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The role of renin–angiotensin–aldosterone system
polymorphisms in phenotypic expression of
MYBPC3-related hypertrophic cardiomyopathy

Iris CRM Kolder1,2,8, Michelle Michels*,3,8, Imke Christiaans4, Folkert J Ten Cate3, Danielle Majoor-Krakauer5,
Alexander HJ Danser6, Robert H Lekanne Deprez4, Michael WT Tanck2, Arthur AM Wilde1,
Connie R Bezzina1 and Dennis Dooijes5,7

The phenotypic variability of hypertrophic cardiomyopathy (HCM) in patients with identical pathogenic mutations suggests

additional modifiers. In view of the regulatory role in cardiac function, blood pressure, and electrolyte homeostasis,

polymorphisms in the renin–angiotensin–aldosterone system (RAAS) are candidates for modifying phenotypic expression.

In order to investigate whether RAAS polymorphisms modulate HCM phenotype, we selected a large cohort of carriers of

one of the three functionally equivalent truncating mutations in the MYBPC3 gene. Family-based association analysis was

performed to analyze the effects of five candidate RAAS polymorphisms (ACE, rs4646994; AGTR1, rs5186; CMA, rs1800875;

AGT, rs699; CYP11B2, rs1799998) in 368 subjects carrying one of the three mutations in the MYBPC3 gene. Interventricular

septum (IVS) thickness and Wigle score were assessed by 2D-echocardiography. SNPs in the RAAS system were analyzed

separately and combined as a pro-left ventricular hypertrophy (LVH) score for effects on the HCM phenotype. Analyzing the

five polymorphisms separately for effects on IVS thickness and Wigle score detected two modest associations. Carriers of

the CC genotype in the AGT gene had less pronounced IVS thickness compared with CT and TT genotype carriers. The DD

polymorphism in the ACE gene was associated with a high Wigle score (P¼0.01). No association was detected between the

pro-LVH score and IVS thickness or Wigle score. In conclusion, in contrast to previous studies, in our large study population

of HCM patients with functionally equivalent mutations in the MYBPC3 gene we did not find major effects of genetic variation

within the genes of the RAAS system on phenotypic expression of HCM.
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INTRODUCTION

Hypertrophic cardiomyopathy (HCM) is the most common inheri-
table cardiac disorder with a phenotypic prevalence of 1:500.1 It is
defined by the presence of left ventricular hypertrophy (LVH) in the
absence of loading conditions (hypertension, valve disease) sufficient
to cause the observed abnormality.2 Hundreds of mutations scattered
among at least 25 HCM susceptibility genes encoding various
sarcomere, Z-disk, calcium-handling, and mitochondrial proteins
are known to cause HCM in 60% of cases.3

In the Netherlands, approximately one third of all HCM cases are
caused by carriership of any one of the three founder mutations in the
myosin-binding protein C gene (MYBPC3). All three are truncating
mutations, namely c.2373dupG, c.2827C4T (p.Arg943X), and
c.2864_2865delCT.4–6 Immunoblotting studies on myocardial tissue
from carriers of the c.2373dupG and c.2864_2865delCT truncating
mutations have demonstrated absence of the truncated MyBPC3
protein product coupled to a decreased total (full-length) MyBPC3

content, strongly suggesting a mechanism of haploinsufficiency.5

Although not functionally investigated, the c.2827C4T mutation,
which introduces a premature stop codon at residue 943, encodes for
a similarly C-terminally truncated protein (Figure 1), and is therefore
also expected to lead to haploinsufficiency. These three founder
mutations may therefore be considered functionally equivalent.
Extensive phenotypic variability exists among HCM mutation

carriers. Even individuals with the same underlying genetic substrate
show a broad spectrum of clinical manifestations.7,8 This indicates
that HCM features are not solely determined by the nature of the
pathogenic mutation and that additional environmental and/or other
genetic factors (genetic modifiers) have a role in the clinical
expression of the disease.
Genetic variants in the renin–angiotensin–aldosterone system

