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Statistical tests for detecting associations with groups
of genetic variants: generalization, evaluation,
and implementation

John Ferguson1, William Wheeler2, YiPing Fu3, Ludmila Prokunina-Olsson3, Hongyu Zhao1

and Joshua Sampson*,4

With recent advances in sequencing, genotyping arrays, and imputation, GWAS now aim to identify associations with rare and

uncommon genetic variants. Here, we describe and evaluate a class of statistics, generalized score statistics (GSS), that can

test for an association between a group of genetic variants and a phenotype. GSS are a simple weighted sum of single-variant

statistics and their cross-products. We show that the majority of statistics currently used to detect associations with rare

variants are equivalent to choosing a specific set of weights within this framework. We then evaluate the power of various

weighting schemes as a function of variant characteristics, such as MAF, the proportion associated with the phenotype, and

the direction of effect. Ultimately, we find that two classical tests are robust and powerful, but details are provided as to when

other GSS may perform favorably. The software package CRaVe is available at our website (http://dceg.cancer.gov/bb/tools/crave).
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INTRODUCTION

The search for rare variants associated with common diseases, and
traits in general, has already started.1–5 As these variants are rare, most
studies will be inadequately powered to detect an association with any
single variant.6–8 When only a handful of minor alleles are observed
for any single-nucleotide variant (SNV), obtaining statistical
significance, especially at traditional genome wide levels of 10�8,
can be near impossible. Therefore, instead of trying to identify
associations with individual variants, the goal has been to identify
associations with a group of rare variants in a shared region (eg,
exons, genes) or pathway, effectively increasing power by pooling
information across SNVs.9 Numerous statistical tests that can search
for these regional associations have already been introduced,
developed, and compared.7,10–19

Our three goals in this paper are to (1) Unify (2) Identify, and (3)
Modify association tests for rare variants. First, we introduce a simple
statistical framework and show that the majority of rare-variant
association tests can be reformulated within this framework. Second,
we show that within this framework, we can easily identify the
relationship between a statistic’s performance and the genetic
characteristics of the tested SNVs, such as the proportion of SNVs
associated with an outcome, direction of effects, and the relationship
between effect size and MAF. Third, we show that the standard test
statistics can be further tailored to the specifics of a given study or an
investigator’s prior beliefs.

To achieve our objective of unification, we first revisit the standard
association test for a single uncommon SNV. The standard approach
would be to divide study participants into two groups, those with and

without the minor allele, and then measure the difference in the
average phenotype between those two groups. This approach applies
equally for continuous and dichotomous variables (eg, disease), where
for the latter case, we would measure the difference in disease
prevalence. The resulting difference, at least for many scenarios,
completely captures the available information for detecting an
association. When testing a group of SNVs, the relevant information
from each SNV is still only this difference, and, therefore, joint tests
only vary by how they combine this information.

Most test statistics combine these differences in a very specific way.
For describing the unified framework, let individual i be in the study,
Yi be the phenotype (eg, weight, height, and disease status) and let Gij

be the number of rare variants at SNV j. Therefore, for SNV j, we can
calculate the difference between the average of the phenotype values
in subjects with a minor allele, �YG�j�1, and the average in subjects
without a minor allele, �YG�j ¼ 0.

Dj ¼ �YG�j�1 � �YG�j ¼ 0 ð1Þ

The majority of statistics proposed for testing associations are a
weighted sum of the squared differences, D2

j , and their cross-products,
Dj1Dj2 . As the weights are allowed to depend on D, all statistics cannot
necessarily be formulated as a second-degree polynomial. We refer to
this broader class of statistics as Data-Adaptively Weighted General-
ized Score Statistics (DAWGSS, pronounced dogs). The full definition
of DAWGSS, which can accommodate covariates and population
stratification, will be provided later.

Standard rare-variant tests, such as the Sum test,11 Hotelling’s
T2-test,20 Stouffer’s Z-test,15 Data Adaptive Sum test,21 C-alpha,16
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similarity regression,17 variance components,17 CMC,22 and SKAT,23

to name a few, only vary by their chosen set of weights. We specify
five global features of the weights that vary among common test
statistics. We then identify the properties of these global features that
are desirable, or provide high power, when genetic variants have
certain behaviors. For example, one feature is the relationship
between the weights and the magnitude of Dj. We show that the
power of association tests can be increased by shrinking the weights
when Dj is small if only a minority of rare variants are truly associated
with the outcome. By observing this connection, we develop a new
test statistic, ROVER, that performs well in such scenarios.

