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Using identity by descent estimation with dense
genotype data to detect positive selection

Lide Han1 and Mark Abney*,1

Identification of genomic loci and segments that are identical by descent (IBD) allows inference on problems such as

relatedness detection, IBD disease mapping, heritability estimation and detection of recent or ongoing positive selection.

Here, employing a novel statistical method, we use IBD to find signals of selection in the Maasai from Kinyawa, Kenya (MKK).

In doing so, we demonstrate the advantage of statistical tools that can probabilistically estimate IBD sharing without having to

thin genotype data because of linkage disequilibrium (LD), and that allow for both inbreeding and more than one allele to be

shared IBD. We use our novel method, GIBDLD, to estimate IBD sharing between all pairs of individuals at all genotyped SNPs

in the MKK, and, by looking for genomic regions showing excess IBD sharing in unrelated pairs, find loci that are known to

have undergone recent selection (eg, the LCT gene and the HLA region) as well as many novel loci. Intriguingly, those loci that

show the highest amount of excess IBD, with the exception of HLA, also show a substantial number of unrelated pairs sharing

all four of their alleles IBD. In contrast to other IBD detection methods, GIBDLD provides accurate probabilistic estimates at

each locus for all nine possible IBD sharing states between a pair of individuals, thus allowing for consanguinity, while also

modeling LD, thus removing the need to thin SNPs. These characteristics will prove valuable for those doing genetic studies,

and estimating IBD, in the wide variety of human populations.
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INTRODUCTION

The ability to discover recent positive selection in the human genome
is one compelling reason to estimate identity by descent (IBD) in a
cohort of largely unrelated individuals. In particular, IBD can be used
to find selection on standing variation, a situation where many
methods used for detecting selection may not perform well.1

Additionally, other genetic questions can be well addressed by
estimating IBD within a set of individuals. These include, detection
of unknown or mistaken relationships,2–6 estimation of heritability
and genomic partitioning of genetic variance,7,8 and mapping by the
identification of shared segments.9–13 IBD, however, is not directly
observed but must be inferred from the available data. Traditionally,
the combination of a pedigree with genotype data enabled the
efficient computation of IBD using either ‘peeling’14 or hidden
Markov models (HMMs).15–17 More recently, however, the large
amounts of information made available from high density SNP
genotyping arrays has enabled estimation of IBD even for very
distantly related pairs of individuals (ie, 410 generations) in the
absence of pedigree information. This additional data, however, also
presents the difficulty of accommodating the linkage disequilibrium
(LD) present between SNPs. Though HMMs enable efficient
computation of IBD probabilities given multipoint genotype data,
they, unfortunately, require the absence of LD. One approach to take
LD into account is to eliminate SNPs that are in LD with each other
leaving a reduced set for which the standard HMM should hold.9

Even though this typically eliminates much of the available genotype
data, the rationale is that IBD regions are typically sufficiently large

that enough SNPs remain in these segments to easily identify them.
Although it is true that, conditional on distant relatives sharing a
segment IBD, the expected value of the segment is fairly large (5 cM
for relatives separated by 20 meioses (ie, 10 generations)), the
exponential shape of the size distribution means that B63% of
IBD segments are smaller than the mean and 39% are o1/2 the
mean size. Thinning the SNPs is likely to reduce the power to identify
these small IBD regions and increase uncertainty in IBD estimates for
larger regions. Although some problems, such as detecting close
relatives is likely to be robust to finding only large IBD regions, other
population-based questions, such as detecting selection, will likely
require much higher resolution.
An alternative strategy to thinning is to allow for LD within the

method. One approach is to infer IBD based on the presence of
matching haplotypes in a pair of individuals.5,10 Although very fast,
these methods do not, by themselves, result in a posterior probability
of IBD at each locus. Another approach is to create a model, typically
based on a HMM, that allows for LD.11,12,18–21 Model-based methods
have the advantage of being able to quantify the level of certainty in
an IBD estimate, but will generally be more computationally intensive
and slower than matching haplotypes. We propose a novel method,
GIBDLD, a modified HMM that extends our previous work20 to
allow use when pedigree data are not known. It is computationally
fast; allows the use of all SNPs, even in the presence of high LD;
estimates the posterior probability of each of nine possible IBD states
for a pair of individuals at all SNPs given all of their genotype data;
detects shared segments; and works equally well whether the cohort is
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outbred or has substantial cryptic relatedness or consanguinity. We
apply GIBDLD to the Maasai in Kinyawa, Kenya (MKK) from the
HapMap 3 data set22 and find several regions that are likely to have
experienced recent positive selection as well as both confirm
previously known close relatives23 and detect numerous new, more
distant ones.

MATERIALS AND METHODS
Here, we restrict ourselves to a brief description of GIBDLD and, because our

previous method on which it is based required a pedigree, an explanation of

the extensions implemented for when pedigree data are unavailable.