(RAAS) are considered candidates for these modifying effects. The
RAAS system contributes to LVH through effects mediated by
circulating angiotensin as well as local activation of RAAS in the
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myocardium.9 Angiotensin (Ang) I, produced from angiotensinogen
(AGT), is converted to Ang II predominantly by angiotensin-
converting enzyme (ACE) and possibly by chymase 1 (CMA1).10

Ang II binds primarily to the Ang II type 1 receptor (AGTR1) to
promote cell growth and hypertrophy. It also stimulates aldosterone
by aldosterone synthase (CYP11B2) synthesis, thereby increasing the
release of aldosterone, which promotes fluid retention and cardiac
fibrosis.11

Previous studies suggested a role for specific genetic variants in
genes encoding components of the RAAS pathway in modulation of
the severity of LVH in patients with HCM.12–14 In particular, two
studies investigated five candidate polymorphisms within these
genes in HCM patients with an identified HCM-causing mutation.
The RAAS polymorphisms tested in these studies included:
(1) an insertion/deletion (I/D) polymorphism in intron 16 of
the ACE gene (rs4646994), where the D-allele was considered as
the pro-LVH allele, (2) an A4C polymorphism at position 1166
of the AGTR1 gene (rs5186), where the C-allele was considered
as the pro-LVH allele, (3) an A4G polymorphism at position 1903
of the CMA1 gene (rs1800875), where the A-allele was considered
as the pro-LVH allele, (4) a T4C (p.M235T) polymorphism
in the AGT gene (rs699), where the C-allele was considered as the
pro-LVH allele, and (5) a C4T polymorphism at position 344
of the CYP11B2 gene (rs1799998), where the C-allele was considered
as the pro-LVH allele.
The first of these two studies was carried out in a small number

(n¼ 26) of carriers of the MYBPC3-c.2373dupG mutation from a
single family. In this study, c.2373dupG mutation carriers that
harbored one or more pro-LVH RAAS polymorphisms genotypes
(n¼ 16 individuals) had greater left ventricular muscle mass and
interventricular septum (IVS) thickness compared with those that
harbored no pro-LVH genotypes (n¼ 10).13 This study also provided
some evidence for a pro-LVH effect of these polymorphisms when
assessed individually.
The second study was carried out in a cohort of 389 unrelated

patients with HCM, of which 63 and 54 patients, respectively, carried
a mutation in the MYBPC3 and MYH7 HCM-associated genes.14 In
this study, although the ACE I/D polymorphism displayed no effect
on any LVH parameter in the entire cohort, subset analysis of the
MYBPC3 and MYH7 genetic subtypes demonstrated a pro-LVH effect
of the DD-ACE genotype in the MYBPC3-HCM subtype. In this
study, there was some evidence that the burden of pro-LVH genotypes
was associated with an increased left ventricular wall thickness,

although this was only present in the group of patients that were
negative for myofilament gene mutations.
The results of these previous studies addressing effects of genetic

modifiers in HCM have, however, been difficult to interpret because
of the small sample size and/or by inclusion of a genetically
heterogeneous study population with respect to the primary genetic
defect. In this study, we used a large cohort of subjects having one of
the three functionally equivalent truncating founder mutations in the
MYBPC3 gene, to investigate whether the five RAAS gene poly-
morphisms investigated in these previous studies modulate echocar-
diographic features of HCM.

MATERIALS AND METHODS

Study population
In the Netherlands, genetic counseling and genetic testing is offered to all

HCM patients visiting cardiogenetics outpatient clinics. Upon the identifica-

tion of the causal mutation in a proband, genetic testing is extended to

relatives following appropriate genetic counselling (cascade screening).15,16 For

this study all subjects, including probands and relatives, carrying one of the

three truncating founder mutations in the MYBPC3 gene (c.2373dupG,

c.2864_2865delCT, c.2827C4T) were selected from two university hospitals

in the Netherlands; the Academic Medical Center in Amsterdam and the

Erasmus Medical Center in Rotterdam. In this way, 368 carriers of equally

pathogenetic MYPBC3 mutations were included. All subjects were normo-

tensive (blood pressure o140/90mmHg) and did not take medication known

to influence the RAAS. All subjects provided written informed consent. The

study complies with the declaration of Helsinki, and the local review boards of

the respective hospitals approved the study.