The idea of a general framework for rare-variant tests has been
proposed previously.12,13 Our objective is to propose a similar
framework, but one where a rare-variant test can be recast as a
function of the single SNV test statistics. This framework illuminates
similarities with classical statistical tests, offers a clear means for
performing meta-analyses when studies genotype different sets of
SNVs, and facilitates interpretable modifications.

We use these test statistics to better understand the association
between bladder cancer and the UGT1A gene locus on chromosome
2q37. UGTs facilitate cellular detoxification of multiple exogenous
and endogenous substrates.24 Specifically, UGTs participate in the
removal of aromatic amines, which are the main risk factors for
bladder cancer found in tobacco smoke and industrial chemicals.24

This locus has been associated with colorectal cancer,25,26 pancreatic
cancer,27 liver cancer,28 and most recently bladder cancer.29 Following-
up the GWAS hit, rs1189203, for bladder cancer, we performed
targeted resequencing to identify variants within the UGT1A region
and then a focused association study in 9319 individuals.30 After the
study identified one variant that was highly associated with bladder
cancer, we now use ROVER and the other test statistics described here
to determine if the remaining variants, many with low MAF, were
enriched for associations.

In the methods section, we provide a more complete definition of
DAWGSS and provide the details about our simulations and the study
of bladder cancer. In the results section, we compare the performance
of these statistics for our two types of data. Importantly, we compare
the statistics within their DAWGSS framework so we can demonstrate
how the choice of weights determines the properties of the test
statistics. Note, the common framework allows rapid computation of
multiple-test statistics simultaneously, enabling our broad compar-
ison. Our software, CRaVe, is available as both a stand-alone Unix
program and an R function. In the discussion section, we summarize
our conclusions. The Supplementary material shows how to refor-
mulate many commonly used test statistics in their DAWGSS format.

METHODS

DAWGSS: definition
We let n be the number of subjects, Yi be the normalized phenotype (

P
i

Yi ¼ 0,

1
n

P
i

Y2
i ¼ 1), and Gij be the number of rare variants at SNV j, jA{1,y,J}.

We denote the vector of all genotypes by Gi¼ [Gi1 Gi2yGiJ]
t.

We then define the genetic covariance, V, and correlation, s, matrices from a

group, S, containing nS individuals by

V ¼ 1

nS

X
i2S

ðGi� � m̂GÞðGi� � m̂GÞt ð2Þ

s¼DðVÞ�
1
2VDðVÞ�

1
2 ð3Þ

where m̂G ¼ ½m̂G1 m̂G2 ::: m̂GJ �t , m̂Gj ¼ 1
nS

P
i2S

Gij, and D(V) is the matrix contain-

ing only the diagonal elements of V, with the off-diagonal elements set to 0. We

will denote the element in row j1, column j2 of V and s by Vj1 j2 and sj1 j2 ,

respectively. Furthermore, let s�1 be the inverse of s so that ss�1¼ I, where I

is the J� J identity matrix.

Our definition of Dj in the introduction was slightly simplified, in that

it only allowed two genotypes. We redefine it here as the score statistic

(or, equivalently, as the correlation between Y and G � j multiplied by a

normalizing factor of On),

Dj ¼
1ffiffiffi
n

p

P
i

YiGij

ffiffiffiffiffiffi
Vjj

p ð4Þ

and let D¼ [D1 D2yDJ]
t. Note, for any SNV, Dj is asymptotically

distributed as a normal variable with mean 0 and variance 1 under the null

hypothesis.

As stated in the introduction, DAWGSS have the form
X
j

wjD
2
j þ

X
j1 ;j2

wj1 ;j2Dj1Dj2 ð5Þ

When there are covariates, we extend the definition of Dj as follows. Let us

expand our notation. For subject i, let Y
y
i be the outcome and Xi¼ [Xi1

Xi2yXiT]t be a set of T-covariates. We estimate mi � E½Yyi j Xi�� by either

linear or logistic regression as appropriate. We define Yz
i � Y

y
i � m̂i,

mzY ¼ 1
n

Pn
i¼ 1

Y z
i and s2z

Y ¼ 1
n

Pn
i¼ 1

ðYz
i � mzY Þ

2. Usually the values of m̂i are defined

so mzY ¼ 0 and can be ignored.

