
ARTICLE

Prioritising risk pathways of complex human diseases
based on functional profiling

Yan Li1,4, Teng Huang1,4, Yun Xiao1, Shangwei Ning1, Peng Wang1, Qianghu Wang1, Xin Chen1,
Xu Chaohan1, Donglin Sun2, Xia Li*,1 and Yixue Li*,3

Analysis of the biological pathways involved in complex human diseases is an important step in elucidating the pathogenesis

and mechanism of diseases. Most pathway analysis approaches identify disease-related biological pathways using overlapping

genes between pathways and diseases. However, these approaches ignore the functional biological association between

pathways and diseases. In this paper, we designed a novel computational framework for prioritising disease-risk pathways based

on functional profiling. The disease gene set and biological pathways were translated into functional profiles in the context of

GO annotations. We then implemented a semantic similarity measurement for calculating the concordance score between a

functional profile of disease genes and a functional profile of pathways (FPP); the concordance score was then used to prioritise

and infer disease-risk pathways. A freely accessible web toolkit, ‘Functional Profiling-based Pathway Prioritisation’ (FPPP), was

developed (http://bioinfo.hrbmu.edu.cn/FPPP). During validation, our method successfully identified known disease–pathway

pairs with area under the ROC curve (AUC) values of 96.73 and 95.02% in tests using both pathway randomisation and

disease randomisation. A robustness analysis showed that FPPP is reliable even when using data containing noise. A case study

based on a dilated cardiomyopathy data set indicated that the high-ranking pathways from FPPP are well known to be linked

with this disease. Furthermore, we predicted the risk pathways of 413 diseases by using FPPP to build a disease similarity

landscape that systematically reveals the global modular organisation of disease associations.
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INTRODUCTION

Complex diseases result from the combined deregulation of many
interacting genes rather than the mutation of an individual gene.1–4

The interactions and reactions of several genes constitute a biological
pathway. The activation and inhibition of biological pathways directly
affect the occurrence and development of complex diseases. For
example, inhibition of the Notch pathway with a gamma-secretase
inhibitor may provide a therapeutic benefit to a subset of ERBB2-
positive breast cancer patients.5 Therefore, the identification of
disease-associated pathways is very important.

Most existing pathway analysis approaches make use of the pathway
annotation of genes to identify the overrepresentation of biological
pathways. Using Fisher’s exact test or the cumulative hyper-geometric
test, pathways with significant overrepresentation are considered
disease-related.6 The use of these tools, such as DAVID, GOEAST
and PathwayExplorer, has become common.7–12 These pathway
overrepresentation analysis approaches mainly depend upon mapping
overlapping genes between pathways and diseases. However, some
nonoverlapping genes may be functionally related between pathways
and diseases. These approaches only utilise overlapping genes and
ignore the functional association of nonoverlapping genes
with pathways and diseases, thereby affecting the identification of

disease-risk pathways. We are interested in studying the global function
of all genes in a set to identify disease-risk pathways.

On the basis of the above notion, we constructed a novel functional
profiling-based method for identifying disease-risk pathways that
considers the functional association between all genes of diseases and
pathways. Functional profiling-based pathway prioritisation (FPPP) is
a gene set analysis approach. First, a statistical analysis is conducted to
identify significant GO terms and to construct the functional profile
of the disease gene set (FPD). A biological pathway could also be
translated into a functional profile of pathways (FPP). FPPP globally
considers the functions of all genes and their statistical significance.
Second, we implement a semantic similarity measurement, called a
concordance score, to quantify the association between an FPD and
an FPP that were created using GO. The concordance score indicates
the functional association of the disease and the pathway. Finally, for
each disease, we calculate the concordance scores for each biological
pathway in a collection, and we rank the biological pathways.
Plausible disease pathways are selected based on the scores. The
detailed algorithms of FPPP are given in the ‘Materials and Methods’
section and in Figure 1.

