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Genetic and clinical specificity of 26 symptomatic
carriers for dystrophinopathies at pediatric age

This article has been corrected since online publication and a corrigendum is also printed in this issue

Sandra Mercier!’2, Annick Toutain?, Aurélie Toussaint?, Martine Raynaud3, Claire de Barace?,
9

Pascale Marcorelles®, Laurent Pasquierﬁ, Martine Blayau7, Isabelle Pénisson-Besnier®, Norma Romero?,
Caroline Espillo, Philippe Parent!!, Hubert Journel!2, Leila Lazaro!3, Jon Andoni Urtizbereal4,
Alexandre Moerman!’, Laurence Faivre!®, Bruno Eymard”, Kim Maincent!8, Romain Gherardi'?,
Denys Chaigne?’, Rabah Ben Yaou?, France Leturcq?, Jamel Chelly? and Isabelle Desguerre*??2!

The molecular basis underlying the clinical variability in symptomatic Duchenne muscular dystrophy (DMD) carriers are still to
be precised. We report 26 cases of early symptomatic DMD carriers followed in the French neuromuscular network. Clinical
presentation, muscular histological analysis and type of gene mutation, as well as X-chromosome inactivation (XCIl) patterns
using DNA extracted from peripheral blood or muscle are detailed. The initial symptoms were significant weakness (88%) or
exercise intolerance (27%). Clinical severity varied from a Duchenne-like progression to a very mild Becker-like phenotype.
Cardiac dysfunction was present in 19% of the cases. Cognitive impairment was worthy of notice, as 27% of the carriers are
concerned. The muscular analysis was always contributive, revealing muscular dystrophy (83%), mosaic in immunostaining
(81%) and dystrophin abnormalities in western blot analysis (84%). In all, 73% had exonic deletions or duplications and 27%
had point mutations. XCI pattern was biased in 62% of the cases. In conclusion, we report the largest series of manifesting
DMD carriers at pediatric age and show that exercise intolerance and cognitive impairment may reveal symptomatic DMD
carriers. The complete histological and immunohistological study of the muscle is the key of the diagnosis leading to the
dystrophin gene analysis. Our study shows also that cognitive impairment in symptomatic DMD carriers is associated with
mutations in the distal part of the DMD gene. XCI study does not fully explain the mechanisms as well as the wide spectrum of
clinical phenotype, though a clear correlation between the severity of the phenotype and inactivation bias was observed.
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INTRODUCTION DMD gene is very large (more than 2.5Mb) and therefore difficult

Duchenne muscular dystrophy (DMD) has always been extensively
described in its clinical presentation, evolution and severi'[y.l
However, recent studies pointed out that the same mutation can be
responsible for DMD phenotypes of different severity suggesting
involvement of modifier and/or epigenetic factors.>® It has been
estimated that about 8% of DMD female carriers have some
manifestations including cardiomyopathy and/or some degree of
weakness that could be highlighted by careful clinical examination.*8
Relationships between clinical phenotype and dystrophin abnormalities
in muscle tissue among female carriers of DMD gene mutations were
previously investigated.” However, a comprehensive view of factors
underlying clinical symptoms occurrence and severity is still lacking.

to test especially in females. Development of multiplex PCR method
has allowed identification of about 95% of all deletions by screening
of only 19 exons. However, this qualitative approach cannot be used
to identify duplications or to determine female status for deletions
and duplications. Currently, other diagnostic approaches, such as
semi-quantitative fluorescent PCR (MLPA) and use of CGH-
gene-specific array represent reliable alternatives.'®

The widely proposed explanation for the occurrence of clinical
manifestations in heterozygous females is preferential skewed inactiva-
tion of the X chromosome bearing the non-mutated DMD allele.!!-1¢
Female carriers with manifesting muscle weakness usually have a mosaic
expression of dystrophin in muscle shown by immunostaining, but the
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question of a correlation between dystrophin expression and clinical
weakness remains debatable.”!” In the specific situation of balanced X
chromosome—autosome translocations disrupting the dystrophin gene,
completely skewed inactivation of the non-translocated X chromosome
leads to inactivation of the second DMD allele and therefore to a clinical
phenotype as severe as in boys with DMD.!® However, whereas it is
widely accepted that X-chromosome inactivation (XCI) has a role in the
clinical variability in DMD carriers, XCI seems to be insufficient to
predict the phenotypic status and degree of muscle weakness in young
DMD carriers.!%20

To better understand the mechanisms of this variability, we
reviewed clinical, histological and genetic parameters including XCI
pattern of 26 early pediatric symptomatic DMD carriers.

