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Meta-analysis of genetic association studies under
heterogeneity

Binod Neupane1, Mark Loeb1,2, Sonia S Anand1 and Joseph Beyene*,1

In multi-cohort genetic association studies or meta-analysis, associations of genetic variants with complex traits across cohorts

may be heterogeneous because of genuine genetic diversity or differential biases or errors. To detect the associations of genes

with heterogeneous associations across cohorts, new global fixed-effect (FE) and random-effects (RE) meta-analytic methods

have been recently proposed. These global methods had improved power over both traditional FE and RE methods under

heterogeneity in limited simulation scenarios and data application, but their usefulness in a wide range of practical situations

is not clear. We assessed the performance of these methods for both binary and quantitative traits in extensive simulations and

applied them to a multi-cohort association study. We found that these new approaches have higher power to detect mostly the

very small to small associations of common genetic variants when associations are highly heterogeneous across cohorts. They

worked well when both the underlying and assumed genetic models are either multiplicative or dominant. But, they offered no

clear advantage for less common variants unless heterogeneity was substantial. In conclusion, these new meta-analytic methods

can be used to detect the association of genetic variants with high heterogeneity, which can then be subjected to further

exploration, in multi-cohort association studies and meta-analyses.
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INTRODUCTION

Genetic associations of single-nucleotide polymorphisms (SNPs) that
were identified by genome-wide association studies (GWAS) and
successive replication efforts or meta-analyses as having robust asso-
ciations with most complex diseases are of relatively small to modest
magnitudes (odds ratios (ORs) o1.50).1–3 Genetic association studies
typically require a very large sample size for the desired power to
detect associations of such magnitude, as a stringent significance level
(usually a¼ 5� 10�8 for genome-wide studies) is generally applied
in order to minimize detection of false associations. To attain the
required sample size, large-scale multi-team collaborative studies with
participants recruited from distinct populations defined by country of
origin, regional ancestry, ethnicity, or study center, or meta-analyses
of individual studies are necessary.4 Meta-analyses of genome-wide
and/or replication studies have been successful in identifying novel
genetic variants for complex diseases not previously identified by
single studies.5–8

One important challenge that remains, however, is that multi-team
collaborative studies or meta-analyses from distinct populations,
hereafter called cohorts, are more likely to demonstrate inconsistent
estimates of SNP associations across cohorts because of genuine
diversity in genetic associations, or differential errors or biases across
cohorts.9–12 Between-cohort heterogeneity may result from the asso-
ciations that truly exist in one, some or all cohorts with different
magnitudes (eg, due to local gene-environment interactions, which
might be further exaggerated by sampling variation), or which could

be a false signal due to methodological errors and biases (eg, because
of different linkage disequilibrium (LD) patterns of tagged markers
with causal variants across cohorts, the phenotype of interest being
correlated with other phenotype with which the SNP is correlated,
population stratification, different study designs with differential
ascertainment of phenotype across cohorts, differential genotyping
errors) or merely by chance.10,11 Therefore, heterogeneity could be a
signal rather than a noise in genetic association studies. Even if the
associations are modestly or highly heterogeneous across cohorts,
association in some or all cohorts may be genuine and are of interest.
Traditionally, in meta-analyses of clinical trials and epidemiological

studies, the fixed-effect (FE) approach13 has been used when cohort-
specific associations are more or less similar and the random-effects
(RE) approach14 has been used when heterogeneity is suspected, to
test whether there exists an average effect of a treatment or an
exposure. In genetic association studies, as heterogeneity may result
for any reason, detecting an ‘association’ if it truly exists even in a
single cohort, however, is of prime interest rather than detecting a
non-null ‘average effect’ over cohorts.15,16 Unfortunately, as between-
cohort heterogeneity increases it needs even larger sample size to
detect associations by using traditional meta-analytic approaches.17

When heterogeneity is suspected, traditionally preferred approach,
the random-effect method is less powerful in detecting a genuine
association as it produces more conservative P-values than FE
approach18,19 and would be too conservative when a stringent
significance level is used. Hence, even large multi-cohort studies
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or meta-analyses employing traditional approaches might fail to
demonstrate associations for some genetic variants that do not have
consistent associations across cohorts. So rather than increasing the
sample size by including additional data from more cohorts or
waiting until sufficient data are generated, it is more desirable to find
statistical methods that have increased potential to detect associations
in the presence of heterogeneity.
To overcome this limitation of traditional methods in detecting an

