®” Few cases
presenting a clinical phenotype typical of fragile X have been reported
to be caused by relative gross duplication in the FMRI gene?®
Microduplications involving the FMRI gene alone have not been
reported. A prior report in the literature described a family with a
5.1 Mb duplication including both the FMRI locus and FMR2 and 26
other genes, leading to a heritable syndrome of intellectual disability
and short stature with hypogonadism® Members of this family had a
phenotype consisting of mild developmental delay with relative
preservation of verbal skills, microcephaly and small hands, feet and
testicles. These authors proposed that a functional disomy of FMRI
may contribute to the observed clinical phenotype.

Here, we report the clinical and molecular characterization of a
case of a 4-year-old boy with a distinctive phenotype, who has an
86kb de novo microduplication on Xq27.3 including only the FMRI
gene, the FMRI antisense RNA gene (AS-FMRI), as well as two
paternally inherited genomic alterations: a 363-kb duplication on
1q44 and a 168-kb deletion on 4p15.31.

Clinical description

The patient first came to medical attention at around 18 months of
age when he was diagnosed with myoclonic seizures, although in
retrospect he had fine motor and speech delay since at least 9 months
of age. The myoclonic seizures were characterized by episodes of
muscle twitching that led to falls and focal activity in both frontal
lobes on video EEG. The patient’s clinical symptoms improved after
treatment with levetiracetam. A metabolic workup, including mea-
surement of blood lactate, pyruvate and plasma amino acids levels,
was normal. An MRI scan of the brain was also normal.

At around 2 years of age, the patient developed behavioral issues,
characterized by aggressiveness toward others. He also had breath-
holding spells. His neurologist noticed language delay, more expres-
sive than receptive, suggestive of possible oral apraxia. Speech therapy
was initiated, and the patient showed considerable improvement. The
patient had a follow-up EEG at 3% years of age, which showed
persistent focal seizure activity despite the absence of overt clinical
seizure episodes. His speech delay, although milder, persisted. It also
became apparent that he was having difficulty attaining new fine
motor skills, such as drawing age-appropriate geometric figures.

At 4 years of age, the patient developed absence seizures. These
were described as ‘staring spells’ that were increasing in frequency
over 2 months. A new video EEG confirmed the presence of absence
seizures, with classical generalized 3 Hz spike-and-wave appearance.
He had persistent speech and fine motor delay. He also had signs and
symptoms suggestive of hyperactivity. A clinical geneticist was
consulted at that time.
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On physical examination, the patient’s growth parameters were
within the normal range. The patient was hyperactive, running
around constantly in his hospital room, and was unable to focus
on a single task for more than a few seconds. He had bilateral fifth-
finger clinodactyly. His strength, sensation and coordination were
normal. The patient spoke very few words, and these were difficult to
understand, but he had good speech comprehension. The patient was
unable to draw a stick figure or a circle.

Molecular findings

Molecular testing for fragile X syndrome and an oligonucleotide CGH
microarray were carried out to investigate possible underlying genetic
mechanisms. Southern blot and PCR analysis for fragile X syndrome
were carried out as previously described.>!® The Southern
blot displayed a normal male pattern and PCR analysis showed
the presence of a 29 CGG repeat allele. Oligonucleotide array
CGH (aCGH) was performed using a custom-designed NimbleGen
135K array developed by Signature Genomics (Spokane, WA, USA)
(SignatureChipOS, version 2). The probes on the array have an
average spacing of one probe every 35kb throughout the genome
and one probe every 10kb in regions with known clinical significance.
The aCGH revealed an approximately 86-kb copy number gain
in chromosome Xq27.3 between nucleotides 146783933 and
146 868 568, which included 11 consecutive markers that were
duplicated, with adjacent probe gaps of 9.89 and 2.27kb
(nucleotide coordinates were based on the UCSC Genome Browser
(hg18, March 2006, NCBI build 36.1) (Figure 1).

The duplication only encompasses the FMRI and the FMRI
antisense RNA gene (AS-FMR1). In addition to the above duplicated
region, an approximately 363.16-kb copy number gain in the 1q44
region (nucleotides 245377 586—245556179) and an approximately
168.86-kb copy number loss in the 4p15.31 region (nucleotides
22897 572-23 066 434) were also detected.

To further characterize the copy number changes found in this
patient, parental studies were carried out. The copy number changes
in the 1q44 and 4pl5 regions were detected in the patient’s father,
who does not have mental retardation, seizures or speech delay. The
copy number gain in Xq27.3 was determined to be a de novo event, as
it was not detected in the mother.

FMRI mRNA expression levels were measured in peripheral
blood leukocytes by quantitative RT-PCR as previously described,!!
and were found to be within the normal range (1.09 = 0.16).

DISCUSSION

Mutations in the FMRI gene have been associated with various
phenotypes. These include fragile X syndrome, in which loss-
of-function in FMRI' leads to intellectual disability.!> The most
common mechanism leading to fragile X syndrome is a CGG
trinucleotide repeat expansion in the promoter region of the FMRI
gene leading to methylation of the promoter of the gene, with
subsequent silencing of transcription and the absence of the encoded
product FMRP'# which is important for synaptic plasticity and
synaptic protein synthesis.!>!® However, other loss-of-function
mutations, including deletions, missense mutations and splice-site
mutations, have been reported.”‘20

The case described here has an 86-kb microduplication that only
encompasses the FMRI and ASFMRI genes. The ASFMRI gene
promoter is located within intron 2 of the FMRI gene.?! Interestingly,
the expression of ASFMRI, similar to that of FMRI, is elevated in
fragile X premutation carriers and decreased in individuals with
full mutation alleles.?! To date, translation of the ASFMRI gene
has not been reported, and whether it has a pathogenic role is not
known.