Echocardiographic evaluation
Echocardiography was performed in all subjects using commercially available

equipment. The acquired data were digitally stored and subsequently analyzed

by two physicians who were blinded to the clinical and genetic data. IVS

thickness was measured in diastole from the parasternal short-axis view at the

level of the papillary muscles. For relativesZ16 years a IVS thicknessZ13mm

was considered as abnormal.17 For subjects o16 years IVS thickness was

corrected for height and weight and was considered abnormal if the z-score

was 42. The extent of hypertrophy was assessed by a semi-quantitative score

method developed by Wigle et al.18 A maximum of 10 points were given: 1–4

points for IVS thickness (one point for IVS thickness between 15–19mm; two

points for IVS thickness between 20–24mm; three points for IVS thickness

25–29mm and four points if IVS thickness Z30mm), two points for extension

of hypertrophy beyond the level of the papillary muscles (basal two thirds

of the IVS), two points for extension of hypertrophy to the apex (total IVS

involvement), and two points for extension of hypertrophy into the lateral wall.
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Figure 1 Schematic representation of MyBPC3 structure and the effects of the three founder mutations on the structure of the protein. Adapted from
van Dijk et al.5
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SNP genotyping
The five polymorphisms investigated in this study were the same as those

studied previously by Ortlepp et al13 and by Perkins et al,14 that is

(1) rs4646994 in the ACE gene, (2) rs5186 in AGTR1, (3) rs1800875 in

CMA1 gene, (4) rs699 in AGT, and (5) rs1799998 in CYP11B2. Patient genomic

DNA was extracted from peripheral blood lymphocytes using standard protocols.

Genotyping was carried out as described previously. Pro-LVH genotypes were

defined as described previously, namely as DD-ACE, CC-AGTR1, AA-CMA,

CC-AGT, and CC-CYP11B2. The pro-LVH score was calculated for each

patient by adding the number of pro-LVH genotypes present.13,14

Statistical analyses
Phenotypic data for probands and relatives that was normally distributed

(Shapiro–Wilk statistic W40.9) are reported as mean±SD, otherwise as

median with interquartile range. Pedigree information was available for all

related subjects. Allele frequencies of polymorphisms tested in the study

population were compared with those reported for the CEU population in the

1000 Genomes database using a Pearson w2 test.
We assumed that each polymorphism–phenotype relationship followed a

recessive genetic model as previously reported.14,15 Effects on IVS thickness

and the ranked Wigle score were estimated using a linear mixed model with

adjustment for sex, age, and proband status, whereas effects on the dichoto-

mous variables IVS thickness Z13 or Z30mm were estimated using a logistic

regression model with adjustment for sex and age. Next to models with a single

SNP or the pro-LVH score, a model with all five SNPs and their interactions

was also used. To account for the relatedness of study subjects, either the linear

mixed model from the Kinship package or the generalized estimation equations

from the geepack package in R (R foundation for Statistical Computing, Vienna,

Austria) were used. P-valueso0.05 were considered significant.

On the basis of the sample size (n¼ 368), our study had 90% power to

detect a 0.30mm difference in IVS thickness between the RAAS polymorphism

genotype groups and a correlation coefficient of 0.167 (±3% explained

variance) between IVS thickness and the pro-LVH score (a¼ 0.05 two-sided).

RESULTS

Study population
DNA and echocardiography data were available for 368 carriers of
one of the three Dutch MYBC3 founder mutations, including 100
probands and 268 relatives. The age distribution of probands and
relatives was similar (Table 1). By definition, all probands had an IVS
thickness Z13mm. Extreme hypertrophy (IVS thickness Z30mm), a
known risk factor for sudden death was present in nine (10%)
probands.19,20 There was a male preponderance in probands
compared with the relatives (64 vs 47%, P¼ 0.007). LVH (defined
as IVSZ13mm)16 was present in 107 (40%) of relatives and was
extreme in 1 (0.4%) relative.
The MYBPC3 founder mutations in the study population are

presented in Table 2. The most common founder mutation was
c.2373dupG, present in 70% of the individuals.