association, Lebrec et al15 recently proposed global methods as new
sets of screening tools for associations in heterogeneous conditions for
multi-cohort genetic association studies. The new FE global method
aims to test if an association exists in at least one cohort and the new
random-effect global method aims to test if the overall association or
between-cohort variance of associations is non-zero. They argued that
detecting a genuine association is important, so it’s a matter of
efficiency rather than principle in choosing which method to apply.
In their simulation study, these global methods had higher power
than both the traditional methods at nominal significance level when
there was moderate to substantial between-cohort heterogeneity. More
recently, Han and Eskin16 compared the power of this new global RE
method with traditional methods and found similar results in the
presence of heterogeneity, suggesting that the new RE method can be
used to discover genes with robust association in meta-analysis.
However, Lebrec et al15 reported results for a very simple scenario,
and did not assess the comparative performance of these methods at
more realistic scenarios or using real genomic data. Han and Eskin16

did not assess the performance of the new FE method, which was
shown to have higher power than the new RE method in the presence
of high heterogeneity as seen in Lebrec et al’s15 simulation. Earlier,
Pereira et al20 investigated the impacts of heterogeneity and genetic
model mis-specification on power and other issues for traditional FE
and RE methods in a simulation study. But to date, no comparative
studies of both the newly proposed meta-analytic approaches have
been carried out in a wide range of realistic scenarios. It is therefore
not clear under which circumstances these new methods perform
better or are of greater practical utility than traditional methods in
screening for or discovering of genetic associations.
In this study, our objective was to assess the performance of new

and traditional meta-analytic methods with respect to type I error and
statistical power through extensive simulations in a wide range of
realistic applications. For instance, our simulation included scenarios
such as: (1) a genetic variant is less common, (2) only few cohorts are
available, (3) failure to adjust for important prognostic factors, and
(4) assume a wrong genetic model. To determine the practical utility
of these global methods in real data application, we applied these
methods to West Nile virus infection complications data from a
multi-center association study.

MATERIALS AND METHODS

Hypotheses and tests
Here, we briefly describe the methods given by Lebrec and colleagues (see

Lebrec et al15 for detailed descriptions). In a multi-cohort study or meta-

analysis with k distinct cohorts for a binary phenotype, Y (y¼ 0 for control,

y¼ 1 for case in a case–control study), suppose the information on the number

of copies of the minor allele in a genotype, X (x¼ 0, 1, 2), at an autosomal

biallelic SNP locus and a set of covariates, Z, are available. Let the SNP effect

in the ith cohort be bi¼ ln(ORi) and its SE be si (i¼ 1,2,y,k). Then the

multiplicative (log-additive) genetic model of phenotype risk in the ith

cohort is

logitfPðY ¼ 1 jX;ZÞg¼ ai þbiXþ giZ;

where bi’s are the parameters of interest whereas ai’s and gi’s are

nuisance parameters. Similarly for the quantitative phenotype, Y, the additive

genetic model in the ith cohort is

yi ¼ ai þbiXþ giZþ ei;

where eiBN(0, s2) for all x and i. Different hypotheses and corresponding test

statistics are given below.

FE and RE methods in traditional meta-analysis

FE level method (the traditional FE method). Under the FE assumption, effects

are assumed to be similar across cohorts and hypothesis is tested for the

average effect across all cohorts as: H0 : b1 ¼b2 ¼ . . . ¼bk ¼b¼ 0 vs

H1 : b1 ¼b2 ¼ . . . ¼bk ¼b 6¼ 0. The overall effect b is typically estimated

as weighted average of cohort-specific effects using inverse variance weights

as b̂¼
Pk
i¼ 1

wib̂i/
Pk
i¼ 1

wi and variance as varðb̂Þ¼ 1/
Pk
i¼ 1

wi; where weight

wi ¼ 1/s2i for cohort i. Then corresponding test statistic under H0 is

T¼
Pk
i¼ 1

wib̂
� �2

/
Pk
i¼ 1

wi � w21 (asymptotically).

RE level method (the traditional RE method). Under the RE assumption,

consider that cohort-specific effects, bi’s, represent a random sample from a

grand normal population with overall mean m (for example, m¼ ln(OR) with

OR being the overall OR across cohorts for the binary trait, or the average

mean difference across cohorts for the quantitative trait per one copy increase

in number of the minor allele in a genotype under the multiplicative genetic

model) and between-cohort variance t2; that is, b1;b2; . . . ; bk � Nðm; t2Þ.
Here, t2 represents the extent of heterogeneity in effects across cohorts.