MATERIALS AND METHODS

Patients clinical parameters and molecular diagnosis

In this study, 26 female patients referred over the past 10 years to several
French neuromuscular centers were included on the following criteria: (i) the
identification of a mutation in the DMD gene and (ii) the onset of manifesting
symptoms before 17 years. Data were collected from completed information
sheets as shown in Table 1. Duchenne-like phenotype was considered when
patients lost ambulation before the age of 15 years or were supposed to for
patients younger than 15 years at the time of the study. Muscle weakness with
persistence of ambulation after 15 years was considered as Becker-like phenotype.
As muscle testing was not performed for most carriers, the severity of the muscle
weakness has been estimated on the global clinical and functional evaluation.
Patients were considered to have cardiac dysfunction with left ventricular ejection
fraction <50%. Exhaustive clinical data were not available for all cases particularly
for the oldest patients. Cognitive status was evaluated by both educational level
and general intelligence assessment scale (Wechsler Intelligence Scale for Children,
WISC III) with intellectual deficiency defined by 1Q <70.2?> Two patients (#6
and #13) had been previously published.!?* DMD gene analyses were performed
in three French hospital laboratories (Cochin hospital, Paris; CHU, Tours; CHU,
Rennes). Different methods, including multiplex PCR reactions, MLPA and/or
mRNA analysis by RT-PCR and c¢DNA direct sequencing, were used to identify
DMD gene mutations. All samples and clinical data were collected after informed
consent had been obtained.

Histological analysis of the muscle

Muscle biopsy and histomorphological study, as well as muscle proteins
analysis by immuno-histochemistry and multiplex western blot (WB) were
performed for 20 patients.>*

Genetic analyses
XCI studies were performed by analysis of the polymorphic CAG repeat in AR
gene?> on DNA extracted from peripheral blood and/or muscle biopsies. The
degree of XCI skewing was expressed as the ratio of one allele expression versus
the other. The XCI pattern could not be determined in patients who were non
informative (homozygous at the CAG repeat) for the CAG repeat in AR gene.
Karyotype analysis was performed to exclude cytogenetic abnormalities that
could lead to a skewed XCI pattern. For patients with cognitive impairment,
CGH array and Fragile X syndrome gene analysis were performed.

Statistical analysis
Fisher’s exact test was used for statistical analyses with a type I error of 0.05, by
convention.

RESULTS

The clinical and molecular data are summarized in (Table 1). The first
symptoms in childhood were muscular weakness, limb girdle deficit
as assessed by clinical examination or muscular manual testing
(n=11), abnormal gait (n=10), exercise intolerance (n=8) and/or
myalgia (n=10). The age of first symptoms was before 6 years
(n=28), between 6-12 years (n=16) and 12-15 years (n=2). In one
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case, the disease was revealed by a rhabdomyolysis mimicking a
metabolic myopathy. Clinical severity consisted of Duchenne-like
phenotype (n=5), Becker-like phenotype (n=13) or exercise intol-
erance (n=_8). Muscle weakness was predominant in the lower limb
girdle (n=22), severe (n=9), moderate (n=13) and rarely asym-
metrical (n=2). Five patients had lost ambulation after 40 years and
two before 15 years (three other DMD-like carriers were still under 10
years and had a delay in walking with abnormal gait and a severe
muscle weakness). The SCK levels were always increased ranging from
330 U/l to 34400 UI/l. Cardiac dysfunction was present in 19% (two
cases during childhood without heart symptoms) and three cases after
30 years (including two cases of severe cardiomyopathy). Cognitive
impairment was found in 27% (7/26), two with intellectual disability
confirmed by IQ test (VIQ and PIQ, respectively) and five with
learning disabilities (specialized schooling or with a delay of more
than two years in schooling). The 19 remaining patients had normal
or subnormal educational level.