Yi �
Yz
i � mzYffiffiffiffiffiffiffi
s2z
Y

q ð6Þ

We can then use this redefined Yi in equation (4).

DAWGSS: global features
Within the DAWGSS framework, most tests can be distinguished by five global

features.

1. The magnitude of wj1 j2 for uncorrelated SNVs (ie, are cross-product terms

included when SNVs are in linkage equilibrium?)

2. The relationship between wj and minor allele frequency (ie, are the

contributions of SNVs weighted by their MAF?)

3. The relationship between the weights and the signs of D (ie, is preference

given to variants that appear harmful?)

4. The relationship between wj and Dj (ie, are small Djs shrunk on the

presumption that most SNVs have no association?)

5. The relationship between wj1 j2 and linkage disequilibrium (ie, are indepen-

dent and correlated SNVs treated equally?)

The results section will discuss how the behavior of rare variants determines

the desirable properties of features 1–4. Feature 5 is listed here for complete-

ness, but will only be addressed briefly in the discussion.

Statistics
We compare the performance of multiple-test statistics, including

� SUM: Sum test11

� HOI: Hotelling’s T2-test assuming independence20

� STZ: Stouffer’s Z-test15

� MDF: MultiDegree of Freedom test16,17

These four tests are fully defined in Table 1. Note that HOI sets s to be the

identity matrix, allowing for more direct comparisons with the other tests,

which omit any reference to s. We focus on these four tests because they

highlight the importance of the first two global features and because they are

the most ubiquitous, noting that the recommended versions of tests using

C-alpha, similarity regression, variance components, and kernels are all

equivalent to MDF. However, for the larger simulations and bladder cancer
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data, we show the results for six other tests that can be described within the

DAWGSS framework.

� HOT: Hotelling’s T2-test

HOT accounts for the correlation between SNVs,

HOT¼
X
j

s� 1
j;j D2

j þ
X
j1 6¼ j2

s� 1
j1 ;j2

Dj1Dj2 ð7Þ

� STZþ : Positive Stouffer’s Z-test

� MDFþ : Positive MultiDegree of Freedom test

STZþ 31 and MDFþ tests modify their original test statistics by including

only those variants with a positive Dj. We define the binary function, 1( � ) by

1( � )¼ 1 if the enclosed statement is true, 0 otherwise.

STZþ ¼
X
j

1ðDj 4 0ÞD2
j þ

X
j1 6¼ j2

1ðDj1 ; Dj2 4 0ÞDj1Dj2 ð8Þ

MDFþ ¼
X
j

1ðDj 4 0ÞVjjD
2
j ð9Þ

� THR: Threshold test

THR is designed to reflect the statistic from Hoffmann et al,12 only including

variants with j Dj j 4F� 1ð1� a
2Þ. In practice, a¼ 0.05.

THR¼
X
j

1ð j Dj j 4F� 1ð1� a
2
ÞÞD2

j þ

X
j1 6¼ j2

1ð j Dj1 j 4F� 1ð1� a
2
Þ; j Dj2 j 4F� 1ð1� a

2
ÞÞs� 1

j1 ;j2
Dj1Dj2

ð10Þ

� DAS: Data Adaptive Sum test

DAS, defined by Han and Pan,21 also requires the definition of a threshold,

which we similarly set at a0¼ 0.05.

DAS¼
X
j

VjjD
2
j þmaxð

X
j1 6¼ j2

wj1wj2Dj1Dj2 ;
X
j1 6¼ j2

Wj1Wj2Dj1Dj2 Þ ð11Þ

where

wj ¼
ffiffiffiffiffiffi
Vjj

p
ð1� 2�1ðDj oF� 1ða0

2
ÞÞÞ ð12Þ

Wj ¼
ffiffiffiffiffiffi
Vjj

p
ð1� 2�1ðDj 4F� 1ð1� a0

2
ÞÞÞ ð13Þ

� ROV: Rover

ROVER shrinks the weights for SNVs with low signal

ROV¼
X
j

ð1� expð� 0:2D2
j ÞÞD2

j ð14Þ

Table 2 summarizes the global features for each of these ten statistics, with

Supplementary tables summarizing additional statistics.