The overall effect is estimated as m̂¼
Pk
i¼ 1

wib̂i/
Pk
i¼ 1

wi and variance as

varðm̂Þ¼ 1/
Pk
i¼ 1

wi; where weight wi ¼ 1/ðs2i þ t̂2Þ) for cohort i and t̂2 is the

estimate of t2. Then the hypothesis is tested for overall effect across all

cohorts as: H0: m¼ 0 vs H1: ma0. The Wald test, T¼ m̂2/varðm̂Þ � w21 under

H0, is the standard test of the hypothesis.

New FE and RE global methods for multi-cohort association
studies

FE global method (new FE method). Under the FE assumption, Lebrec et al

proposed to test whether an association is present in any cohort:

H0 : b1 ¼b2 ¼ . . . ¼bk ¼ 0 vs H1 : bi 6¼ 0 in at least one cohort i.

The score test, T¼
Pk
i¼ 1

ðb̂i/siÞ2 � w2k (asymptotically) under H0, can be used

to test the hypothesis.

RE global method (new RE method). The new RE model tests whether

a non-null average association exists, or the between-cohort variance is

non-zero (ie, a significant between-cohort heterogeneity is present), that is,

H0: m¼ 0 and t2¼ 0 vs H1: ma0 or t240. The likelihood ratio test,

T¼ 2½l m̂; t̂2ð Þ� lð0; 0Þ� � ðw21 þ w22Þ/2 (asymptotically) under H0, can be used

to test this hypothesis. Here, for large cohorts, b̂i j bi � Nðbi; s2i Þ, but as

bi � Nðm; t2Þ, the approximate marginal distribution of the estimate in the

ith cohort is b̂i � Nðm; s2i þ t2Þ with the corresponding log-likelihood

liðm; t2Þ and the total log-likelihood lðm; t2Þ¼
Pk
i¼ 1

liðm; t2Þ.

Tests of heterogeneity
Cochran’s Q statistic for test of heterogeneity13 is obtained as

Q¼
Pk
i¼ 1

wiðb̂i � b̂Þ2 � w2k� 1, where, wi ¼ 1/s2i (i¼ 1,2,y,k). The estimate

of between-cohort variance can be obtained by the method of moment as

t2 ¼ ½Q�ðk� 1Þ�/
Pk
i¼ 1

wi �
Pk
i¼ 1

w2
i /

Pk
i¼ 1

wi

� �
, which is 0 when Qo k� 1.

t2 can also be estimated by maximizing the profile likelihood,

plðt2Þ¼ lðm̂ðt2Þ; t2Þ by the method of maximum likelihood or restricted
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maximum likelihood. I2, an estimate of the degree of between-cohort

heterogeneity due to factors other than chance is obtained as,18,19

I2 ¼ ½ðQ�ðk� 1ÞÞ/Q��100 % , which is 0 when Qo k� 1. In meta-analysis

of clinical trials and epidemiological studies, heterogeneity is suspected if

P-value o0.10 in Cochran’s Q-test. Also, 25rI2o50 and I2Z50% are

considered evidences of modest and large heterogeneity, respectively.11,19

Simulation study
For a SNP with effect ln(ORi)¼bi, minor allele frequency (MAF)¼ fi, and

proportion of cases¼p0i and satisfying Hardy–Weinberg Equilibrium (HWE)

in the ith cohort (i ¼ 1,2,y,k), we generated the case or control status for a

subject with genotype x (0,1,2), using multiplicative genetic model:

P case j xð Þ¼ exp ai þbixð Þ/ð1þ expðai þbixÞÞ;

where, ai ¼ lnðp0i/ð1�p0iÞÞ � 2lnð1� fi þ fiexpðbiÞÞ. Furthermore, to assess

the impact of genetic model (mis)specification, we generated data under the

dominant, recessive and multiplicative genetic model assumption. For

quantitative trait, we generated the population data from

yi ¼ ai þbixþ ei;

where we used ai¼ 0.5 and eiBN(0, 1) for all x(0,1,2) and i (1,2,y,k). We

simulated b1;b2; . . . ; bk from N(m, t2). We ran 10 000 simulations for each

combination of (m, t) under a variety of realistic scenarios listed in Table 1. For

instance, we considered the overall association, m, from null (m¼ 0) through

small to modest in sizes (m¼ (0.05, 0.10, 0.15, 0.20, 0.25, and 0.30)) with

corresponding ORs, exp(m): (1.00, 1.05, 1.11, 1.16, 1.22, 1.28, and 1.35) and for

such effect sizes we considered between-cohort SD, t, ranging from none

(t¼ 0) through low (t¼ 0.1), moderate (t¼ 0.2), and substantial (t¼ 0.3)

heterogeneity for a binary trait. We analyzed the binary data using logistic

regression assuming multiplicative genetic risk effect per genotype. In a

separate analysis, each of the dominant, recessive, and multiplicative genetic

models was assumed while analyzing each of the data sets generated under

each of these models using logistic regression. Data generated for quantitative

traits were analyzed using linear regression assuming additive genetic risk.

