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SHAVE: shrinkage estimator measured for multiple
visits increases power in GWAS of quantitative traits

Osorio D Meirelles*,1, Jun Ding1, Toshiko Tanaka2, Serena Sanna3, Hsih-Te Yang1, Dawood B Dudekula1,
Francesco Cucca3, Luigi Ferrucci2, Goncalo Abecasis4 and David Schlessinger1

Measurement error and biological variability generate distortions in quantitative phenotypic data. In longitudinal studies with

repeated measurements, the multiple measurements provide a route to reduce noise and correspondingly increase the strength

of signals in genome-wide association studies (GWAS).To optimize noise correction, we have developed Shrunken Average

(SHAVE), an approach using a Bayesian Shrinkage estimator. This estimator uses regression toward the mean for every

individual as a function of (1) their average across visits; (2) their number of visits; and (3) the correlation between visits.

Computer simulations support an increase in power, with results very similar to those expected by the assumptions of the

model. The method was applied to a real data set for 14 anthropomorphic traits in B6000 individuals enrolled in the SardiNIA

project, with up to three visits (measurements) for each participant. Results show that additional measurements have a large

impact on the strength of GWAS signals, especially when participants have different number of visits, with SHAVE showing a

clear increase in power relative to single visits. In addition, we have derived a relation to assess the improvement in power as a

function of number of visits and correlation between visits. It can also be applied in the optimization of experimental designs or

usage of measuring devices. SHAVE is fast and easy to run, written in R and freely available online.
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INTRODUCTION

In contrast to Mendelian traits, for which the association with related
penetrant mutations is patent, quantitative traits show a continuous
range of values and smaller effect sizes of genetic variants. Thus, to
identify genetic factors involved in quantitative traits, larger sample
sizes and more refined statistical analyses are required.
Population studies with multiple visits and quantitative trait

measurements a priori offer the possibility to increase power and
determine the trajectory of trait values in relation to disease or other
outcomes. Methods that take all the measurements into account can
increase statistical power of the genome-wide association studies
(GWAS) analyses that dominate current discovery efforts. Similar
benefits of using multiple measurements have been shown in analyses
of expression profiling on microarrays1–4 and more recently in studies
of blood pressure.5 However, for most existing population cohorts,
additional variability is introduced by different numbers of visits for
individuals and by possible secular drift. To optimally model this type
of data, we propose a shrinkage method that efficiently combines
observations from different measurements, even when some visits are
missing for some individuals.
The strength of shrinkage estimators compared with frequentist

approaches has been clearly described in classical literature6,7 and
more recently in GWAS and related areas such as imputation, fine
mapping and meta-analysis.8 Our method implements an empirical
Bayes algorithm, ‘Shrunken Average (SHAVE)’, using regression

toward the mean for every individual as a function of their number
of visits and the correlation between visits. We evaluated the
performance of the method by simulations and confirmed the
expectations in real data.
We used the SardiNIA cohort (http://sardinia.nia.nih.gov)9

consisting of 46000 individuals and a set of 14 traits that were
measured up to three times in all individuals, at time B3-year
intervals. To evaluate the impact of the method, we selected top SNPs
from single visits and meta-analysis studies, and compared the
significance of the same SNPs for single visits, for the average
across visits and for SHAVE. Variable but appreciable improvement
in performance was found.
SHAVE is fast and easy to run, and can thus be added to

approaches such as principal component and variance analysis.
Finally, we suggest a way to estimate the cost-benefit of adding
additional visits for GWAS signals and discuss the potential utility of
SHAVE for other applications. The R code for SHAVE is available
(http://sardinia.nia.nih.gov/Download/).

METHODS
We outline briefly how we test for the association of a single measurement of a

trait with a given SNP, and then generalize for multiple replicates. Consider a

given quantitative trait and a given SNP. Let yij (i¼ 1,..., n; j¼ 1,y, ki) denote

individual i’s jth repeated measure of the trait, or his/her residual for that trait

after adjusting for one or more variables (eg, sex and age). Let Gi denote the
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number of minor alleles of the given SNP for individual i. Let G be the vector

(G1, G2,..., Gn) containing the number of alleles (0,1 or 2) for all individuals.