Simulations

Independence. We simulated genes from a case/control study with a total of

n¼ 2000 individuals, equally divided between the two groups, under the null

and multiple alternative hypotheses. For each simulated gene, containing 40-

independent SNVs with MAF equally spaced between 0.005 and 0.02, we

calculated values for six-test statistics: SUM, HOI, STZ, MDF, MDFþ, and

ROV. Genes simulated under the null hypothesis were used to estimate the

threshold for rejection, given a particular significance level, a. Power was then

estimated as the proportion of genes simulated under an alternative, which

exceeded that threshold. Under the alternative, the relationship between the

probability of disease and genotype was defined by

logitðPðYi ¼ 1 j Gi�ÞÞ¼ b0 þ
X
j

bjGij ð15Þ

The total number of influential SNVs ðNI ¼
P
j

1ðbj 6¼ 0Þ), the proportion of

influential SNVs that reduced risk ð
P
j

1ðbj o 0Þ/NIÞ, and the log odds ratio

(bj) were varied. The values of bj, constant across all SNVs, were chosen by one

of two methods. In the main text, we primarily discuss the example where

bj ¼ expð2/N0:6
I Þ. In the Supplementary material, we discuss different effect

sizes.

Linkage disequilibrium. We simulated genes from a case/control study with a

total of 2000 or 10 000 individuals under the null and alternative hypotheses.

Here, haplotypes were chosen to mimic those observed in the 1000 genomes

project,32 and each gene contained 80 SNVs with MAF between 0.005 and 0.10.

The MAF was increased because most SNVs with MAFo0.02 appeared

independent of each other, while the number of SNVs was increased because,

in the presence of linkage disequilibrium (LD), one influential SNV creates

multiple-associated SNVs. For each alternative hypothesis, power was defined

as the proportion of simulated genes with a permutation-based P-value below

Table 1 Four test statistics – MultiDegree of Freedom Test (MDF),

modified Hotelling’s T-test (HOI), Stouffer’s Z-Test (STZ), and the

Sum test differ only by whether the statistics include cross-product

terms, Dj1Dj2 , and whether the weights incorporate OV, where Vjj is

the variance of the genotype (ie, pMAF(1�MAF))

1 2j jΔ Δ
Yes No 

Yes

SUM

2

1 1 2 2 1 21 2
jj j j j j j j jj j j

V V V
≠

Δ + Δ Δ∑ ∑

MDF

2
j j jj

V Δ∑

V

No

STZ

2

1 21 2
j j jj j j≠

Δ + Δ Δ∑ ∑

HOI

2
jj

Δ∑

The independent version of Hotelling’s T-test (HOI) sets the covariance matrix in the standard
statistic to the identity matrix, allowing for more direct comparisons with the other tests. MDF
has also been referred to as the C-alpha, similarity regression, and variance components tests.

Table 2 Summary of the global features

Test Dj1Dj2 Vjj LD Dir DAW

SUM11 � � s

HOI20

STZ15 � s

MDF17 �
HOT20 �
STZþ 31 � p �
MDFþ � p �
THR �
DAS21 � � �
ROV �

A � in column 1, Dj1 Dj2 , indicates the presence of a cross-product term for independent SNVs.
A � in column 2, Vjj, indicates that the weights increase with MAF. A � in column 3, LD,
indicates linkage disequilibrium alters wj1 j2 . A ‘s’ in column 4, Dir, indicates the statistic
increases when Djs have the same sign and ‘p’ indicates the statistic increases when Djs are
positive. A � in column 5, DAW, indicate the weights depend on Dj.
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10�3. Null simulations were only used to confirm that a-levels were correctly

calibrated. Under the alternative, the relationship between the probability of

disease and genotype was again defined by equation (15).