Influence of age, sex, and proband status
Proband status, age, and gender had a significant effect on IVS
thickness. Probands displayed a greater mean IVS thickness compared
with relatives (22±5 vs 13±4mm) (Table 1). Although in the
relatives group, IVS thickness was greater in older individuals; within
the proband group, it was smaller in the older individuals (Figure 2).
This apparent interaction effect was, however, not significant
(P¼ 0.76). On average, men had a thicker IVS than women (17±6
vs 14±6mm; P¼ 0.0014). This influence of male sex is especially
clear in the relatives group (Figure 2).

SNP association analyses
The minor allele frequency (MAF) of four of the polymorphisms
tested did not differ from that reported for the CEU population in the
1000 Genomes database (P40.05) (rs5186, MAF of this study¼ 0.31/
MAF CEU 1000 Genomes¼ 0.28; rs1800875, MAF¼ 0.52/0.54; rs699,
MAF¼ 0.36/0.36; rs1799998, MAF¼ 0.39/0.43). The MAF of
rs4646994 (MAF¼ 0.49 this study) was not reported in 1000
Genomes.
The five polymorphisms were analyzed separately and combined as

a pro-LVH score for (i) effects on IVS thickness, (ii) association with
IVS thickness Z13mm, (iii) association with IVS thickness Z30mm,
and (iv) effects on the Wigle score (Tables 3–5).
Analyzing the five polymorphisms separately with correction for

gender, proband status and age using a recessive genetic model
(Table 3) showed an association of the T4C (p.M235T) polymorph-
ism in the AGT gene with IVS thickness (P¼ 0.02); the CC genotype
(homozygous for threonine at position 235) was associated with
attenuated IVS thickness compared with the other AGT genotypes
(TC, TT). As expected from the distribution of septum thickness for
the three genotype groups of this polymorphism, applying a
dominant genetic model resulted in a more significant association
(P¼ 2.4e-04). The DD genotype at the ACE I/D polymorphism was
associated with a high Wigle score (P¼ 0.05) as compared with the
ID and DD genotypes. Applying an additive or dominant model for
the relations between the SNPs and the phenotypes did not reveal any
other significant associations. Association analysis results were
unchanged when the analysis was restricted to only those patients
carrying the most prevalent founder mutation (c.2373dupG, see
Supplementary Table). Furthermore, no significant interactions were
found between the five polymorphisms for any of the phenotypes
tested. No association was detected between pro-LVH score and IVS
thickness or Wigle score in probands or relatives (Tables 4 and 5).

DISCUSSION

In a large cohort of carriers of one of the three functionally equivalent
truncating Dutch founder mutations in MYBPC3, we found only
minor effects of candidate SNPs in the RAAS system on IVS thickness
and Wigle score. These effects were limited to (i) an association of the
CC genotype of the AGT T4C (p.M235T) polymorphism with a

Table 1 Characteristics of the HCM population studied

Probands (n¼100) Relatives (n¼268) P-value

Age 42±14 41±17 0.64

Male sex 64 (64%) 127 (47%) 0.007

Septum thickness (mm) 22±5 13±4 9.8e-43

Septum Z13mm 100 (100%) 107 (40%) 2.2e-16

Septum Z30mm 9 (10%) 1 (0.4%) 0.0001

Wigle score 4 (2–6) 0 (0–1) 2.5e-33

Abbreviation: HCM, hypertrophic cardiomyopathy.
Data depict mean±SD, n (%) or median (interquartile range).

Table 2 MYBPC3 mutation distribution among the HCM

population studied

Mutation Probands Relatives

c.2373dupG 70 187

c.2827C4T 18 56

c.2864_2865delCT 12 25

Abbreviation: HCM, hypertrophic cardiomyopathy.
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smaller IVS thickness, and (ii) an association of the DD genotype of
the ACE I/D polymorphism with a higher Wigle score. There was no
effect of the previously described pro-LVH score on IVS thickness or
Wigle score.13,14