Similarly, let Y1 be the vector (y11, y21,y, yn1), containing the first

measurement of the trait for all individuals. To test the association between

Y1 and G using an additive model, Y1 is regressed on G such that yi1¼
b1Giþ aþ ei1, and an estimate for b1 is obtained (b*1). We then we divide b*1
by its standard error and obtain a z-statistic. Next for each z-statistic a

corresponding P-value is obtained. This is done separately for every SNP and

every trait.

SHAVE: the posterior expectation m*i
Now consider the following random-intercept model:

yij j mi � N mi;s
2/w

� �
and mi � Nð0; s2Þ ð1Þ

where wZ0 and s2Z0 are unknown parameters, which can be easily estimated

from our dataset. Straightforward algebra, such as that presented in an

elementary textbook on Bayesian statistics (eg, Lee10) would give the

posterior expectation of mi when s2 and w are known. Thus,

mi j yi1; yi2; . . . ; yiki;w;s2 � Nð�yikiw/ð1þ kiwÞ;s2/ 1þ kiwð ÞÞ; where ki is

the number of visits and �yi is the average across visits for individual i. For

the proof, please see Supplementary Materials Section 1. Let m*i denote the

posterior expectation E½mi j yi1; yi2; . . . ; yiki;w;s2�, then

m�i ¼ðkiw/ð1þ kiwÞÞyi: ð2Þ

We call m*i the SHAVE estimator for multiple visits. Note that not all

individuals have the same number of visits, thus if an individual i did not

have visit j, the measurement yij is set to missing, thus �yi will be the average of

non-missing values. The reason that ki varies between individuals is mainly due

to missing data, which we are assuming is missing completely at random, that

is, is unrelated to age, sex, y, and the missing value itself.

The term ðkiw/ð1þ kiwÞwill be referred to as the adjustment factor of the

average, which is equal to one minus the shrinkage factor. We note that m*i
does not depend on s2 and is a function only of ki, w and �yi. Next, m*i is
regressed on G such that m*i ¼bGi þ aþ ei and the statistical significance of

beta is calculated.

Estimating w and s2

Let n be the total number of individuals and ki be the number of

visits for individual i. Given that equation 1 implies Var(yij|mi)¼s2/w
and Var(yij)¼ s2/wþs2, both quantities can be respectively estimated

by s2within ¼
Pn

i¼ 1

Pki
j¼ 1ðyij � yiÞ

2/
Pn

i¼ 1ðki � 1Þ and S2total ¼
Pn

i¼ 1

Pki
i¼ 1

ðyijÞ2/
Pn

i¼ 1 ki, and setting s2/w¼ s2within and s2/wþs2 ¼ s2total yields the

estimate of w. Although the estimation of s2 is not needed for m*i, s2 can be

estimated by s2total–s
2
within. Thus, the weight estimate is given by:

ŵ¼ðs2total � s2withinÞ/s2within: ð3Þ

Therefore, in equation 2 the term w, which is unknown, should be replaced by

its estimate. When all individuals have exactly two visits, ŵ is equal to

r/(1�r), where r is the sample correlation between the two visits, and

ŵ also minimizes the least squares loss function L2 ¼
Pn

i¼ 1

ðE½mi j w; yi1� � yi2Þ2.

Another possibility is to use a more robust loss function

L1¼
Pn

i¼ 1

j E½mi j w; yi1� � yi2 j and estimate w that minimizes L1. Although

estimating w by L1 and L2 will give different results, both weights were similar

for most traits when using the SardiNIA data, and furthermore, their

corresponding z-statistics for SHAVE were extremely similar for all traits.

For more details see Supplementary Materials Section 2 and Table S2.

Comparing different metrics – LOD ratio
Comparisons were done in GWAS using three summary trait values from

multiple visits: single visit, Average and SHAVE.