We assessed both the type I error rate and statistical power of these tests at

nominal significance level, a¼ 0.05 as well as more stringent significance levels,

a¼ 5.0� 10�6 and 5.0� 10�8.

Application to real data
We used the West Nile virus infection severity data set,21 where SNPs were

genotyped by Illumina HumanNS-12 BeadChip, and subjects were recruited

from seven study centers (cohorts) from Canada and the United States. We

restricted the analysis to Caucasian population of Northern and Western

European origin. Using PLINK: Whole genome data analysis tool set (http://

pngu.mgh.harvard.edu/Bpurcell/plink/), we first applied standard quality

control (QC) inclusion criteria: MAF Z5%, genotyping error rate per

SNPo5%, P-value for HWE exact test in control group 410�4, genotyping

error rate per subject o5% for considering the SNPs or the subjects for

analysis. Further, a SNP passing these criteria must have had MAF Z1% and

HWE P410�5 in an individual center for that particular center to be included

in the meta-analysis for that SNP. Cryptic related subjects or those for which

reported sex did not match to that in DNA sample were also discarded.21 Then

for each of the remaining SNPs, we obtained the estimates of bi and its SE, si,

in center i (i¼ 1,2,y,7) using logistic regression assuming a multiplicative

genetic risk model. We also re-estimated si applying genomic control to correct

the center-specific P-values for any residual confounding due to population

substructure. Then we applied all four meta-analytic methods to the center-

specific aggregate data in R (http://www.r-project.org/) and compared their

power based on association P-values for the respective I2, heterogeneity P-value

and t estimated from the data. The significance level was adjusted for the

multiple testing problem using the Bonferroni adjustment.

RESULTS

Simulation results
Type I error. Type I error (ie, when both m¼ 0 and t¼ 0) rates for all
four tests at a¼ 0.05 are presented in Supplementary Table 1. More
data on the error rates can be found in Supplementary Table 2 at

Table 1 Parameters setting for different simulation scenarios

Parameters Assigned or assumed values/scenarios

Number of simulations 10 000

Locus type Biallelic; genotype X (x¼0, 1, 2) satisfying HWE criterion in each cohort

Binary and quantitative traits Note: 10 000 simulations for each combination of parameters below (eg, 1400þ scenarios for binary traits)

Total sample size, N 2000, 4000, 6000, 8000, 10 000

Number of cohorts (eg, studies), k 2, 3, 5, 7, 10 (i¼1,2,y,k)

Sizes of the ith cohort, Ni Average Ni¼N/k, variable (NiBuniform(N/k–N/2k, N/kþN/2k) and adjusted for the total size so that
P
i

Ni ¼N

Minor allele frequency, f Average f¼ (0.05, 0.20), variable (fiBN(mean¼ f, SD¼ f/5) from (f�f/3, fþ f/3) and adjusted so that
P
i

fi / k ¼ f

Case proportion in each cohort, p0 Average p0¼0.50, variable (p0iBN(mean¼ p0, SD¼ p0/5) from (p0�p0/3, p0þp0/3) and adjusted so that
P
i

p0i / k ¼ p0

Genetic model for data generation Multiplicative for binary trait and additive for quantitative trait for each cohort

Genetic model for data analysis Multiplicative for binary trait and additive for quantitative trait for each cohort

Average effect, m m¼ (0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30) with corresponding ORs, em: (1.00, 1.05, 1.11, 1.16, 1.22, 1.28, 1.35)

Between-cohort SD, t t¼0 (no heterogeneity), 0.1 (low heterogeneity), 0.2 (moderate heterogeneity), 0.3 (substantial heterogeneity)

Cohort-specific effects, bi b1,b2,y,bk are simulated from iid N(m, t2) for each combination of (m, t) in each simulation

Data analysis Logistic regression for binary trait, linear regression for quantitative trait in each cohort

Binary trait only (see Supplementary

Table 1 for parameters eg, cohort

sizes, proportion of cases, etc)

For each combination of N¼ (2000, 4000), k¼ (2, 5, 10) with Ni¼N/k (equal), MAF¼ (0.05, 0.20) (equal), m and t (same

as above for binary trait), we generated data with multiplicative underlying and assumed risk on genotype x. Additionally, for