A total of 23 muscle biopsies were performed with age ranking
from 4-60 years and classical pathological analysis was available in 18
cases: muscular dystrophy (n=15) or non-specific myopathic changes
(n=3) (Figure 1). The muscle biopsies performed before the age of
6 years (8 cases) revealed a severe muscular dystrophy with endomysial
fibrosis (carriers #2, #3, #4, #5, #8) correlated with the severity of the
muscular phenotype in five cases. In the three remaining cases, we
observed irregular size of the muscle fibers, rare focal fiber necrosis
correlated with exercise intolerance and a moderate muscle deficit. In
the other cases (10 cases), the muscular biopsies confirmed a dystrophic
pattern but were performed around 12 years of age (4 cases) or after
40 years (6 cases) after a long time of clinical evolution.

Immunostaining analysis using antibodies against dystrophin was
abnormal in all tested cases (21 cases). A mosaic pattern was observed
in 17 cases, a diffuse irregular staining in 3 cases and lack of staining in
1 case. The WB analysis was performed in 19 patients and was
abnormal in all cases with lack of dystrophin (n = 1), decreased amount
of normal molecular weight dystrophin (n=15) or decreased amount
of truncated dystrophin (n=3) (Figure 2)). No precise quantification
of dystrophin could be performed, but the patient with complete lack of
dystrophin had the most severe muscular impairment.

As specified in inclusion criteria, all the 26 patients included in this
study had an identified DMD gene mutation. Family history of
dystrophinopathy was found in 13/26 cases. Parents’ molecular data
were available in 23 families and showed that DMD gene mutations had
occurred de novo in 35% (8/23) and were inherited in 65% (15/23).

DMD gene large deletions were found in 54% of the cases (14/26)
(Figure 3). All of them were out of frame leading to a premature stop
codon and 79% (11/14) were located between exons 44 and 55 within
the distal hot spot of rearrangements of the gene. Four large
duplications and one large triplication were observed (19%), and
most of them (4/5) were predicted to disrupt the reading frame. Point
mutations were identified in 27% (7/26): nonsense (4/26), frameshift
(2/26) and splicing mutations (1/26).

Learning disabilities assessed through scholar and education
performances were diagnosed in five patients. For two others patients,
diagnosis of intellectual disability was based on WISC III evaluation
(VIQ:71, PIQ:58 for carrier #1 and VIQ:61; PIQ:71 for carrier #3). No
autism spectrum disorder was noticed. As expected, in this group of
patients, we found a high percentage (86%) of DMD mutations
involving Dp71 (n=2) or Dpl40 (n=4) isoforms. Indeed, these
mutations include deletions of exons 51-53 and of exons 28-54,
encompassing the first coding exon of Dp140 isoform (exon 51).2°
For Dp71 whose coding sequence starts at the exon 63, the mutations
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Blood
karyotype/
Fragile X
NA

X-inactiva-

tion (% of

B: 90% (N NA
allele)/ 10%

B: 80/20%

active X)
SG, sarcoglycan; TIQ, total

es; LL, lower limbs;

Genetic analyses

Nonsense mutation
(exon 59): ¢.8692C >

Deletion of exons
48-52/ out of frame/
T, p.GIn2898X/ De novo

DMD gene
inherited

Family
history
DMD

None

Cognitive
status
NA

NA

Respiratory
involvement
N (46 y)

NA

38% (46
NA

Dilated CMP,

Cardiac
involvement
LVEF

Western blot
DA: slightly D;
size:N

Muscle biopsy
Mosaic; utrophin NA

Mosaic (5% of
overexpression

(deltoid, 46 fibers)

y)