Note: To distinguish between the statistical term ‘average’ and the actual

‘Average’ among visits, we use the latter throughout this paper. To assess

performance among different metrics, for a given trait and a given SNP, we run

an association test for each visit, the Average and SHAVE, obtaining a

corresponding slope and z-statistic and calculating the corresponding z2. The

LOD score, one of the outputs from the Merlin11 software, is defined as

z2/log(100) and was chosen as a performance measure because the LOD score

(or equivalently z2) is conveniently proportional to the sample size. For

example, assume a true association between a trait and a specific SNP. If the

sample size were equal to 2000 individuals with a corresponding z2, then

doubling the sample size to 4000 individuals would be expected to double z2 as

well. Next, we describe three common scenarios and provide an expected LOD

ratio between different metrics, with z1, zAVG, and zSHAVE as the corresponding

z-statistics for single visit, Average and SHAVE.

Average vs single visit
We start by considering that all individuals have the same number of visits

(equation 4) – that is, from a balanced dataset – and we then account for a

situation in which there are different numbers of visits for individuals

(unbalanced dataset) (equation 5).

In a balanced dataset; E½z2AVG�/E½z21 � � kð1þwÞ/ðkwþ 1Þ ð4Þ

In anunbalanced dataset; E½z2AVG�/E½z21 � � ð1þwÞ/ðwþ E½1/ki�Þ ð5Þ
Next we assume an unbalanced dataset for the LOD ratio between SHAVE vs

Average (equation 6).

SHAVE vs Average

E z2SHAVE
� �

/E z2AVG
� �

� E 1þ kiwð Þ/kiw½ �E kiw/ 1þ kiwð Þ½ � ð6Þ
Proofs for equations 4, 5 and 6 can be found in Supplementary Materials

Section 3. At this stage we point out a salient fact that if every individual has

the same number of visits, then by equation 2, SHAVE will be the Average

multiplied by a constant factor (kw/(1þ kw)), which implies that z2SHAVE is

identical to z2avg, also indicating that SHAVE will have the same power as the

Average. This equality in power in balanced datasets between SHAVE and

Average is also consistent with (equation 6), where replacing ki by k, results in a

ratio equal to one.

Simulation study
Simulated unbalanced datasets were generated with 5000 individuals, with

2500 individuals with three visits and the remaining 2500 with a single visit.

We conducted two types of simulations, one to estimate Type I error and the

other to estimate power. In each type of simulation we compared SHAVE,

Average and single visits.

Simulation models
As for all metrics described, s2 is independent from the z-statistics, we set s2

equal to one. Next, we describe two simulation models, where model 1 is used

to measure Type I error and model 2 is used to measure power.

Model 1, for b¼ 0: yij ¼ mi þ eij where mi � Nð0; 1Þ; eij � Nð0; 1/wÞand eij
is independent from mi. In this model we can see that Var(yij)¼ 1þ 1/w.

Model 2, for ba0: yij ¼ mi þ eij, where mi ¼ dið1�b2Var
ðGiÞÞ1/2 þ bðGi �GÞ where diBN(0,1), eijBN(0,1/w), Gi is randomly gener-

ated based on the pre-defined allele frequency, G is the average number of

alleles across all individuals, and eij is independent from mi. Since our original
random-intercept model assumes that Var(yij) does not depend on the

genotype, the term (1�b2Var(G))1/2 is introduced in order to have Var(di
(1�b2Var(Gi))

1/2þb (Gi�G))¼Var(mi)¼ 1, which implies that Var(yij)¼ 1

þ 1/w in both models 1 and 2.

Type I error simulations
We set a levels to 1� 10�5, 1� 10�6, 1� 10�7 and 5� 10�8. Ten billion

simulations were performed to achieve an accurate Type I error estimation.

Correlations between visits r were set equal to 0.2 or 0.5, and minor allele

frequency P was set equal to 0.5. We then simulated yij values for all three visits

and all individuals according to model 1 using the ‘true’ weight w¼r/(1�r).
Next, we randomly set as missing 50% of the values for visits 2 and 3, and

Average was then calculated for every individual based on non-missing values.

Next, we estimated the sample weight ŵ using equation 3 and generated

SHAVE. Finally, we simulated the vector G based on the minor allele frequency
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P (0.5). After performing the simple linear regression between each metric and

G, P-values were obtained. Next, for each metric we measured Type I error as

the proportion (over 1010 simulations) of P-values smaller than each a level.