N¼2000 and k¼5, cohort-wise parameters were generated as NiBuniform(N/k–N/3k, N/kþ3N/k); p0iBuniform(0.33±0.33/2);

fiBuniform(0.20±0.10) and then Ni’s, fi’s, and p0i’s were adjusted so that
P
i

Ni ¼N,
P
i

fi / k ¼ f and
P
i

p0i / k ¼ p0. Ni, p0i,

and fi were all kept the same throughout the simulations (unlike above where they were all variable in each simulation for each

combination of parameters). A binary independent covariate with 33% prevalence and OR¼1.5 was used for data generation,

but was not adjusted in logistic regression

For assessment of impact of genetic

model (mis)specification in data

analysis (binary trait only)

For each combination of N¼6000; k¼3; Ni¼2000 (equal); fi¼0.20 (equal); p0i¼0.50 (equal); m and t (same as above for

binary trait), we generated data under dominant (xD¼0 for x¼0 and 1 for x¼ {1, 2}), recessive (xR¼0 for x¼ {0, 1} and 1 for

x¼2), and multiplicative (xM¼0, 1, 2 for x¼0, 1, 2) risk, and each data set was analyzed assuming each of the three models

using logistic regression
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m¼ 0 and t¼ 0. The RE global (new RE) method resulted in the
smallest type I error rates maintaining nominal significance level in all
simulation scenarios. Other methods slightly exceeded nominal level
in few simulation scenarios. At the more stringent a¼ 5.0� 10�6, no
methods produced any significant associations.

Statistical power. The statistical power of the four methods in
different scenarios at a¼ 0.05, 5.0� 10�6, and 5.0� 10�8 are
presented in Supplementary Table 2 for both binary and quantitative
traits. Some of the power comparisons are presented in Figures 1–3
and Supplementary Figures 1 to 8.

Power for a binary trait: At no heterogeneity (t¼ 0): both the
traditional FE and RE methods had very similar power and higher
than that of the global methods in all scenarios.
At low heterogeneity (t¼ 0.1): at the nominal significance level

a¼ 0.05 for a common variant (MAFE0.20), the traditional FE
method was the most powerful in almost all scenarios for detecting
modest associations (ORZ1.20), followed by the traditional RE
method. The new FE method performed as well or slightly better
when there were fewer but larger cohorts in large studies (eg, when
number of cohorts, k¼ 3 for the total sample size, N¼ 8000, or k¼ 5
for N¼ 10 000) especially for smaller overall associations (ORo1.20).
But at more stringent significance levels, a¼ 5.0� 10�6 or smaller,
there is no power advantage for global methods. For a less common
variant (MAFE0.05), the new methods did not perform better even
when k¼ 2 for N¼ 10000 at a¼ 0.05.

At moderate heterogeneity (t¼ 0.2): for a common variant
(MAFE0.20) at a¼ 0.05, the new FE method had the highest power
when fewer but larger cohorts were included (kr5) while the new RE
method had the better power when many smaller cohorts (kZ7) were
available for the small or modest available total sample size
(N¼ 2000B4000) (Figure 1 and Supplementary Figure 7). New FE
almost always had better power when the overall associations were
very small (ORo1.20) (Figure 1 and Supplementary Figures 1 and 7).
At ar5.0� 10�6, for the given sample size each of the methods had
some gain in power for fewer cohorts with larger sizes for kr7, but
such advantage tended to diminish or even altered for NZ8000 for
larger k (Figure 2 and Supplementary Figure 3). For Nr4000, the
new RE method performed better or similar to traditional FE but
better than new FE for kZ7, while new FE performed the best for
larger cohort sizes (ko7). For NZ6000 the new methods generally
performed better (where the new FE method had the highest power
for kr5 while the new RE had the highest power for larger kZ7)
(Figure 2 and Supplementary Figures 5 and 7).
For a less common variant (MAFE0.05): even at a¼ 0.05, all

methods had considerably low power, and the gain in power for the
new methods were not as prominent as that observed for more
common variants (Supplementary Figures 2 and 7). For example, the
new RE method did not perform better than traditional FE method
and the advantage of the new FE method was not clear either when
N¼ 4000 even when kr5 (Supplementary Figure 2). For a¼ 5.0
� 10�8, the power of all methods was very low for Nr6000. For
Nr8000 with kZ7, traditional FE had the highest power where new
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RE performed better than new FE. New FE had similar or slightly
better power than traditional FE for NZ8000 with kr3 (Figure 2).
At substantial heterogeneity (t¼ 0.3): at a¼ 0.05, the new

FE generally outperformed all other methods for common or
less common variant for any number of available cohorts
(Supplementary Figures 2 and 3).
At a¼ 5.0� 10�8 for a common variant, the new FE method

outperformed for any k for NZ4000 (Supplementary Figure 4),
whereas new RE method performed similarly or better than new FE
method for many cohorts of small sizes (N¼ 2000 with kZ7) in which
situation traditional FE performs even better. For a less common variant,
power was too low for Nr4000 for all methods to make any meaningful
comparison (Supplementary Figure 4). For NZ6000, new RE generally
outperformed when kZ7 while new FE outperformed when kr5.