To validate the performance of FPPP, we used several strategies that
are discussed below. We demonstrated that our functional profiling-
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based approach is reliable and efficient for prioritising disease-risk
pathways using known disease–pathway associations. In pathway
prioritisations of 18 diseases, 13 diseases had the corresponding true
pathways ranked within the top 20, and the common and specific-risk
pathways among these diseases were identified. A case study of dilated
cardiomyopathy (DCM) indicated that the high-ranking pathways
from FPPP were well documented as being relevant to this disease.
Moreover, we show that the risk pathways for 413 diseases inferred
using FPPP revealed the landscape of disease similarity on a biological
basis. In addition, a web toolkit, named ‘FPPP, was developed based
on this method (http://bioinfo.hrbmu.edu.cn/FPPP). Users of this
toolkit submit a disease gene set or a name of a disease and receive a
global prioritisation of biological pathways. The computational
framework described here offers an alternative method for disease
pathway discovery to aid further experimental research.

MATERIALS AND METHODS

Pathway data and disease genes
Biological pathways were downloaded from the GSEA website (http://

www.broadinstitute.org/gsea/),13 including those from KEGG,14 Biocarta and

Reactome.15 The web toolkit provides the pathway prioritisation for three

databases. A pathway is composed of several molecular interactions and

reactions and is used as a gene set in our method.

Disease genes were downloaded from the genetic association database

(GAD), which contains all known gene–phenotype associations and includes

common complex non-Mendelian diseases.16 We obtained 413 disease-related

gene sets by trimming and merging all gene–phenotype relationships. We can

also obtain disease classes from GAD. Each disease falls into a disease class, and

the 413 total diseases fall into 18 major disease classes.17

Thirty-six known human disease pathways from KEGG provide an ideal

benchmarking data set for pathway analysis. We obtained known associations

of 26 pathways corresponding to 18 disease gene sets by screening and merging

common diseases related to pathways in KEGG and related to phenotypes in

GAD. Each of the known disease–pathway associations is taken as one test case,

and we calculate the similarity score for each case (see Supplementary Table

S1). For benchmark tests, the known disease pathway was treated as unknown

in a random pathway list to compute an empirical permutation P-value.

Obtaining the FPD and FPP based on GO
GO was developed by the Gene Ontology Consortium to describe gene

products using controlled and structured vocabulary and is divided into three

categories: biological process, molecular function and cellular component.18

GO has been widely adopted by the life sciences community for gene function

studies. Fisher’s exact test was applied to a gene set to calculate the significance

of a GO term, and the significant GO term sets were selected according to their

P-values.7 The significant term sets of a disease gene set and a pathway make

up their functional profiles, namely FPD and FPP, respectively.

Concordance scores between FPD and FPP
To quantify the functional association between a disease gene set and a

pathway, we calculated the semantic similarity between an FPD and an FPP

based on GO using information content (IC) theory.19 The IC of a GO term is

defined as IC(t)¼ �log(p(t)), where p(t) is the number of genes annotated

with the term t divided by the total number of genes annotated using GO. The

semantic similarity for two GO terms can be measured by their shared IC,

which is the most informative common ancestor (MICA) in the GO hierarchy.

MICA is defined as ICðtMICAÞ¼ max
tðt1;t2Þ

½ � log pðtÞ�. The measure was

normalised to take into account the depth of the two GO terms.20,21 This

normalised measure is given as follows:

simðt1; t2Þ¼
2ICðtMICAÞ

ICðt1Þþ ICðt2Þ
ð1Þ

For FPD and FPP, a similarity matrix S¼ ½sij�m�n was obtained, including the

similarity scores between all terms in the FPD and FPP. We used the best-

matched average measure (BMA) on matrix S to calculate the concordance

score between an FPD and an FPP. BMA measurement finds the most similar

GO term between the FPD and FPP for each GO term annotated to the FPP/

FPD and then takes the average of these best matches.22 The concordance score

is defined as follows:

ConScoreðtFPD; tFPPÞ¼
1

2

1

m

Xm
i¼ 1

max
1�i�n

sij þ
1

n

Xn
j¼ 1

max
1�j�m

sij

 !
ð2Þ

Recently, we demonstrated that it is practicable to calculate the functional

similarity between two gene sets using semantic similarity measurement.23

Thus, we could obtain the association between a disease gene set and a

pathway by translating them into functional profiles and calculating a

concordance score. After the pathways in a collection are prioritised

according to their scores, plausible disease pathways are selected. A workflow

diagram of this algorithm is illustrated in Figure 1. Note that a biological

process is defined as a series of events accomplished by one or more ordered

assemblies of molecular functions; thus, the ‘biological process’ category might

relate most closely to our method for prioritising pathways. Hence, the

‘biological process’ category is used for gene annotation in this paper.

RESULTS

The performance of FPPP
To validate that the concordance score from the proposed method
represents the biological truth, we have evaluated the ability of FPPP
to identify known disease pathways. Known associations of 18 disease

Figure 1 A workflow diagram of the FPPP method. In the first step, the disease gene set and biological pathway 1 were translated into an FPD and an

FPP1 using the functional profiling translation. Then, to quantify the association between an FPD and an FPP1, the semantic similarity measurement was

conducted to calculate their concordance score. Finally, for each disease, the concordance scores of 186 biological pathways were calculated and prioritised

to infer risk pathways. A workflow diagram of an example of how the concordance score between DCM genes and DCM pathway is calculated is shown in

supplementary Figure S1.
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gene sets from GAD with 26 disease pathways from KEGG are used as
a benchmarking data set for our study.14,16 Each of the known
disease–pathway association pairs is taken as one test case. To confirm
that the concordance score is not randomly obtained, controls are
artificially created to test the predictability of FPPP. We tested our
method using random gene sets randomised both their pathway gene
set randomisation and their disease gene set randomisation; we then
computed empirical permutation P-values and plotted receiver-
operating characteristic (ROC) curves.

First, for each of the 26 known pathways, 9999 pseudo-lists of
disease genes were randomly selected from all disease genes in the
GAD database, and the number of genes in each pseudo list was the
same as the number in the true disease set. We added the true disease
set for the pathway to the 9999 pseudo disease sets, resulting in a total
of 10 000 sets. Next, we calculated the concordance scores between the
10 000 sets and the known pathway. We computed the empirical
permutation P-value, a measure of how often a random pseudo set of
disease genes yielded a concordance score that was equal or better
than the observed concordance score for a disease. The empirical
permutation P-value of 12 pathways was o0.0005, and 19 pathways
had P-values o0.005 (see Supplementary Table S2). We then
calculated sensitivity and specificity for these pathways and plotted
an ROC curve for 26 known disease–pathway pairs. The AUC value
was as great as 95.02% (Figure 2a).

As another kind of test, we validated our method using the random
pseudo pathways test. The genes of pseudo pathways were strictly
limited to KEGG pathway genes, and the number of genes in each
pathway was the same as in the true disease pathway. For each of the
18 diseases corresponding to 26 pathways, 10 000 pathways (consist-
ing of one true disease pathway and 9999 pseudo pathways) were
constructed for further testing. In spite of this stringent condition, 16
diseases yielded empirical permutation P-values o0.0005, and 19
diseases had P-values o0.001 (see Supplementary Table S2). The AUC
value of the rank of 18 diseases corresponding to 26 pathways was
96.73% (Figure 2b). The performance of our method is thus well
validated by P-value and ROC curve analysis.

To further verify that the functional concordance score represents
biological truth, we prioritised 186 pathways according to the
concordance score for 18 diseases (see Supplementary Table S3).
For the rank position of 18 known disease–pathway pairs, we also
plotted an ROC curve, which yielded an AUC of 89.07% (Figure 2c).
Next, we generated a detailed list of the top 20 pathways of 18
diseases. The top 20 pathways were considered disease-risk pathways.
The 13 known disease pathways appeared among the set of risk
pathways identified by our method. After prioritisation, all 18 diseases
shared common-risk pathways, and they were associated with
specific-risk pathways. There are 58 common pathways listed in the
top 20 pathways of the 18 diseases. For example, the MAPK signalling
pathway showed a strong association with all 18 diseases, the
cytokine–cytokine receptor interaction is related to 17 diseases, and
apoptosis is related to 16 diseases. In contrast, the hypertrophic
cardiomyopathy pathway only occurred in cardiomyopathy, and the
type II diabetes mellitus pathway only occurred in diabetes. The scores
between the diseases and pathways are displayed as a heat map
(Figure 2d). These tests suggest that the proposed method has a
powerful ability to predict true pathway prioritisations from among
random controls, thereby inferring disease-risk pathways.