Power simulations
Simulations were conducted using a level of 5� 10�8, b values of 0.20, 0.25

and 0.30, minor allele frequencies P equal to 0.1 and 0.5, and correlations

between visits r equal to 0.2 and 0.5. Simulated values were generated similarly

to Type I error simulations with the main difference being that model 2 was

used instead of model 1. One million simulations were performed for each

combination of parameters (b, P and r), and as a result of each combination,

we measured power as the proportion of P-values less than the 5� 10�8 cutoff,

now considered the standard threshold to declare genome-wide significance

findings.

Applying the method – SardiNIA dataset
The SardiNIA project was designed to investigate the genetics of quantitative

traits in the Sardinian founder population.9 Over a 10-year period, from

November 2001 to the present, residents of four towns in Sardinia, Italy,

starting at age 14–95 years, were invited to participate to the study, and a total

of 6320 individuals had up to three visits at B3-year intervals. The total

number of individuals in each visits one, two and three was 6177; 5670; and

1971, respectively, where each individual could be present or not in any of the

visits. Individuals were characterized for 4100 quantitative traits,9 and 14

traits were selected for this analysis (bilirubin, total cholesterol, g-GT, glycemia,

HDL, height, LDL, PR-interval, QT-interval, red blood cell counts (RBC),

serum iron, transferrin, triglycerides and uric acid). Traits were selected based

on previously reported meta-analysis studies (as of October 2011), which also

showed top SNPs for visits 1 and 2 with Po5� 10�8 from the SardiNIA

dataset, where the same top SNPs had minor allele frequency 45% and were

also SNPs were previously identified from the Hapmap project (SNPs with ‘rs’

as the first two characters). Genotype information was obtained from the

Metabochip, a custom Illumina iSELECT genotyping array (http://

www.sph.umich.edu/csg/kang/MetaboChip).

To minimize the effect of outliers, we applied an inverse normal transfor-

mation for every trait in each visit.9 Transformed traits were used as the

dependent variable and modeled using linear regression, with age at the time

of visit and sex as covariates for each separate trait and for each visit. As a

result, each trait measurement version (a given trait for a given visit) generated

standardized residuals (mean equal to zero and SD equal to one) as the output.

(This standardization step is needed in order to assume that noise levels are the

same for each visit. However, GWAS results without standardization were very

similar (not shown)).

Comparing performance of metrics
To measure the performance of metrics, the most significant SNP for each trait

was selected based on three criteria: significance of the signal in visit 1,

significance of the signal in visit 2, and significance in published meta-

analyses.12–21 Next, for each SNP we ranked the P-values among metrics and

then we obtained the average rank for each metric across all traits. As SNPs

were selected based on reported meta-analysis (Table 4), but not all of those

were present in the Metabochip, we used the SNAP algorithm22 to select a

proxy SNP in the Metabochip that had the highest R2(Z0.80). As SardiNIA

project is a family based study, to test for association while accounting for

relatedness, we used a variance component method implemented in Merlin.11

RESULTS

Simulation results – power and Type I error
Simulated Type I errors were very similar to expected (a), showing
that Type I error is well controlled for all three metrics – single visit,
Average of up to three visits and SHAVE of up to three visits
(Supplementary Materials Table S1). We also noticed a clear increase
in power for SHAVE relative to the Average and to a single visit
(Table 1). With a level, minor allele frequency P and effect size b,
respectively, set to 5� 10�8, 0.50 and 0.20, simulated power is shown

as an increasing function of the correlation between visits (Figure 1
top). Similarly, with a, P and r set to 5� 10�8, 0.50 and 0.20,
simulated power is shown as an increasing function of the effect size b
(Figure 1 bottom). In addition, simulated and expected power was
very similar for all three methods. A detailed description of the
calculation of expected power can be found in Supplementary
Materials Section 4.