Power for a quantitative trait: At no or low heterogeneity,
traditional methods generally performed better than the new
methods. But under higher heterogeneity, the new methods in general
performed quite well for quantitative traits (Supplementary Figures 4,
5 and 6). For example, at t¼ 0.2, quantitative trait analysis was more
powerful than binary trait analysis, whereas the new global methods
had higher power even for a less common variant even at a more

stringent significance level and had considerable power advantage
over traditional methods for a common variant. Even at t¼ 0.1 and
a¼ 5.0� 10�8 even for N¼ 2000, the new FE method had similar or
higher power than traditional methods when k¼ 2 and and the new
RE method outperformed when k¼ 10 for a common variant. New
global methods performed better even in presence of little hetero-
geneity for larger total sample sizes and almost always outperformed
when the heterogeneity was substantial.
Similar comparative results were observed for the power of these

tests irrespective of whether the minor allele frequencies, the propor-
tions of cases, and cohort sizes were similar or varied across cohorts,
and if an important independent prognostic variable was not adjusted
for in the analysis. The traditional FE outperformed traditional RE in
all conditions. In general, when heterogeneity increased, the power of
traditional meta-analytic approaches generally decreased while that
of the new global approaches increased at a¼ 0.05 (Supplementary
Figure 7). Interestingly, the power of even the traditional methods,
and in particular the FE method increased as heterogeneity increased
for ar5.0� 10�6 in situations where power is expected to be gener-
ally small (eg, when overall association was very small (ORr1.20),
or the total sample size was small (Nr4000 for common variant and
Nr8000 for less common variant) (Supplementary Figure 7).
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Impact of genetic model (mis)specification on power: At both a¼ 0.05
and 5.0� 10�6, the new methods had better power than the
traditional methods in the presence of moderate or substantial
heterogeneity no matter whether correct or wrong multiplicative or
dominant risk model was assumed when the underlying model was
one of them (Figure 3 and Supplementary Figure 8). However, when
the underlying or assumed model was recessive, all of these tests had
considerably low power and the power was zero or almost zero at
more stringent significance level where new methods (particularly
new RE method) had the least power. However, the sample size
(N¼ 6000, k¼ 3) was not sufficient to make any meaningful
comparison under recessive risk model since only about 4% had
the risk genotype for MAF¼ 0.20.

Application to real data
In the West Nile virus infection severity data set,21 13 371 SNPs were
genotyped in 1346 participants recruited from seven study centers
(cohorts) across Canada and the United States. There were 488 cases
with neuroinvasive disease (meningitis, encephalitis, acute flacid
paralysis) and 858 controls (infected but did not have severe

complications). After applying QCs criteria and restricting analysis
to White population, 9051 SNPs with 441 cases and 815 controls were
left for analysis. Five cases were further discarded from one center as it
had only cases with no controls for comparison. The Bonferroni-
adjusted significance level was set to 5.52� 10�6. However, it should
be noted that this threshold is too conservative for association analysis
as SNPs are not independent. There was no population substructure
within each center except in center 2 for which genomic inflation
factor, l¼ 1.057. Correction for population substructure did not
significantly alter the meta-analysis results. About 3.8%, 8.6%, and
14.8% SNPs had t40.30, 0.20, and 0.10, respectively. The estimates
of heterogeneity was larger than the sizes of respective overall
associations (t4log(OR)) for about 13.6% SNPs, which had some
center-specific associations in reverse directions. About 8.2% SNPs
had t4log(OR) with very small average OR (1rORo1.10 or 1r1/
ORo1.10). About 3.4% and 8.2% SNPs had heterogeneity P-values
o0.05 and o0.10, respectively, in Cochran’s Q-test. About 16% of
the SNPs had modest (25%rI2o50%) and 6% had substantial
(I2Z50%) heterogeneity. Estimates of associations and their
association P-values, and extent of heterogeneity for these tests are
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presented in Table 2 for three most significant SNPs as seen in the FE
level test and another three of the most heterogeneous SNPs as
suggested by Cochran Q-test for illustration purpose. In
Supplementary Table 3, these three SNPs with the most heterogeneous
effects were further explored within each cohort. In this analysis, none
of the methods yielded any SNPs that remained significant at the
Bonferroni-adjusted level. The traditional FE method produced the
smallest P-values in the test of association for those SNPs having small
heterogeneity (eg, rs2066789). For SNPs with large heterogeneity
P-values, the new FE method produced the smallest association
P-values, followed by the new RE method, both sets of which were
much lower than those derived using the traditional FE and RE
methods.