For the alternative hypotheses, simulations varied by the following para-

meters. (1) The number of subjects (n). (2) The number of influential SNVs

(NI). (3) The relationship between MAF and bj. Either bj was constant for all

associated variants or inversely proportional to MAF. (4) Effect direction:

either 50% or all of the associated variants increased risk ð
P
j

1ðbj o 0Þ/NIA{0,

0.5}). (5) The magnitude of the effect size. Although the odds ratios were

generally set so the power of the MDF test was E0.4–0.5, a ‘large’ effect size,

where the power of the MDF test was inflated to E0.8, was also examined.

Details about the simulation process are available in the Supplementary

material.

Bladder cancer study
The association studies have been described elsewhere, so we only offer a brief

summary here.27,30 The original GWAS contained 3532 cases and 5120 controls

of self-described European descent.29 Among the 591 637 SNVs passing

quality-control, 166 SNVs were within the UGT1A region, defined as the

158 Kb of the UGT1A cluster þ /100 Kb (chr2:234 091 000–234 447 000, hg18).

A promising association between SNV rs11892031 in the cluster and bladder

cancer (P¼ 7.7� 10�5) suggested additional examination. In the first step of

the follow-up study, we generated highly specific long-range amplicons and

sequenced the alternative first exons in each of the UGT1A genes in 44 bladder

cancer cases and 30 trios from the HapMap CEU set, detecting 43 known

exonic SNVs. In the second step, we selected 18 SNVs, based on LD and

functional annotation, and genotyped these in a set of 1055 cases and 962

controls from the Spanish Bladder Cancer Study (SBCS), a component of the

original GWAS. In step 3, based on the SBCS data enriched across the region,

we imputed these additional exonic variants for the remaining samples from

the stage 1 GWAS (2477 cases/4158 controls). The final data set contained 49

exonic SNVs in 3532 cases and 5120 controls. Using imputation based on the

combined reference panels of HapMap 3 CEU and 1000 Genomes data, an

extended data set was created with 1170 SNVs in the same group of

individuals.

We performed the previously described association tests on subgroups of the

49 and 1170 SNVs, including only SNVs with a MAF below 0.1. As rs17863783

is significant by itself, we repeated these tests on the remaining SNVs after

adjusting for rs17863783, using a simplified approach of treating that SNV like

a covariate. All analyses were also repeated after adjusting for the covariates

age, gender, smoking status, and study center.

RESULTS

Simulations
We first compared the power to detect associations between disease
status and simulated genes containing either 40-independent or 80-
dependent SNVs.

(1) The magnitude of wj1j2 for uncorrelated SNVs. Statistics that
include cross-product terms are more advantageous when a large
proportion of SNVs are associated with the outcome. In our
simulations assuming independence, the power for the SUM test,
which includes cross-product terms, exceeds that for the MDF test
when at least 15 of the 40 SNVs influence disease risk (Figure 1). If we
increase b in equation (15), then that intersection point, when the
study power becomes higher for the SUM test, increases slightly
(Supplementary material). If we increase the total number of SNVs
beyond 40, the absolute number of influential SNVs needed for SUM
to have higher power will increase, but the proportion of SNVs,
relative to the total number, decreases (Figure 3).

Our simulations where SNVs within a gene are in linkage
disequilibrium show that the SUM test becomes the more powerful
test at a comparatively smaller number of influential SNVs. Table 3
shows that the advantage for those tests without cross-product terms

NI

P
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Figure 1 The power (y-axis) to detect an association between a gene with

40-independent SNPs and a disease is illustrated for four different test
statistics (ROV, HOI, MDF, SUM), as a function of the number (x-axis) of

those SNPs that increase disease risk.
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Figure 3 The lines illustrate the number of SNVs that need to be influential

in order for the SUM test to have higher power than the MDF test, as a

function of the total number of independent SNVs in the tested region.

Results are based on simulations where SNVs have MAF equally spaced

between 0.005 and 0.02, and the influential SNVs are randomly

distributed, have equal effect size, and increase risk. The effect size (b in

equation (15)) was chosen so the MDF test had a specified power: 0.2

(brown), 0.5 (red), or 0.8 (orange).
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Figure 2 The power (y-axis) to detect an association between a gene with

40-independent SNPs and a disease is illustrated for four different test

statistics (MDFþ, MDF, STZþ , STZ), as a function of the proportion (x-

axis) of the 10-associated SNPs that reduce disease risk. The remaining

associated SNPs increase risk.
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is only slight when 4 out of the 80 SNVs are influential. Because of
linkage disequilibrium, the number of SNVs associated with the
disease is considerably larger than four. Even after varying other
parameters, such as the number of subjects in the study, the odds
ratio for the disease alleles, and the relationship between MAF and the
magnitude of the odds ratio, these general trends still hold.