SardiNIA dataset – performance by ranking
To compare metrics, we use the average rank across 14 traits
(Tables 2–4), where lower average rank indicates higher overall
significance. Using data for all three visits in SardiNIA and selecting
for the top SNP based on visit 1 (Table 2), the average ranks for visit
1, visit 2, Average and SHAVE were 3.36, 3.50, 2.07 and 1.07. Similarly
when selecting for the top SNP based on visit 2 (Table 3),
corresponding average ranks were 3.64, 3.00, 2.21 and 1.14. When
selecting for top Meta-Analysis SNP’s (Table 4), corresponding
average ranks were 3.29, 3.57, 1.93 and 1.21. On the basis of these
findings, Average was superior to any single visit in all three tables,
with SHAVE having the best performance, (less significant than the
Average only twice out of 42 cases (height and QT-interval in
Table 4)). An alternative way to compare performance by ranking is
shown in Supplementary Materials Table S3.

SardiNIA dataset – performance by LOD ratios using top Meta-
analysis SNPs
We performed two types of LOD ratios for every trait, the first
between Average and single visit, the second between SHAVE and
Average. To compare signals between Average and single visits, we
selected a subset of individuals who had both visits 1 and 2 and
compared their signals. We first obtained the z-statistics of the
Average (zAVG) and the z-statistics corresponding to visits 1 and 2
(z1 and z2). Next, we obtained the LOD ratio between Average
(represented by the square of zAVG) and a single visit (represented by
the square of (z1þ z2)/2). Observed LOD ratios were all above one,
indicating an increase in power using the Average vs a single visit
(Figure 2). We note that traits with lowest correlation between visits
had the highest LOD ratios, and in the three traits with lowest
correlation, transferrin, serum iron and QT-interval, LOD ratios were
above 1.5. Similarly, traits with high correlation between visits, such as
RBC and height, had LOD score ratios close to one. In general,

Table 1 Simulated and expected power for alpha equal to 5�10�8

and different levels of frequency P, slope b and correlation q

Parameters Simulated power Expected power

P b r Single Average SHAVE Single Average SHAVE

0.10 0.20 0.20 0.0028 0.0103 0.0185 0.0028 0.0103 0.0185

0.10 0.20 0.50 0.1137 0.2114 0.2406 0.1147 0.2129 0.2419

0.10 0.25 0.20 0.0179 0.0628 0.1066 0.0181 0.0629 0.1070

0.10 0.25 0.50 0.4437 0.6429 0.6872 0.4467 0.6456 0.6892

0.10 0.30 0.20 0.0772 0.2279 0.3447 0.0777 0.2283 0.3451

0.10 0.30 0.50 0.8226 0.9371 0.9531 0.8257 0.9391 0.9546

0.50 0.20 0.20 0.1640 0.4118 0.5648 0.1657 0.4131 0.5655

0.50 0.20 0.50 0.9495 0.9899 0.9935 0.9509 0.9902 0.9937

0.50 0.25 0.20 0.5581 0.8630 0.9430 0.5617 0.8634 0.9426

0.50 0.25 0.50 0.9997 1.0000 1.0000 0.9997 1.0000 1.0000

0.50 0.30 0.20 0.8987 0.9923 0.9987 0.9008 0.9922 0.9986

0.50 0.30 0.50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

There were 1 million simulations for each combination of P, b and r. Expected power is
estimated based on equations 5 and 6.
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expected and observed LOD ratios were quite similar, suggesting that
our observations match the expectations of the model.
To compare LOD ratios between SHAVE and Average, we generated

a subset of the SardiNIA dataset in which all individuals had visit 1,
and then, for the same individuals, we randomly selected 50% of
them and included their second visits (setting the remaining visit 2
cases as ‘missing values’). The main reason to look at this subset was
that differences between SHAVE and Average are only appreciable in
unbalanced datasets. Although the observed LOD ratios between
SHAVE vs Average were modest when compared with Average vs

single visit, the ratios were all greater than one, indicating a consistent
increase in power of SHAVE relative to Average (Figure 3). Also, with
the exception of transferrin, observed and expected LOD ratios were
similar.