(muscle, age Immunostaining
(DYS)

at biopsy)
Dystrophy

Histology
NA

EMG
NA
NA

Maximal

CK level

[
575
NA

Skeletal muscle impairment

muscle weakness, major after 40 y:
difficulties for climbing stairs, and
crouching. Walton=3/10 at 40 y

Asymmetrical proximal UL and LL
Muscle weakness

Muscular impairment

Age at last
evaluation
v)

46
20

Onset
Symptoms
DM, AG
NA

Age
15y
17y

LV, left ventricle; LVEF, LV ejection fraction; M, muscle; MRI, magnetic resonance imaging; MW, muscular weakness; My, myalgia; N, normal; NA, not available; PIQ, performance 1Q; SCK, increased serum creatine kinase activity;

1Q; UL, upper limbs; VC, Vital Capacity; VIQ, verbal intelligence quotient.

Abbreviations: AG, abnormal gait; B, blood; CH, calf hypertrophy; CMP, cardiomyopathy; Cr, cramps; D, Decreased; DA, Dystrophin amount; DYS, dystrophin; El, Exercise intolerance; ID, intellectual disability; LD, learning disa
aPreviously reported by Romero et al?3 and Tihy et a/'8.

Table 1 (Continued)

Carrier
25
26

Pediatric symptomatic DMD carriers
S Mercier et al

Figure 1 Histological findings and immunostaining on a DMD carrier muscle
biopsy (patient #3). (a) Dystrophic aspect with fiber size variation (Hematein-
eosine staining, x 200). (b, ¢ and d) Mosaic aspect of dystrophin staining
with DYS1 (b, x 200), DYS2 (¢, x 200) and DYS3 (d, x 100) antibodies,
respectively, targettting dystrophin rod, C-terminal and N-terminal domains.

a DYS2 Ab b DYS1 Ab
Carrier Female Carrier Female
#2 control #8 control
DyStrophin = e  sn— Dystrophin —
427kD 427kD —_—
“ Abnormal -
Dysferlin dystrophin
== — 220kD ’
— —
Calpain ——— Calpain RS
94kD 94kD -
Calpain -
60kD g .
— —— Alpha-SG | — —
Calpain e
v-SG 30kD
Myosin Myosin ” -

Figure 2 Dystrophin analysis by multiplex western blot revealing decreased
amount of dystrophin compared with the control. (a) DYS2 antibody: normal
molecular weight (MW) (carrier #2); (b) DYS1 antibody: abnormal MW with
an additional band of 220kD (carrier #8). Dysferlin, calpain, «- and
y-sarcoglycan protein bands are also displayed.

were nonsense mutations in exons 66 and 67, respectively. In the two
other patients, DMD abnormalities correspond to one duplication of
exons 61-66 and one triplication of exons 60—63 predicted to disrupt
all DMD products, including Dp140 and Dp71 isoforms.

XCI patterns were determined on blood DNA for 21 informative
patients and on muscle DNA for only 4 patients because of the
restricted availability of this tissue. XCI was skewed in 62% of cases on
blood DNA: 10% with a completely skewed pattern (100:0) and 52%
with a significantly skewed pattern (>80:20) (Figure 4). In the seven
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p-GIn1113X

*
P.Ser1s13lysfsX2  IVS45+1G>A l

p.Phe30458erfsX47
p.Arg1190X

*
p.GIn2898X

p. Tyr3217X

*

*

28.54

45-52

Figure 3 Schematic representation of the DMD gene mutations detected in the 26 patients. Inheritance type, XC| pattern and cognitive impairment are
indicated. Carrier number (Table 1) is represented in blue in brackets; cognitive impairment in red; DMD gene deletions, duplication, triplication,
respectively, in red, green and blue lines (Numbers associated with deletions and duplications correspond to deletions and duplications boundaries); skewed

XCl is indicated by a star and de novo occurrence by a box.

a Random XCI b Completely skewed XCI
(carrier #5) (carrier #15)
| | | |
i lL A Jlk A l ’\,i_
c d
| ﬁ |
A A\ A ‘ {