DISCUSSION

The new RE global test produced the smallest type I error rates at
nominal significance level. No method produced significant associa-
tions at a more stringent significant level, a¼ 5.0� 10�6. As expected,
the traditional RE (level) method that is proposed for heterogeneous
conditions performed the worst at high heterogeneity. This method
assesses the average effect without utilizing the heterogeneity infor-
mation and is overly conservative for genetic association studies
where associations could be heterogeneous for genuine reasons.15,16

New global methods work well for common variants, even if a wrong
multiplicative or dominant genetic model is assumed when the
underlying risk model was one of them, at high heterogeneity. At
high heterogeneity, when fewer but larger individual cohort are
available for the given small to modest total sample size
(2000B4000 subjects), the new FE method performs quite well, but
it may fail if cohort sizes are very small.15 When there are many
cohorts with smaller sizes, another global random method may be a
more powerful choice than traditional methods. However, these
global methods offer no clear advantage even as screening tools for
less common genetic variants even at substantial heterogeneity in a
small to modest sized study.
One concern is that these global methods and in particular the

global FE method have a clear advantage in power over traditional
methods mostly when overall associations are small (ORo1.20) but
are highly heterogeneous across cohorts (ie, when tZm¼ ln(OR)).
Can we use these global methods for gene discovery in meta-analysis,
where even the new RE method might achieve significance at
genome-wide level with much higher power even when overall
OR¼ 1.0 or 1.05 at high heterogeneity? Although some degree of
heterogeneity is expected because of genuine reasons, credibility of the

association is questionable if very high heterogeneity is observed with
such a small overall association. An observed association is unlikely to
be robust, not even in a single cohort, if the associations of large
magnitudes in individual cohorts are flip-flopped in opposite direc-
tions suggesting both protective and harmful effects of the same
mutant gene in distinct populations, which would result in moderate
or substantial heterogeneity. Such association could be more likely a
spurious finding as a result of some undetected methodological error
(eg, because of genotyping error) or chance variation.22,23 In such
studies, if the individual cohorts are well designed or large, real biases
(eg, population stratification) are unlikely to alter the genuine
association in the reverse direction with large magnitudes.11 If
associations are highly heterogeneous across cohorts but most of
the larger associations are in the same direction, the average
association is also likely to be of larger magnitude and the
traditional FE method can perform equally well for large effect
sizes. Further, this method also has some increased power at more
stringent significance levels to detect associations of small magnitudes
as heterogeneity increases, although the gain in power is smaller
compared with global methods. Thus, it may also better control false
positives at extreme heterogeneity conditions caused by errors or
chances rather than genuine factors.
Therefore, any perceived advantage of especially the new FE global

method in high heterogeneity may not directly translate in to practice
if the purpose is to achieve significance for discovery of genes with
robust associations even in at least one cohort rather than just
screening for the potential association in multi-cohort GWA studies
or meta-analysis. For example, in our example data set, the SNPs
explored in the Supplementary Table 3 had very high heterogeneity.
They had similar MAFs with no genotyping errors or deviation from
HWE across cohorts, whereas the study was conducted on subjects of
genetically similar backgrounds and the same study protocol was
followed across centers. Then what might have caused so much
heterogeneity for these SNPs? Here, cohorts were defined based on
geographic locations and might not be very distinct in terms of
genetic and environmental factors. Furthermore, the total sample size
and individual cohorts sizes were quite small and the case–control
ratio was quite variable across centers (as the disease complications
under study was quite uncommon in north America, it was a
challenge to obtain a sufficient number of case and control subjects
in each center during the time frame of the study). Therefore, the
most plausible explanation for the substantial heterogeneity is the
likely sampling variation. In practice, inclusion of such SNPs in
analysis might just inflate the overall heterogeneity distributions and

Table 2 Estimates of ORs and P-values for few SNPs from meta-analysis of West Nile virus data set