Expected LOD ratios in a hypothetical dataset
To get a better estimate of the expected LOD ratio between Average
and single visits, and between SHAVE and Average, we generated
charts based on a hypothetical dataset with multiple visits (from 2 to
10 visits). When comparing Average vs single visit, we show the
expected LOD ratio as a function of the number of visits and the
correlation between visits (Figure 4). The expected LOD ratios
decrease as the correlation between visits increases. Similarly, expected
LOD ratios increase as the number of visits increases, and saturates as
the number of visits k becomes large, based on equation 4. When
comparing SHAVE vs Average, we assumed a hypothetical dataset in
which 50% of the individuals had a single visit and 50% of the
individuals had k visits (from 2 to 10) (Supplementary Materials
Figure S1). Here LOD ratios are more modest when compared with
Figure 4, but still show the same relation to number of visits and
correlation.

DISCUSSION

Increasing the strength of a true genetic signal for a quantitative trait
can provide overall benefits for GWAS studies, and we show here the
extent to which measurements from multiple visits can contribute to
that goal. In particular, when we compared the performance of
SHAVE vs single visit and SHAVE vs Average using the SardiNIA
dataset, some traits showed a large LOD ratio for their top SNPs,
indicating that the same genome-wide significance can be achieved
using a smaller sample with SHAVE. SHAVE increases power relative
to the Average when the dataset is unbalanced (ie, individuals have
different number of trait measurements). However, when a dataset is
balanced, SHAVE and Average generate identical results. The increase
in power for SHAVE was also supported by simulations, which
showed both Type I error and power very close to that expected under
the assumptions of the linear model.
Power increases with effect size (absolute value of the slope),

number of visits and correlation between visits. Given the goal of
maximizing the increase in power, when is SHAVE most useful? If
power from a single visit is low — such that the top SNP is far from
being genome-wide significant — then even the increase in power by
SHAVE will not be sufficient for any SNP to achieve genome-wide
significance. On the other hand, when a SNP shows marginal
genome-wide significance in a single visit, the power boost from
SHAVE may make a SNP genome-wide significant. Moreover, when a
SNP is already genome-wide significant in a single visit, an increase in
power by SHAVE will further improve genome-wide significance,
providing additional confidence in the SNP effect.
A major assumption of the random-intercept model is that Var(yij |

mi)¼ s2/w (a combination of biological variability and measurement
error) is identical for each visit. This might not always be the case if
better technology were used to measure a trait in a more recent visit
(reducing measurement error), or if better protocols are used
(reducing biological variability). However, SHAVE can easily be
adapted to such datasets, and one potential improvement could be
to estimate a different weight wj for each visit j. In such instances
SHAVE and the Average will not be equivalent even in balanced
datasets, with SHAVE expected to outperform the Average. Another
key assumption is that the true variance (unknown) within each
individual is constant. If this assumption is violated shrinkage

Figure 1 Simulated power by different levels of correlation between visits r
(top) with effect size b fixed at 0.20, and simulated power by different

levels of effect size b (bottom), with r fixed at 0.20. Power was simulated

for single visit, Average and SHAVE. In both plots, alpha level was set to

5�10�8 and minor allele frequency at 0.5.
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distortions result. In our model we assume that this true variance
within individual i, denoted by Z2i is equal to s2/w. However, if Z2i is
equal to s2/wi, where wi is the unknown weight for individual i, then
if Z2i4s2/w, w will be greater than his/her true weight wi, leading to
‘under-shrinkage’, and similarly if Z2ios2/w, then w will be smaller
than wi, with ‘over-shrinkage’. Thus, to minimize the effects of over
shrinkage and under shrinkage, a potential improvement would be to
estimate wi for each individual, were SHAVE will likely outperform
the Average even in balanced datasets. Although preliminary results
showed very small increase in power (Supplementary Materials Table
S4), there is still potential for improvement in datasets with more
visits, in which case the estimate of wi will be more precise.
Our method uses a two-step model where in the first step we

estimate w and use it to calculate SHAVE, and in the second step,
SHAVE is regressed on G to obtain the estimate of b and the
corresponding z-statistic. One potential improvement would be to use

a one-step model, in which w and b are estimated jointly. However, if
the genetic variance of the top SNP of a trait, which is equal to
b̂2Var(G) is small relative to s2, the expected increase in power will be
insignificant. Moreover, preliminary results comparing both one-step
and two-step models were nearly identical (Supplementary Materials
Table S5).
The derived relations of LOD score ratios, in which the simplest

and most practical is E z2AVG
� �

/E z21
� �

� k 1þwð Þ/ kwþ 1ð Þ, can be
applied in cost-benefit analysis for signal improvement in the usage of
measuring devices and in experimental design. For example, suppose
we are considering adding an additional visit for a trait, and that we
have had some preliminary GWAS results for a given SNP. Under the
assumption that the signal is true, by estimating the sample
correlation between visits, one could estimate the potential increase
in significance for that SNP if an additional visit were obtained. This
can provide guidance in planning research. Moreover, one can