Figure 4 X-inactivation patterns in DMD carriers. AR locus, Xqll-ql2:
automatic sequencer traces correspond to the PCR products of undigested
DNA (a, c) and after Hpall digestion (b, d). (a, b) Random X-inactivation
pattern (52:48) in patient #5. (¢, d) Completely skewed X-inactivation
pattern (100:0) in patient #15.

patients where the two alleles could be distinguished, the normal
allele was preferentially inactivated in all cases but one who was analyzed
at the age of 40 years. On muscle DNA, XCI was skewed in one case and
a nearly significant pattern (78:22) was observed in another patient. XCI
was random in two patients although they had significant muscle
weakness before 10 years. In three patients, we found the same XCI
patterns when determined simultaneously on blood and on muscle.
Among patients with skewed XCI, the ratio of deletions and
duplications versus point mutations was not significantly different
from the entire series (67% versus 73% for deletions; 30% versus 27%
for point mutations). In addition, 31% of the patients with skewed
XCI had de novo mutations (one deletion, two duplications and one
point mutation). This was similar to the ratio of the entire series
(35%). Finally, 67% of the seven patients with cognitive impairment
had a skewed XCI including one with a completely skewed pattern.

DISCUSSION
We report the largest series of DMD female carriers symptomatic in
childhood (Table 2). In the two largest reported series of DMD
carriers, the proportion of manifesting carriers varied from 5 to 22%
and the pediatric cases remained rare.»20

In our patients, like in the other pediatric series, hyperCKemia was
constant.?’~30 Muscle weakness was also prevalent and found in 88%
of cases. Exercise intolerance was the first symptom in 27% and

European Journal of Human Genetics

remained the only muscular symptom during childhood in three
cases, including one case with acute rhabdomyolysis episodes
mimicking a metabolic myopathy.

The clinical presentation of our patients fit within three clinical
phenotypes: Duchenne-like clinical spectrum (5 cases, among them 2
were wheelchair bounded before 15 years), Becker-like clinical
spectrum (13 cases, 5 wheelchair bounded after 40 years) and early
exercise intolerance with mild muscular deficit at adult age (8 cases).

Cardiac involvement was observed in 19% of our patients indepen-
dently of the severity of muscle involvement and the age of the first
symptoms. In large series, cardiac abnormalities on echocardiogram were
identified in 23-38% of cases and dilated cardiomyopathies in 8-18%.%°
Our data confirm that cardiac dysfunction in DMD carriers usually
occurs most of the time after 30 years but need to be searched for during
childhood in early symptomatic carriers (two cases before 15 years).

In previous series of DMD female cases, cognitive impairment is
not frequently reported except for the cases with chromosomal
abnormalities.!>?8-30 [n our study, we found that 7 out of our 26
female carriers had cognitive impairment, 2 with intellectual disability
and 5 with learning disabilities thus highlighting the high rate (27%)
of cognitive impairment in manifesting carriers. The prevalence of
intellectual disability is estimated at ~2-3% in the general
population and males are more often affected than females.’!
Considering a prevalence of 3%, which is likely to be an
overestimation in female population, we found a significantly
higher proportion of carriers with cognitive impairment in our
series versus in the general population (P =0.002).

Muscle study and protein expression in the muscle

The five most severe cases have also the early dystrophic pattern with
endomysial fibrosis at 5 years in accordance with the histological data
known in Duchenne boys.? Manifesting female carriers with muscle
weakness usually have a mosaic pattern of dystrophin in muscle
shown by immunostaining. This mosaicism is believed to result from
the formation of multinucleate muscle fibers from fusion of
uninucleate myoblasts with different dystrophin expression based
on different XCI. Abnormal qualitative and/or quantitative WB
patterns can also be helpful for the diagnosis in female patients
with less evocative clinical picture. The muscle biopsy was critical for
the diagnosis, particularly in the case with pseudometabolic
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presentation. In this study, muscle biopsy analysis was contributory in
100% of cases either on histological aspect of dystrophy, mosaic
immunostaining and/or abnormal WB. Surprisingly, Hoogerwaard
et al’ performed 50 muscle biopsies in DMD carriers and reported
immunohistopathological abnormalities in a low proportion of cases
(10% of dystrophin mosaicism and abnormal WB), probably because
this study was carried out in asymptomatic (n=23) or symptomatic
carriers in adulthood (n=27), and based on needle biopsies.