The robustness of FPPP
In many cases, a set of disease genes detected in experiments contain
sources of noise, such as incomplete lists of disease genes and

false-positive genes. Therefore, robustness analysis of the methods for
identifying disease-risk pathways based on a set of disease genes becomes
important. Here, we studied the impact of noise on our method to test
its robustness. In each of the known pathways, we introduced 10%
random genes and repeated this analysis 100 times. The average value of
the concordance score of known disease–pathway pairs with 10% noise
was calculated. Similarly, we increased the proportion of noise in
10%increments and calculated the scores. We constructed curves of
the concordance scores of 26 known disease–pathway pairs to assess the
robustness of our method and the potential imprecision of the score. The
concordance scores displayed low fluctuations even when the pathway
contained up to 30% noise (see Supplementary Figure S2). These results
indicate that our concordance score is relatively insensitive to noise and
reliable for the prioritisation of disease pathways.

Prioritising the risk pathways of DCM
In this section, we show a case study of the FPPP method to test its
reliability. The data set contains 403 genes differentially expressed in
DCM derived from a gene expression profile using Affymetrix
(Heidelberg, Germany) microarray chips.24 DCM is a disease of the
heart muscle that results in weakened contractions and poor pumping
ability. Decreased heart function can affect the survival of patients.
The details of this study can be found in the reference. Here, we
analysed the pathway prioritisation of DCM by the FPPP method
using 403 differentially expressed genes. On the basis of the
concordance scores, the top 20 pathways are shown in Table 1. Three
pathways related to heart disease were successfully identified, includ-
ing arrhythmogenic right ventricular cardiomyopathy (ARVC), hyper-
trophic cardiomyopathy (HCM) and DCM. Using the FPPP method,
regulation of the actin cytoskeleton, focal adhesion, adherens junc-
tions, axon guidance and ECM receptor interactions were correlated
with the pathogenesis of DCM. Previous research revealed that the
actin cytoskeleton regulation pathway and the focal adhesion pathway
have a pivotal role in cardiomyocyte survival and function. Our
results found that DCM is consistent with dysfunction in the
following pathways: actin cytoskeleton regulation, focal adhesion,
gap junction, ECM receptor interaction and the adherens junction.25–31

A large number of signal transduction cascades have been implicated
as critical regulators of cardiac hypertrophy, and the TGF beta
signalling and MAPK signalling pathways were identified by our
method.32–34 The other pathways in the top 20 were mostly disease
pathways. Pathways such as axon guidance showed strong correlation
with DCM based on their concordance scores by FPPP. Our method
provides researchers with avenues for further study of the genetic
basis of DCM. We believe that dysfunction of these pathways in
combination lead to DCM. Further studies are needed to verify the
relationships among these pathways.

The most widely used pathway analysis approach for identifying
disease-related pathways is overrepresentation pathway analysis.
To demonstrate the advantage of FPPP, we compared the results of
FPPP with those of DAVID, which is widely used.12 We input 403
differentially expressed genes of DCM and selected the Homo_sapiens
data set as background. The statistically significant pathways were
regarded as risk pathways if a false discovery rate of qo0.1 using
Fisher’s exact test was achieved. We performed DAVID on the DCM
genes and identified nine significant pathways. The risk pathways
identified by both DAVID and FPPP were the regulation of the actin
cytoskeleton, focal adhesion, ECM receptor interaction, the TGF beta
signalling pathway and colorectal cancer. The known pathways of
cardiomyopathy—ARVC, HCM and DCM—were all identified by
our method, whereas none of them were identified by DAVID.
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In addition, another existing class of pathway analysis approaches
mainly utilises information from the literature to identify biological
pathways associated with gene expression changes.35–37 We compared
our approach with an approach based on a gene expression data set.
Here, we selected a widely used tool, the weighted global test tool.37

We found that the known pathways of cardiomyopathy were not
identified by the weighted global test.