Table 2 Association results between 14 traits and their corresponding top SNPs, where top SNPs were selected based on visit 1 results of

SardiNIA GWAS, and where z-statistics for Average and SHAVE are based on three visits

TRAIT SNP z1 z2 zAVG zSHAVE Visit 1 Visit 2 Average SHAVE

Bilirubin rs887829 27.33 27.37 31.44 31.59 4 3 2 1

Cholesterol rs4910742 �6.25 �4.96 �5.88 �6.04 1 4 3 2

g-GT rs7310409 �6.29 �6.52 �6.53 �6.69 4 3 2 1

Glycemia rs853787 �7.17 �7.50 �8.06 �8.24 4 3 2 1

HDL rs247617 8.45 8.93 10.10 10.19 4 3 2 1

Height rs3132468 5.91 5.82 5.91 5.92 3 4 2 1

LDL rs445925 �5.89 �6.13 �6.74 �6.77 4 3 2 1

PR-interval rs6800541 6.56 5.92 7.10 7.11 3 4 2 1

QT-interval rs12036340 6.27 5.31 7.21 7.27 3 4 2 1

RBC rs4910742 23.39 22.19 24.16 24.26 3 4 2 1

Serum iron rs4820268 8.77 7.52 10.43 10.66 3 4 2 1

Transferrin rs4854761 9.58 13.04 14.96 15.40 4 3 2 1

Triglycerides rs10401969 �6.15 �4.72 �6.67 �6.76 3 4 2 1

Uric acid rs13145758 �11.84 �12.52 �13.80 �14.05 4 3 2 1

Average rank 3.36 3.50 2.07 1.07

The z-statistics are shown in order for visit 1 (z1), visit 2 (z2), Average (zAVG) and SHAVE (zSHAVE). In the next four columns their corresponding ranks within each trait are shown, where 1 is
assigned to the most significant and 4 to the least. On the last row, we have the averages of the ranks for each metric.

Table 3 Association results between 14 traits and their corresponding top SNPs, where top SNPs were selected based on visit 2 results of

SardiNIA GWAS, where z-statistics for Average and SHAVE are based on three visits

TRAIT SNP z1 z2 zAVG zSHAVE Visit 1 Visit 2 Average SHAVE

Bilirubin rs887829 27.33 27.37 31.44 31.59 4 3 2 1

Cholesterol rs6511720 �4.60 �5.96 �5.49 �5.62 4 1 3 2

g-GT rs7310409 �6.29 �6.52 �6.53 �6.69 4 3 2 1

Glycemia rs853787 �7.17 �7.50 �8.06 �8.24 4 3 2 1

HDL rs247617 8.45 8.93 10.10 10.19 4 3 2 1

Height rs3132468 5.91 5.82 5.91 5.92 3 4 2 1

LDL rs6511720 �5.86 �6.93 �6.81 �6.97 4 2 3 1

PR-interval rs6795970 6.18 5.94 6.80 6.86 3 4 2 1

QT-interval rs12143842 6.27 5.47 7.30 7.33 3 4 2 1

RBC rs4910742 23.39 22.19 24.16 24.26 3 4 2 1

Serum iron rs855791 �8.03 �7.88 �10.24 �10.55 3 4 2 1

Transferrin rs4854761 9.58 13.04 14.96 15.40 4 3 2 1

Triglycerides rs6999813 �5.67 �7.63 �6.87 �6.97 4 1 3 2

URIC ACID rs13145758 �11.84 �12.52 �13.80 �14.05 4 3 2 1

Average rank 3.64 3.00 2.21 1.14

The z-statistics are shown in order for visit 1 (z1), visit 2 (z2), Average (zAVG) and SHAVE (zSHAVE). The z-statistics are shown in order for visit 1 (z1), visit 2 (z2), Average (zAVG) and SHAVE
(zSHAVE). In the next four columns their corresponding ranks within each trait are shown, where 1 is assigned to the most significant and 4 to the least. On the last row, we have the averages of
the ranks for each metric.
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estimate the potential increase in significance for epidemiological
studies and GWAS.
In summary, SHAVE takes advantage of multiple trait measure-