The T4C (p.M235T) polymorphism in the AGT gene has been
described as a predisposing factor for cardiac hypertrophy in patients
with hypertension, in endurance athletes and in sporadic cases of
HCM.21–23 Furthermore, Ortlepp et al13 found an association between
the CC genotype of this polymorphism with increased left ventricular
mass and increased IVS thickness. The AGT gene encodes
angiotensinogen and the C-allele of this polymorphism is associated
with elevated AGT serum concentrations.24 Although we found an
association between the CC genotype of the AGT T4C polymor-
phism (p.M235T) and IVS thickness, it is important to note that the
direction of the effect in our patient population was opposite to what
is predicted based on these previous studies, that is, increased
hypertrophy in the presence of elevated AGT concentrations. As the
observed association in our study was not supported by a decreased
risk for an IVS thickness of Z13mm or Z30mm, the observed
association is suggestive of a spurious association. Indeed, also no
association was detected for this polymorphism with Wigle score.
Tissue levels of angiotensin-converting enzyme are increased in

patients with the DD-ACE genotype, which is considered to be a

pro-LVH genotype.25,26 Furthermore, the previous study by Perkins
et al14 showed that in 63 HCM patients with single (different)
mutations in the MYBPC3 gene, the DD-ACE genotype was a
significant pro-LVH modifier, being associated with an increased
left ventricular wall thickness, and with extreme IVS thickness
(430mm). Similar findings were reported by Ortlepp et al13 in 26
c.2373dupG mutation carriers from one family. In our study,
although we found that the DD-ACE was significantly associated
with the Wigle score, suggesting a pro-hypertrophic effect, we did not
detect an association with IVS thickness or risk of having an IVS
thickness of Z13mm or Z30mm.
There was no effect of the combined pro-LVH genotypes in the

pro-LVH score on IVS thickness or Wigle score. This is in contrast to
the report of Ortlepp et al,13 where among the 26 c.2373dupG mutation
carriers extent of cardiac hypertrophy was associated with the burden of
pro-LVH genotypes. Although the same mutation was present in 257 of
the 368 patients (70%) of the current study, we failed to observe a
relation between the pro-LVH score and hypertrophy in our much
larger study population. Furthermore, we found no major effects of the
pro-LVH genotypes when the patient subset with the c.2373dupG was
studied separately. Our findings in a much larger set of patients with the
same mutation suggest that cardiac hypertrophy in MYBPC3-related
HCM is not influenced by the pro-LVH score/genotypes.

Figure 2 Effects of sex and age on septum thickness in probands and relatives.
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IVS thickness in HCM mutation carriers increases progressively
with age.8,9 In our study, this was the case for relatives carrying
MYBPC3 mutations but not for probands. A major difference
between probands and relatives is their reason for cardiac evalua-
tion. Probands are referred because of symptoms, abnormalities at
routine physical examination or electrocardiography, that is, before
non-cardiac surgery; whereas relatives are usually asymptomatic and
are referred after positive presymptomatic DNA testing. Therefore,

a sampling or referral bias may occur; HCM patients with severe IVS
thickening at young age are more likely to be referred because of
symptoms than those with minimal or moderate thickening. The fact
that older probands displayed less extensive IVS thickness than the
younger ones might be due to the fact that probands with larger IVS
thickness die at younger age (the so-called healthy survivor
phenomenon). Besides this possible explanation, it is known that
about 5–10% of HCM patients progress to an end-stage form, which

Table 3 Phenotype distribution per genotype group for each polymorphism studied

ACE, I/D (rs4646994) II ID DD *P-value

Septum thickness (mm)

Total population 15±6 (n¼102) 15±6 (n¼173) 16±7 (n¼92) 0.30

Probands 22±4 (n¼29) 21±5 (n¼48) 22±7 (n¼23)

Relatives 13±4 (n¼73) 12±4 (n¼125) 13±5 (n¼69)

Wigle score 0 (0–3) 0 (0–3) 1 (0–4) 0.05

Z13 Septum thickness 61 (60%) 90 (52%) 54 (59%) 0.49

Z30 Septum thickness 2 (2%) 4 (2%) 4 (4%) 0.24

AGT, C4T (M235T, rs699) TT TC CC *P-value

Septum thickness (mm)

Total population 16±6 (n¼164) 15±6 (n¼146) 15±6 (n¼58) 0.02

Probands 22±6 (n¼41) 21±5 (n¼39) 20±4 (n¼20)

Relatives 13±5 (n¼123) 12±4 (n¼107) 12±4 (n¼38)