At the same time, we made an elaborate comparison of three
approaches using an acute myeloid leukaemia and acute lymphoblas-
tic leukaemia data set.38 The top 20 biological pathways for the FPPP

method and a global test approach, and 11 statistically significant
pathways for DAVID, are listed in Supplementary Table S4. Compared
with these existing approaches, the FPPP method provided better and
more complementary insights for prioritising risk pathways. In
addition, the prioritisations of two case data sets for the Reactome
and Biocarta databases are listed in Supplementary Table S5.

The disease association landscape using FPPP
Research indicates that disease associations are caused by the
dysfunction of several causal biological factors that are common to

Figure 2 Validation results of FPPP. (a) ROC curves of known disease–pathway pairs in disease gene set randomisation. (b) ROC curves of known disease

pathway pairs in pathway gene set randomisation. (c) ROC curves of known disease pathway pairs in 186 pathways. (d) The y axis represents the 18

diseases, and the x axis represents the 58 common pathways listed among the top 20 pathways of the 18 diseases. The concordance score is indicated by

colour intensity, with black representing high values and white representing low values. The colour of each cell represents the concordance score of a

disease (column) and a pathway (row), where black/white indicates a high/low concordance score. The regions outlined in yellow represent the scores of

known disease–pathway associations.
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multiple diseases. We assumed that the basis of associations between
diseases potentially stems from the same or related biological path-
ways. Here, we used overlapping biological risk pathways among
diseases to chart a genetic landscape of human disease. We first
prioritised the pathways for 413 diseases from the GAD database16

using FPPP, thus yielding the disease-risk pathways for each disease
(the top 20 pathways are considered as risk pathways). Next, we

computed the similarity scores between disease pairs using the
number of pathway intersections and pathway unions, yielding a
similarity score matrix. A two-way hierarchical clustering was
performed on the matrix using ClusterþTreeView to reveal the
modular organisation of human disease–disease relationships
(Figure 3). Diseases clustered together are generally more similar
and share more pathways. The disease landscape could systematically
reveal the global modular organisation of disease association.

The modularity of the disease landscape is manifested as many
isolated and highly scored modules, each comprising a set of diseases
implicated in a set of genetically overlapping pathways. According to
previous disease classifications, the disease modules are assigned to
different markers, such as cancer, cardiovascular or immunity and
infection. As shown in Figure 3, one disease class may be separated
into several disease modules. For example, a module marked
Cardiovascular1 is composed of myocardial infarction, restenosis,
atherosclerosis, coronary-syndrome, blood, cardiovascular disease
lacking more detailed labels, cardiovascular abnormality lacking more
detailed labels, longevity, ischaemic-stroke, Alzheimer’s disease and
gestation-related conditions; most of these diseases or conditions are
related to cardiovascular disease. Obviously, diseases in the module
show high similarities and remarkably overlapping pathways, suggest-
ing that they probably share underlying molecular mechanisms. The
module marked Cardiovascular2 involves more cerebrovascular
diseases, such as brain cancer, dementia, thrombophilia, cerebral
amyloid angiopathy (senile plaques) and ischaemia. Interestingly, the
Cardiovascular2 module shows only modest similarities, suggesting
that diseases in the module have different pathogeneses. The
particular diseases in each module are shown in Supplementary
Table S6. We hope that the predicted disease landscape will facilitate
future discovery of disease associations.