Until now, all SNVs have increased disease risk. In simulations
where the strength of the association is identical among all influential
SNVs, but 50% reduce disease risk, the two tests that include cross-
product terms, SUM and STZ, will have nearly no power to detect an
association. The cost can be understood by either noting that the
cross-product terms, Dj1Dj2 , are negative when the effects go in
opposite directions, thereby reducing the test statistic, or by rewriting
the test statistic as the square of a variable with an expected value of 0
(eg, STZ, ð

P
j

DjÞ2).

(2) The relationship between wj and MAF. The relationship between
the weights and MAF is mediated by OVjj, where Vjj is the variance of
the genotype at SNV j and is proportional to MAF (1-MAF). Clearly,
compared with the STZ and HOI statistics, the statistics that include
OVjj are upweighting SNVs with a higher MAF. In our simulations
where SNVs are independent, the HOI statistic, which omits OVjj

from the weights, slightly outperforms the MDF test after adding a
small stabilizing constant, 0.005, to the denominator of Dj (Figure 1).
Whereas the magnitude of D is effectively independent of MAF,
multiplying by OVjj makes the contributions proportional to the
number of rare variants:

ffiffiffiffiffiffi
Vjj

p
DjE

P
i

YiGij (see equation (4)). In our
simulations where SNVs are in linkage disequilibrium, the two
statistics, HOI and MDF, performed nearly identically. When we
allow the odds ratio (ie bj in equation (15)) to be inversely
proportional to MAF, reflecting the hypothesis that low MAF SNVs
will have larger effects, the loss of power by including Vjj must,
therefore, be larger (Table 3).

To explore the data-adaptive weights, we consider statistics
introduced more recently. The STZþ 31 and MDFþ tests modify
their original test statistics by including only those variants with a
positive Dj. These statistics were designed to gain power when
mutations increase disease risk. ROV includes weights, wj, that
decrease with Dj, wj ¼ð1� expð� 0:2D2

j ÞÞ, and was designed to
gain power when only a small proportion of SNVs are influential.

(3) The relationship between the weights and the signs of D. All
simulations show that without exception, STZþ and MDFþ must
outperform their all-inclusive counterparts when all SNVs increase
the risk of disease (Figure 2, Table 3). Figure 2 shows, in our example
where 10 out of 40-independent SNVs are influential, that the power
for STZþ and MDFþ decrease quickly as the proportion of SNVs,
which reduce risk increases. If three SNVs reduce disease risk, then
MDF and MDFþ statistics perform similarly, whereas if more than
three SNVs reduce risk, the MDF test outperforms MDFþ. Compar-
ing STZ and STZþ tests confirms that, in general, STZþ will
outperform STZ because as we discussed in section 1, STZ already
performs poorly when SNVs have opposing effects. Clearly, when
all variants are protective, the power for the MDFþ and STZþ tests
are no larger than the a-level. Table 3 shows that trends observed in
the independent simulations still hold when there is LD. Although the
MDFþ and STZþ have the highest, or nearly the highest, power
when all 4 or 16 influential SNVs increase risk, the power for either
the MDFþ or STZþ is only E10–20% higher than their counter-
parts. Table 3 further shows that when half of the SNVs reduce risk,
their power is B50% of that for the MDF test.

(4) The relationship between wj and Dj. In our simulations with 40-
independent SNVs, Figure 1 shows that ROV outperformed all other
statistics so long as fewer than B10 of those SNVs were influential.
The exact intersection depends on odds ratios of the influential SNVs
(see Supplementary material). In our simulations with linkage
disequilibrium, ROV only outperforms other statistics when o4 out
of the 80 SNVs are influential (Table 3). With linkage disequilibrium,
non-influential SNVs will still be associated with the outcome and
shrinkage is less helpful (Table 3). Table 3, however, shows that ROV,
a form of soft-thresholding, may still slightly outperform methods
that remove all D with a P-value below a hard threshold of 0.05
(ie, DAS and THR).