Fixed effect Random effects Heterogeneityc

SNPa Minor–Major Allele (MAF) OR (95% CI)b Global Level Global Level t I2 P

rs2066786 A-G(0.43) 0.63 (0.52, 0.78) 7.87�10�4 1.30�10�5 4.37�10�5 1.30�10�5 0.00005 0 0.5469

rs2298771 C-T(0.32) 1.52 (1.22, 1.88) 1.13�10�3 1.39�10�4 4.22 �10�4 1.39�10�4 0.00019 34.7 0.1761

rs3738573 G-C(0.35) 0.70 (0.57, 0.86) 2.13�10�2 9.38�10�4 2.57�10�3 9.38�10�4 0.00003 0 0.5605

rs7118900 A-G(0.18) 1.12 (0.87, 1.44) 1.04�10�3 0.38768 0.01232 0.20985 0.60950 76.9 0.00062

rs2960306 A-C(0.36) 1.05 (0.85, 1.29) 1.70�10�3 0.65600 0.09607 0.82623 0.60749 76.2 0.00081

rs3795498 A-G(0.27) 1.13 (0.90, 1.41) 1.21�10�3 0.28529 0.00290 0.12648 0.41083 76.0 0.00086

Abbreviations: CI, confidence interval; MAF, minor allele frequency; OR, odds ratio; SNP, single-nucleotide polymorphism.
Note: results presented here were without applying genomic control. Results were very similar after applying genomic control, where genomic inflation factor, l¼1 for centers 1, 4, 6, 7; l¼1.057
for center 2, and l¼1.007 for center 5.
aSNPs inclusion criteria for analysis: MAFZ0.05, Genotyping error per SNPo0.05, HWE P-value o0.0001 in all centers, and MAFZ0.01 and HWE P o0.00001 in individual center.
bGenotypic OR and its 95% CI; results using traditional fixed- effect method are reported here.
ct (between-cohort SD of log(OR)) were estimated using maximum likelihood approach and P was heterogeneity P-value from Cochran Q-test.
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hence warrant tougher adjustment for population structure than is
necessary for other SNPs that are more genuine candidates for
analysis. However, we were too cautious to filter out such SNPs
during the QC phase, because our purpose was to assess the utility of
these newly proposed methods not only as tools to achieve
significance at more stringent (adjusted or genome-wide) level to
identify new genes associated with diseases, but also as screening tools
to achieve significance in such level in the presence of heterogeneity so
that they could be carried forward for further scrutiny. If there was a
genuine small association of such a SNP in some of the cohorts
because of, say, gene-local environment interaction while its associa-
tion was reversed in some other cohorts by chance, then we would
have missed an opportunity to test such a SNP had we filtered it out
before analysis. In our example, for SNPs with very small overall
associations with large heterogeneity, which could have been filtered
out before analysis, the new FE method produced quite strong
association P-values, whereas the new RE method suggested less
impressive association and is less likely to lead to any unnecessary
follow-up of such SNPs.
In recent years large-scale multi-cohort association studies have

been carried out collaboratively for many complex diseases. For
example, the INTERHEART Study24 assessed the associations of
different genetic variants with myocardial infarction risk factors in
over 8000 individuals from five ethnic populations. Many SNPs may
be expected to display modestly or highly heterogeneous associations
for myriad reasons in such studies in genetically and environmentally
distinct cohorts. Substantial heterogeneity is likely for some variants
even in genetically close populations. For example, in a meta-analysis
of three GWA studies of type 2 diabetes in the northern European
population,10 some SNP had an I2 as high as 77%. Multi-cohort GWA
studies or meta-analyses are, in practice, likely to be much bigger in
size, and include large individual cohorts than the data set we used.
Hence, any strong association in a single cohort might justify a
further exploration as genotyping errors or chance might not be the
only explanations for such large association in a cohort. In such
studies, these new approaches may be useful in screening genetic
variants to assess association in the presence of high heterogeneity and
prioritize them for further scrutiny. Simple exploration across cohorts
can identify methodological and chance errors or biases causing
heterogeneity; and if heterogeneity is still unexplained, pathway-based
analysis could provide better insights about the role of genes and
environments causing the heterogeneity.15 If this suggests the presence
of some genuine associations in some cohorts, future replication or
fine mapping studies in the cohort can resolve the issue. Then a
genuine variant is more likely to be identified in the investigation
process.
In considering the potential and pitfalls of these new global

methods, there are some important questions that require further
research and discussion: Are these new methods useful in practice in
small to moderate sized genetic association studies to also validate or
discover new genes in the presence of high heterogeneity? Do they
work well in meta-analyses of independent research studies that might
have employed different genotyping platforms or even recruited
subjects with different ethnic backgrounds having different LD
patterns, in which case an analyst might have to impute untagged
markers? Also, for the genetic variants with heterogeneous associa-
tions across cohorts, the pathway-based three-point mixture model
seems to be a promising tool to resolve the heterogeneity in

specific cohorts.15 Although the method might not be feasible for
meta-analysis of GWA studies, the prospect of the method could be
further explored for certain sets of SNPs that are known to belong to
biologically defined pathways.
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