ments to boost statistical power for GWAS of quantitative traits.
Although, the specific weighting scheme used in this paper is a simple
version that is easy to implement even in large-scale GWAS, there are

many additional ways to improve the method. The method can also
be adapted for more complicated scenarios with unique trait
characteristics. For example, traits such as pulse wave velocity23

show a trait variance that increases with age, in which case weights
can be estimated as a function of age. Other traits such as systolic and
diastolic blood pressure24 show a trait variance that increases with the
magnitude of the measurement, in which case weights can be
estimated as a function of the trait. Such new weighting schemes
could potentially further increase the statistical power of genetic
studies of quantitative traits.

Table 4 Association results between 14 traits and their corresponding top SNPs, where top SNPs were selected based on multi-study meta-

analyses, and z-statistics for Average and SHAVE are based on three visits and results of SardiNIA GWAS

TRAIT SNP z1 z2 zAVG zSHAVE Visit 1 Visit 2 Average SHAVE

Bilirubin rs887829 27.33 27.37 31.44 31.59 4 3 2 1

Cholesterol rs646776* �4.76 �4.20 �4.68 �4.76 1 4 3 2

g-GT rs7310409 �6.29 �6.52 �6.53 �6.69 4 3 2 1

Glycemia rs10830963 6.32 6.34 7.38 7.50 4 3 2 1

HDL rs247617 8.45 8.93 10.10 10.19 4 3 2 1

Height rs724016 5.02 4.25 5.26 5.24 3 4 1 2

LDL rs646776* �5.39 �5.14 �5.69 �5.76 3 4 2 1

PR-interval rs6800541 6.56 5.92 7.10 7.11 3 4 2 1

QT-interval rs7550692* 5.89 4.36 6.66 6.55 3 4 1 2

RBC rs4910742 23.39 22.19 24.16 24.26 3 4 2 1

Serum iron rs4820268 8.77 7.52 10.43 10.66 3 4 2 1

Transferrin rs4854761* 9.58 13.04 14.96 15.40 4 3 2 1

Triglycerides rs1260326 5.12 4.75 5.92 5.95 3 4 2 1

Uric acid rs9998811* �11.58 �12.44 �13.61 �13.87 4 3 2 1

Average rank 3.29 3.57 1.93 1.21

The z-statistics are shown in order for visit 1 (z1), visit 2 (z2), Average (zAVG) and SHAVE (zSHAVE). In the next four columns their corresponding ranks within each trait are shown, where 1 is
assigned to the most significant and 4 to the least. On the last row, we have the averages of the ranks for each metric. *The original SNPs (which were replaced by proxy SNPs from the
Metabochip) are: cholesterol (total) rs629301 (R2¼1.00), LDL rs629301 (R2¼1.00), QT-interval rs2880058(R2¼0.92), transferrin rs3811647(R2¼0.96) and uric acid rs734553(R2¼0.80).

Figure 2 Observed and expected LOD ratio for Average and single visit for

top SNPs from meta-analysis, for a subset of individuals that had both visits

1 and 2. Observed LOD score ratio is calculated based on the square of the

z-statistics of the Average and the square of (z1þ z2)/2 (from z-statistics

from visits 1 and 2). Traits on the x axis are sorted by correlation between

visits (in parenthesis).

Figure 3 Observed and expected LOD ratio for SHAVE and Average for top

SNPs from meta-analysis for a subset of individuals in which all individuals

had visit 1 and a randomly chosen 50% of visit 2 cases were selected

among the same individuals.
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Figure 4 Expected LOD ratio between Average and single visit for

hypothetical datasets in which all individuals had k visits ranging from 2 to

10.
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