Bladder cancer
Among the sets of 49 exonic and 1170 total SNVs covering the
UGT1A region, 24 and 556 had MAF below 0.1. In the fine-mapping
study, which looked only at SNVs individually, the variant at
rs17863783 was found to decrease the risk of bladder cancer (P¼ 5
� 10�7). Table 4 shows that had we not examined each SNV
individually and only examined the region as a whole, no test would

Table 3 The statistical tests were compared when 4 and 16 out of the 80-dependent SNVs were influential

4 Influential SNPs 16 Influential SNPs

2000 Subjects 1.5b bp1/MAF 50% Protective 2000 Subjects 1.5b bp1/MAF 50% Protective

ROV 0.88 0.83 0.93 0.95 1 0.71 0.69 0.78 0.68 0.92

HOI 0.87 0.83 0.91 0.96 0.98 0.73 0.70 0.81 0.70 0.96

MDF 0.87 0.85 0.92 0.87 0.96 0.74 0.73 0.81 0.65 1

SUM 0.67 0.65 0.70 0.69 0.21 0.90 0.89 0.92 0.86 0.21

STZ 0.65 0.60 0.67 0.69 0.19 0.88 0.84 0.90 0.89 0.18

HOT 0.66 0.53 0.88 0.83 0.97 0.36 0.30 0.49 0.34 0.79

DAS 0.72 0.69 0.78 0.76 0.72 0.79 0.76 0.85 0.74 0.81

THR 0.78 0.75 0.81 0.85 0.81 0.72 0.70 0.77 0.68 0.83

MDFþ 1 1 1 1 0.55 0.94 0.96 0.96 0.84 0.53

STZþ 0.86 0.83 0.86 0.93 0.29 1 1 1 1 0.29

Each column shows the relative power under a different scenario. Relative power is the actual power divided by the maximum power for that column or scenario. For the first column, the
simulated study assumed 10000 subjects, effect size provided power near 0.40 for MDF, effect size was independent of MAF, and all influential SNVs were harmful. For columns 2–5, one
parameter was changed, and either only 2000 individuals were included in the study, effect size was increased by 50%, effect size was inversely proportional to MAF, or 50% of the SNVs were
protective. Test definitions for the Sum test (SUM), Hotelling’s T2-test (HOT), an independent Hotelling’s T2-test (HOI), Stouffer’s Z-test (STZ), the MultiDegree of Freedom test (MDF), Positive
STZ (STZþ ), Positive MDF (MDFþ ), Data Adaptive Sum test (DAS), Threshold test (THR), ROVER (ROV) are provided in the Methods section.
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have found the regional association to be statistically significant after
adjusting for testing 20 000 genes and using a significance threshold of
5� 10�7¼ 0.01/20 000. However, among all tests, ROV, HOI, and
HOT resulted in the lowest P-values. Impressively, these statistics
generally performed better when the 556 SNVs were examined jointly,
as opposed to only 24.

The purpose of the joint examination was to determine whether
the remaining SNVs, as a group, show an association with bladder
cancer. First, all tests still suggested a possible association after
removing rs17863783, because surrounding SNVs were in LD with
rs17863783 (Table 4). Therefore, only a test statistic that can
condition on the associated SNV can be used for this analysis. Even
after conditioning on an individual’s genotype at rs17863783, a few
tests generally suggested an association, with, for example, the HOT
and MDF having P-values of 0.0004 and 0.073. Here, after identifying
a single gene, adjusting for multiple comparisons is unnecessary.
However, by adjusting for the study center, a surrogate for population
structure, tests suggested that there was no additional association
between the UGT1A cluster and bladder cancer, with the HOT and
MDF now having P-values of 0.58 and 0.11. Therefore, in this region,
which is highly associated with multiple cancers, only a single SNV
appears to directly influence the risk of bladder cancer.