Parental microarray analysis indicates that the microduplication in
the FMRI gene region in our patient is a de novo event. The gain in
the 1g44 and the loss in the 4p15 regions were both inherited from a
healthy father. Both copy number gains and losses of a larger
chromosome 1g44 region encompassing genomic coordinates
245141053 to 246 395458 had been reported in normal controls.??
The 1q44 region contains three genes (ZNF124, ZNF496 and VNIR5).
ZNFI124 is a transcription factor that inhibits apoptotic death in
hematopoietic and leukemia cell lines?® and has been identified as
part of large pathogenic deletions in 1q44,>* although patients who
have a normal copy number of ZNF124 may have the same phenotype
as those with a deletion. ZNF496 is a transcription cofactor of NSDI.
Children with Sotos syndrome have mutations in NSDI, some of
which prevent it from interacting with ZNF496.>> A third gene in our
patient’s 1q44 gain, VNIRS5, is thought to be a pseudogene.?® None of
these genes have been reported as causative of human disease. The
4p15 loss has been reported as a normal copy number variant in the
Database of Genomic Variants (http://projects.tcag.ca/variation).
There are no genes in this region.

A large 5.1-Mb interstitial duplication in the Xq27.3q28 region
containing 28 genes, including FMRI and FMR2, has been reported in
a French family.® Three adult men in this family had a syndrome
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Figure 1 Microduplicated region in Xq27.3, according to the USCS Genome Broswer (hgl8, March 2006, NCBI build 36.). FMRI and ASFMRI are the

only genes in this region.
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consisting of short stature, microcephaly, small hands and feet,
low testicular volume, as well as facial features including deep-set
eyes, bulbous nasal tip and thin lips. The individuals had a history of
intrauterine growth restriction, failure to thrive in infancy,
undescended testes requiring orchidopexy, walking after the age of
16 months and mild learning difficulties, with preserved verbal skills.
The expression level of FMRI was not measured in the French family;
it is unclear whether the phenotype described was due to increased
FMRI transcript levels. X-inactivation studies suggested that female
carriers preferentially inactivated the X chromosome with the
interstitial duplication.

Our patient’s phenotype differs from the one described in the
French family. The patient does not have any distinctive facial
features; he did not have cryptorchidism, small testicular volume,
nor small hands or feet. The larger duplication observed in these cases
suggests that these distinctive traits identified in the French family
may be caused by duplication of genes other than FMRI. Our patient
has a relative milder phenotype, but he has additional features such as
speech delay, fine motor delay and hyperactivity, which were not
documented in the French family. However, it is difficult to compare
these traits in a 4-year-old with those of the adults in the French case
series.

Around 13-16% of individuals with fragile X develop seizures
during their lifetime,?” which suggests a role for the FMRI gene in
epilepsy. Decreased inhibitory signaling from GABA-A receptors®®
and overactivity of the metabotropic glutamate receptor (mGluR)
with resulting altered AMPA receptor activity?® have been reported as
pathogenic mechanisms for increased risk of seizures in fragile X
syndrome. Animal models of fragile X syndrome with heterozygous
knockout of the mGluR5 receptor suggest phenotypic rescue of many
of the features of fragile X, including increased risk for seizures.>
These studies demonstrate a clear role for the FMRI gene in
seizures. However, whether the observed increased gene dosage of
the FMRI could also lead to the seizure activity seen in our patient
is not clear.

Although the lack of FMRP causes fragile X syndrome, an
increase in FMRI mRNA, leading to RNA toxicity, results in
disease phenotypes such as fragile X-associated tremor/ataxia syn-
drome (FXTAS)*! and premature ovarian failure.’> This may
indicate the dosage-sensitive character of the FMRI gene.
However, we cannot state that excess mRNA is the cause of our
patient’s phenotype, as the levels of FMRI expression were found to
be normal. This does not rule out a pathogenic microduplication,
especially if it is a de novo event in which the only gene involved is
known to cause disease. In addition, blood mRNA expression
levels do not necessarily reflect those in the brain. CGG-binding
protein sequestration has been reported to depend on the number of
CGG repeats and may occur despite normal mRNA levels.>> The level
of sequestration may be insufficient to cause a disease but may
modulate the penetrance of a phenotype due to another genetic
alteration.

It is possible that the microduplication represents a second hit that
triggers the phenotype in the presence of another genomic alteration,
such as the duplication on chromosome 1 or the deletion on
chromosome 4 detected in this case. Indeed, copy number variation
burden has been reported to positively correlate with the severity of
childhood disability.>*

Finally, the patient we report may have other genetic or environ-
mental exposures to neurotoxicants that could contribute to his
phenotype. The patient in the present report has a phenotype with
features such as speech delay or hyperactivity, which change with
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time, may be age dependent and are difficult to accurately measure.
Despite these limitations, we believe that it is important to share this
case report with the medical genetics community.

CONCLUSION

A microduplication in Xq27.3 encompassing exclusively the FMRI
and ASFMRI genes may be causative of motor and speech delay,
focal seizures, absence seizures and hyperactivity, which are clinical
traits frequently observed in individuals with an altered function of
the FMRI gene. Other genetic mechanisms may underlie the clinical
phenotype presented here.
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