The dystrophin gene and the transcripts

Not surprisingly, in our group of symptomatic patients in childhood,
all the mutations are predicted to disrupt DMD gene structure and
lead to loss of function of dystrophin. Complete study of the
dystrophin gene is lacking in the oldest series of DMD carriers.*?8
Recently, Soltanzadeh et al'® reviewed the clinical and genetic features
in 15 manifesting carriers identified among 860 subjects within the
United Dystrophinopathy Project. They found 48% of exonic deletions
or duplications, whereas in our study large rearrangements represent
73% of the mutations, and 52% of point mutations versus 27% in our
patients. The distribution of the mutations in these two series is not
significantly different (P = 0.18), although the small numbers in the two
groups impair precise statistical analysis.

Compared with the large French UMD-DMD database (2405
patients), 54% of DMD gene deletions in our study are not significantly
different from the 61% reported in DMD patients (P= 0.55).3° In all,
79% of these deletions start in the distal hot spot (exons 44-55), as
observed in the UMD-DMD database (74%). We report a similar
proportion of duplications (15% of our carriers versus 13% in DMD
patients) and of point mutations (27% in our series versus 26%).2440:41
In addition, the rate of de novo occurrence of the mutations in our
series (35%) is not significantly different from the rate reported in the
UMD-DMD database (24.5%) (P=0.37).

Point mutations occurred de novo in 37.5% of our series versus 19.7%
in the UMD-DMD database but this difference was not significant
maybe because of the relatively small number of cases (P=0.42).
Interestingly, we found a significant difference concerning the occur-
rence of de novo deletions, which represent 25% of the de novo
mutations versus 71% in the UMD-DMD database (P=0.01).>° Even
if we do not know the parental origin of the de novo events, this lower
proportion of de novo deletions compared with de novo point mutations
in female carriers could be explained by the possible paternal origin of
new mutations, which cannot be observed in DMD boys.

In addition, we noticed that the majority of the duplications or
triplication were associated with severe muscular phenotype in 4/5
patients (80%). Cognitive impairment was observed in two patients
with a duplication of exons 61-66 and one with a triplication of exons
60—63. The size of the series is not large enough to conclude to a
significant link between duplications/triplications and a more severe
phenotype but this data seems to be relevant and needs to be confirmed.

X-inactivation pattern in lymphocyte and muscle DNA
XCI pattern was skewed toward nonrandom pattern in 62% (13/21)
of informative carriers on blood and/or muscle. This percentage is
significantly higher than reported by Sumita et al?? in asymptomatic
carriers (37%) (P<0.05), but comparable to the study of Soltanzadeh
et al' in pediatric manifesting carriers. We suggest that this high
proportion of skewed XCI is related to the young age and the clinical
expression in the female carriers.

Indeed, our population of carriers corresponds to severe pheno-
types with onset of symptoms in childhood. As expected, we found a
higher rate of skewed XCI than in studies concerning less
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symptomatic or even asymptomatic carriers. However, we did not
observed XCI bias in every carrier of our series. For example, as
expected, completely skewed XCI was found in two carriers with very
severe phenotype (Table 1A and Bj; carriers #2 and #15). Conversely,
XCI pattern was random in three other carriers with onset of
symptoms before 10 years (Table 1A, carriers #3, #5 and #7).