DISCUSSION

We examined a class of statistics, DAWGSS, that test for an association
between a group of genetic variants and a phenotype and show that
the majority of statistics that are currently available for testing
associations with groups of variants, despite the diversity of their
original presentations, can be rewritten as DAWGSS. Even the linear
kernel methods, which generalize a large subset of statistics,23 are, in
turn, generalized by DAWGSS when we restrict to their preferred
metric of IBS. Within this shared framework, it is clear that the
differences among these statistics are wholly encompassed by the
weights multiplying the D2

j and Dj1Dj2 terms in the sum from
equation (5). In the case of independent SNVs, the four classical
and most ubiquitous statistics (STZ, SUM, HOI, MDF) differ only by
whether they include cross-product terms and/or incorporate the SD,
OV, of the number of variants into their weights. When comparing a
broader range of statistics, we found five global features that
distinguish many of the known tests. Furthermore, we demonstrated

that the desirable properties for these features depend on the behavior
of rare variants.

This paper was focused on showing the similarity of rare-variant
test statistics, and in the Supplementary material, we show how
specific tests can be reformulated as DAWGSS. However, our
discussions are not intended to be inclusive. Foremost, DAWGSS
are limited to describing statistics that have an additive effect across
the SNVs. Therefore, rank-based approaches,7 methods that allow for
interactions,6 methods with non-additive effects,18 and methods that
compare all subsets of SNVs33 are outside of the DAWGSS framework.
However, we believe these limitations have minimal practical
implications. Currently, studies are underpowered to detect most
interactions, especially among rare variants, and, if desired, DAWGSS
can easily be extended to account for interaction terms. Moreover,
among methods based on distance matrices, such as similarity
regression, kernel-based approaches, and variance components, the
additive model outperformed other options.17,34

The association between bladder cancer and the UGT1A region
appears to be caused by a single genetic variant. Considering the
importance of the UGT family in a number of cancers, we expected
that variants, which affected one cancer would also affect others, even
if to a lesser extent, resulting in multiple variants associated with
disease risk. However, in our tests of association, there was no
evidence to support such a hypothesis as there was no regional
association after adjusting for rs17863783.

The DAWGSS framework offers a practical means for performing
association tests. To facilite its use, we have provided the software,
CRaVe, on the author’s website that can efficiently perform all tests
that can be described with the DAWGSS framework. The program
inputs standard data formats (eg, vcf, tped) and can accomodate
covariates and bioinformatic weights. CRaVe can perform all tests
defined within this manuscript and allows the user to new tests within
this framework. We are currently using this software to study the fifth
global feature, the relationship between wj1 j2 and LD, and aim to
provide results evaluating tests, such as HOT, that adjust for LD in the
near future.
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Table 4 Testing the association between the UGT1A region and bladder cancer with multiple DAWGSS

24 SNVs 556 SNVs

All w/o rs17863783 All w/o rs17863783

— Cov — SNV SNV/Cov — Cov — SNV SNV/Cov

ROV 0.0054 0.0027 0.015 0.13 0.10 0.00013 0.00011 0.00016 0.11 0.17

HOI 0.0051 0.0027 0.015 0.12 0.10 0.00010 0.00012 0.00015 0.11 0.16

MDF 0.028 0.042 0.04 0.13 0.16 0.0032 0.0069 0.0034 0.073 0.11

SUM 0.69 0.88 0.51 0.7 0.99 0.77 0.81 0.76 0.54 0.83

STZ 0.83 0.31 0.85 0.93 0.68 0.62 0.23 0.66 0.87 0.91

HOT 0.066 4.2e�05 0.062 0.22 0.16 3.1e�05 0.11 0.00088 0.00042 0.58

DAS 0.024 0.13 0.042 0.13 0.12 0.0043 0.025 0.0042 0.11 0.075

THR 0.067 0.064 0.1 0.13 0.12 0.00034 0.00033 0.00037 0.11 0.092

MDFþ 0.047 0.1 0.045 0.12 0.21 0.016 0.062 0.016 0.063 0.14

STZþ 0.11 0.21 0.1 0.21 0.32 0.075 0.17 0.073 0.24 0.33

The first set of columns considers only the 24-exonic SNVs with MAF below 0.1, whereas the second set considers all 556 SNVs with MAF below 0.1 within that region. For each set of SNVs, we
list five columns of P-values. The first column measures the association between all SNVs and bladder cancer without adjusting for covariates, the second column measures the same association
adjusting for covariates, the third column measures the association between all SNVs excluding rs17863783 and bladder cancer, the fourth column measures the same association adjusting for
rs17863783, and the fifth column measures the same association adjusting for rs17863783 and covariates.
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