Wigle score 0 (0–3) 0 (0–4) 0 (0–1) 0.17

Z13 Septum thickness 102 (62%) 70 (48%) 33 (57%) 0.32

Z30 Septum thickness 6 (4%) 3 (2%) 1 (2%) 0.29

AGTR1, 1166A4C (rs5186) AA AC CC *P-value

Septum thickness (mm)

Total population 16±6 (n¼175) 15±6 (n¼160) 15±7 (n¼33) 0.65

Probands 22±5 (n¼50) 21±4 (n¼41) 24±8 (n¼9)

Relatives 13±4 (n¼125) 12±5 (n¼119) 12±3 (n¼24)

Wigle score 0 (0–4) 0 (0–3) 0 (0–4) 0.13

Z13 Septum thickness 102 (58%) 85 (53%) 18 (55%) 0.30

Z30 Septum thickness 6 (3%) 2 (1%) 2 (6%) 0.43

CMA1, -1903 A4G (rs1800875) GG AG AA *P-value

Septum thickness (mm)

Total population 15±7 (n¼87) 15±6 (n¼177) 15±6 (n¼104) 0.33

Probands 22±7 (n¼26) 21±5 (n¼44) 21±5 (n¼30)

Relatives 12±4 (n¼61) 13±4 (n¼133) 12±4 (n¼74)

Wigle score 0 (0–2) 0 (0–4) 0 (0–3) 0.63

Z13 Septum thickness 44 (51%) 106 (60%) 55 (53%) 0.86

Z30 Septum thickness 4 (5%) 4 (2%) 2 (2%) 0.68

CYP11B2, -344C4T (rs1799998) TT TC CC *P-value

Septum thickness (mm)

Total population 15±6 (n¼132) 15±6 (n¼185) 16±6 (n¼51) 0.61

Probands 21±6 (n¼36) 23±5 (n¼43) 21±4 (n¼21)

Relatives 13±4 (n¼96) 12±5 (n¼142) 12±4 (n¼30)

Wigle score 0 (0–3) 0 (0–2) 1 (0–4) 0.95

Z13 Septum thickness 76 (58%) 93 (50%) 36 (71%) 0.07

Z30 Septum thickness 4 (3%) 6 (3%) 0 –

Abbreviations: ACE, angiotensin-converting enzyme; AGT, angiotensinogen; CMA, chymase.
Data depict mean±SD, n (%) or median (interquartile range).
*Association analyses were performed assuming a recessive model with adjustment for sex, age, and proband status.
Significant P-values are depicted in bold.

RAAS polymorphisms in phenotypic expression of HCM
ICRM Kolder et al

1075

European Journal of Human Genetics



is characterized by systolic dysfunction, dilatation of the left ventricle
and wall thinning.27,28

Males and females differ in their presentation of HCM, with
cohorts usually having a predominance of males.29–31 In our study, an
effect of gender on age at onset in the relatives was observed: men
were affected at younger age than women. This may be explained by a
protective role of estrogens in the hypertrophic response and the
evidence that exposure of cardiac myocytes to androgen results in
hypertrophy.32,33 Furthermore, the HCM phenotype is influenced by
sex hormone receptor variants.34 However, in our study, the sex effect
in the probands was less clear, with females tending to be more
heavily affected at young age, although one must acknowledge that
there was considerable overlap between males and females in this
group (Figure 2). This illustrates that there are other, currently
unknown modifiers of phenotypic expression in HCM.
In conclusion, we have investigated the role of genetic polymorph-

isms in genes of the RAAS pathway in a large and genetically
homogeneous HCM population. Our findings do not provide
support for a marked effect of genetic variation in the RAAS pathway
on phenotypic expression of LVH in this disorder. This does not
necessarily mean that HCM patients will not benefit from the
prescription of drugs blocking the RAAS system.35 However,
small studies showing a positive effect of RAAS inhibitors
on progression of hypertrophy and fibrosis in HCM need
confirmation.36,37 Furthermore, our study was limited to five
candidate polymorphisms and the role of other common genetic
variants in explaining phenotypic variability among HCM patients,
which may act in a mutation-specific way, merits investigation
perhaps in future genome-wide association studies.
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