To further analyze the role of X inactivation in the phenotype, we
assessed whether XCI pattern depends on the type of mutation. Overall,
skewed XCI was observed in 10/15 deletions or duplications and 3/6
point mutations, that is, two nonsense mutations and one splicing
mutation, which is in agreement with mutation type distribution in our
series. In the two carriers with completely skewed XCI, the DMD
mutations were inherited and there was no family history of XCI bias.
Like Soltanzadeh et al'®, we found a predominantly skewed XCI in
deletions and duplications: the frequency was even higher in our series,
67% versus 57% in Soltanzadeh’s series. On the opposite, we report
skewed XCI in 50% of point mutations, whereas Soltanzadeh et al’ did
not find any bias in the six carriers of their study. Using Fisher’s test
analysis, we did not observe a significant difference between rates of
skewed XCI patterns in rearrangements and in point mutations
(P=0.63). The normal allele was preferentially inactivated in all
carriers except the carrier investigated at 40 years. Interestingly, we
found the same XCI patterns in lymphocyte and muscle DNA, but these
analyses could be simultaneously performed in only three patients,
which is insufficient to establish a correlation between blood and muscle
XCI patterns. Azofeifa et a’’ found a significant statistical correlation
between lymphocyte and muscle XCI ratios, whereas Matthews et al'4
showed differences between XCI patterns in muscle and in other tissues,
even of same embryonic origin. Furthermore, XCI pattern may be
modified in multinucleate muscle fibers compared with single nucleate
lymphocytes.’” Indeed, Pegoraro et al’ proposed a model of
biochemical normalization in random inactivation patients and
genetic normalization in skewed X-inactivation carriers. This could
explain the preferential normal expressed allele in patient #25 explored
at 46 years, but this model cannot be applied to the 38% of manifesting
carriers with random XCI in our cohort. Other mechanisms are
certainly involved to explain the severity of the phenotype.

Finally, we focus on cognitive impairment in the seven manifesting
carriers. All the female patients with cognitive impairment except one
(86%) had a mutation in the end part of the dystrophin gene,
involving Dp140 or Dp71 as previously reported in several series of
DMD male patients.?%4>%3 These findings therefore provide
additional arguments in favor of the crucial role of Dp71 and
Dp140 in the development of cognitive function.

Cognitive impairment observed in 2 of the 12 patients
with mutations implicating Dp140 had skewed XCI pattern. Four
females had mutations implicating Dp71 with skewed XCI pattern
observed in 2/3 cases (case #1 was uninterpretable). These findings
clearly support that manifesting carriers with mutation in Dp71 are
more prone to have cognitive impairment like DMD male patients.
Seemann et al* recently reported 5/9 cases of dystrophinopathies in
female children with learning disability: a translocation was present in
two cases and skewed XCI pattern in one case but no correlation
with the location of the mutation at the end of the gene was
highlighted.**

To explain occurrence of cognitive deficit in females, we propose a
cell-nonautonomous effect by which function of cells expressing the
normal DMD allele could be negatively influenced by the phenotype
of cells bearing the mutated DMD gene.** This mechanism could
underly brain and neuronal dysfunction through deregulation of
neuronal connectivity mediated by cumulative loss of function of



DMD gene products, including Dp71. One can also wonder to what
extent this mechanism could affect homeostasis of muscle fibers and
provide insights to understand muscle phenotypic heterogeneity.

In conclusion, our series consists of the largest series of manifesting
DMD female carriers in childhood reported to date and widely
confirms other works. However, this study focuses on specific findings
such as the frequency of exercise intolerance and cognitive impair-
ment. On the one hand, we have shown that exercise intolerance or
pseudometabolic symptoms are a common presentation in these
carriers with early onset of symptoms. On the other hand, we
recommend a careful evaluation of intellectual functioning, as
cognitive impairment is frequently associated (27%). Furthermore,
our results highlight a phenotype—genotype correlation for cognitive
impairment, which is particularly found when the mutation involves
Dp140 and above all Dp71 isoforms. In view of our data on XCI
pattern, we propose that significant skewed XCI pattern found in 62%
of the carriers explains the severe phenotype in our series and that it
seems to be a good correlation of XCI pattern on muscle and on
lymphocytes when studied at a young age. However, XCI pattern is
not sufficient to predict the clinical picture as shown in 38% of the
manifesting carriers with random XCI. Further studies are required to
better understand physiopathological mechanisms involved in man-
ifesting DMD carriers and provide a comprehensive view of factors
influencing natural history and severity of the phenotype to address
critical issues raised in the context of genetic counseling.
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