DISCUSSION

Investigation of the molecular basis of diseases is a major focus in
genomics research. The occurrence of complex diseases results from
the joint deregulation of many interactive genes rather than a
mutation of an individual gene. Therefore, many researchers no

Table 1 The top 20 of 186 pathways in DCM by the FPPP method

and a conventional overrepresentation approach

Pathway name

Concordance

score

Enrichment analysis

P-value

Regulation of actin cytoskeletona 0.74048 0.016

ARVCb 0.71707 40.1

Focal adhesiona 0.71219 1.00E-04

Adherens junctiona 0.7098 40.1

Axon guidance 0.70933 40.1

ECM receptor interactiona 0.70617 9.70E-04

TGF beta signalling pathwaya 0.70512 0.0053

Olfactory transduction 0.70234 40.1

Pathways in cancer 0.70005 40.1

Colorectal cancer 0.68693 0.055

HCMa 0.68507 40.1

DCMa 0.68418 40.1

Gap junctiona 0.68067 40.1

Pancreatic cancer 0.67671 40.1

MAPK signalling pathwaya 0.67478 40.1

Fc gamma r-mediated

phagocytosis

0.67467 40.1

Prostate cancer 0.67031 40.1

Melanoma 0.66898 40.1

Renal cell carcinoma 0.66538 40.1

Bladder cancer 0.66447 40.1

Abbreviations: ARVC, arrhythmogenic right ventricular cardiomyopathy; DCM, dilated
cardiomyopathy; HCM, hypertrophic cardiomyopathy; TGF, transforming growth factor.
aDCM-related pathways documented and prioritised in the top 20 of 186 pathways.
bKnown DCM pathways prioritised in the top 20 of 186 pathways.

Cardiovascular 1

Cancer 1

Neurological

Cardiovascular and Hematological

Cancer 2
Cardiovascular 2

Infection and Immune 1

Psychological

Cardiovascular 3

Infection and Immune 2

Figure 3 A cluster graph of disease associations with risk pathways from FPPP. The clustering result is displayed as a heat map, and the similarity score is

indicated by colour intensity, with red representing high disease association and green representing low disease association.
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longer study a single gene or protein but systematically and
simultaneously analyse multiple genes or proteins. Compared with
the analysis of an individual gene, pathway analysis might be a much
more appropriate perspective from which to analyse disease biology
because a pathway with internal relevance is more indicative of a
certain function than a single gene. Pathway analysis may be much
closer to the molecular basis of disease occurrence.

From this perspective, we propose an approach that ranks and
infers disease-risk pathways based on a functional profiling method.
Most existing pathway analysis approaches are based on gene overlap
between pathways and diseases to identify disease-related biological
pathways. We have recognised that non-overlapping genes might
harbour indirect associations that could be useful for improving
pathway analysis. Various factors may contribute to functional
associations; these include substitutable and interactive genes. On
the basis of the above notion, we are interested in studying the global
function of all genes. The FPPP method is based on global functional
profiling of all genes to identify disease-risk pathways. From a global
and functional view, our approach may be closer to real biological
pathways than approaches based on overlapping genes.

In addition, other types of existing pathway analysis approaches
mainly utilise data from the literature to identify biological pathways
associated with gene expression changes, taking into account all
known genes for a given disease. Therefore, we compared our
approach with these approaches using two expression data sets.
Compared with existing approaches, the FPPP method could provide
complementary insights to prioritise risk pathways. Evaluation of our
method illustrates the power of inferring disease-risk pathways by
examining known disease–pathway associations. It also showed a
great ability to resist noise when ranking disease pathways. Finally, the
identified risk pathways of 413 diseases were used to depict a disease
similarity landscape that reveals the global modular organisation of
disease associations.

Notably, FPPP is based on functional profiles that depend on GO
annotation. Although the GO database is the most widely used and
provides a large amount of gene annotation information, it remains
an imperfect system and needs further improvement. Thus, the
incompleteness of the GO database can influence our results.
Improvements in GO annotations will allow our approach to produce
better results for pathway prioritisation. In addition, many other
biological resources, such as larger sets of expression profiles, are
available. These biological resources may be used to help identify
complex functional associations and can further contribute to
advances in the study of complex molecular disease mechanisms.
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