Statistical model
In our HMM, the hidden Markov states are the nine condensed identity

states24 (see Supplementary Figure S1 for the condensed identity states) that

are formed by all possible groupings of four alleles into IBD and non-IBD sets,

where the maternal and paternal origin of the alleles in an individual are

ignored. Thus, inbreeding is accounted for because the two alleles in an

individual are allowed to be IBD. The model we use for the emission

probabilities (ie, the conditional probabilities of the observed genotypes) are

functions of the allele frequencies and allows for both missing genotypes and

genotyping error. In the standard HMM, these emission probabilities are

conditionally independent given the underlying Markov state, but in the

presence of LD, the probability of observing a genotype at a given locus also

depends on the genotypes at other loci. We allow for this in our model by

computing what is essentially a person-specific allele probability given the

genotypes at L previous loci. We set L¼ 20 and approximate this allele

probability using a linear model where the genotypes at the L previous loci are

predictors and the outcome is the probability of the possible genotypes at the

current locus. Specifically,
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Here, G
p
i is the genotype of person p at locus i, 1x is the indicator function

equaling 1 when x is true and 0 when x is false, gi;n are the LD parameters

associated with locus i and the genotypes are coded as 0, 1, or 2, with 1 being

the genotype of a heterozygote. Details are given in reference 20. The LD

parameters of this linear model are estimated from a training sample of

individuals in whom the LD is representative of the LD pattern in the group

of people who are being analyzed for IBD. To prevent possible overfitting,

we use ridge regression to estimate these coefficients.

In practice, we find that setting the training sample to the same group as the

one in whom IBD is being estimated gives accurate results. Finally, we estimate

the unconditional probabilities of the identity states and the parameters

governing the transition probabilities between states using maximum like-

lihood. Given this model, we use the standard forward–backward algorithm25

to compute the posterior probabilities of the condensed identity states at each

SNP for the pair of individuals.

We summarize the amount of IBD sharing at a locus using the estimated

proportion of alleles shared IBD p̂i ¼ D̂i;1 þ 1
2 ðD̂3;i þ D̂5;i þ D̂7;iÞþ 1

4 D̂8;1,

where D̂r;i is the posterior probability of condensed identity state r at locus i.

Note that this definition of p̂i has expected value equal to the kinship

coefficient of the pair (ie, the probability that a randomly drawn allele from the

first person is IBD with a randomly drawn allele from the second person).

We also define the genome-wide empirical kinship coefficient p̂¼ 1
M

PM
i¼ 1

p̂i,

where M is the number of markers in the genome.

Simulations
Because a valuable characteristic of GIBDLD is that it retains its accuracy

in both outbred populations and populations where all individuals are

potentially related, we generated data for closely and distantly related

individuals using both an outbred pedigree structure and the 13 generation

pedigree from the South Dakota Hutterites.26 Both the outbred pedigrees and

the inbred pedigree were constructed so that the pairs considered by the

method were a pair consisting of a person with himself, full siblings, an

avuncular pair, first cousins, and second cousins. We note that because of

the complex, inbred nature of the pedigree, the inbred pairs have kinship

coefficients approximately, but not exactly, equal to the corresponding kinship

coefficients for outbred pairs.

To generate genotype data with a realistic LD structure, we used the CEPH

(Utah residents with ancestry from northern and western Europe) (CEU)

haplotypes from the HapMap project.27 We created a population of phased

chromosomes from the CEU HapMap data by removing haplotypes that were

from non-founder individuals, resulting in 234 phased haplotypes, and only

using markers that were also present on the 500-k Affymetrix gene chip. We

only used SNPs from chromosome 8 that had minor allele frequency 40.05,

resulting in 11 643 total SNPs with inter-marker genetic map distances as

provided by the HapMap project. For each pedigree, we simulated genotypes

by assigning each founder of the pedigree a pair of randomly selected phased

chromosomes from the population, where the chromosomes were drawn

without replacement. The chromosomes were then allowed to segregate

through the pedigree until all individuals had genotype data. Because

GIBDLD requires both a study sample consisting of pairs in whom IBD will

be estimated, and a training sample from whom LD is determined, each

replicate in our simulations in the outbred pedigrees consisted of a study

sample with 33 pairs of each relationship type, taken from 33 four-generation

pedigrees, resulting in a total of 198 individuals. The training sample was set

equal to the 198 individuals in the study sample. For the inbred pedigree, a

replicate consisted of a study sample with one pair of each relationship type

and a training sample comprising the study sample plus 192 random indivi-

duals from the last two generations of the pedigree (200 total individuals were

in the training sample). When running GIBDLD on a replicate all phase

information was ignored. To examine robustness to genotyping error and

missing data, each replicate had two genotype data sets with the first being the

simulated genotypes at all markers and the second where each genotype was

assigned an incorrect value with a 1% probability and a missing value with a

2% probability. All simulation studies consisted of 1000 replicates.

Subjects
The MKK data sample contains 184 individuals, many of whom are specified

as being siblings or parent–offspring pairs.22 We used the quality controlled

genotype data available from the HapMap website and removed SNPs that had

minor allele frequency less 0.05 or 420% missing data leaving a total of

1255 766 SNPs.

Computation time
Computation time varies depending on the number of SNPs in the data set

and can be divided into two computational tasks: (1) estimating the LD

parameters and (2) estimating the IBD probabilities of each marker for a pair

of individuals. In our MKK analyses, using all the SNPs, step 1 took 2355 s and

step 2 took B180 s for a single pair. Analyses of additional pairs repeats only

step 2 for each pair and can be easily done in parallel. These times were

obtained using a single core of a 2.66-GHz Intel Xeon E5430 processor on a

Red Hat Linux platform.

RESULTS

One application of obtaining conditional probabilities of the IBD
states given the data is to obtain the empiric kinship coefficients of a
pair or unknown relatedness. We first sought to check the accuracy of
GIBDLD’s estimate of IBD sharing by estimating p̂ for each pair of
individuals in the simulated data set that used the CEU data and
comparing this to the true average proportion of alleles shared IBD.
Figure 1 shows these estimated values compared with the true values
for all outbred and inbred pairs for all simulations. Accuracy is very
high with a correlation in outbred pairs of 0.9990 when there is
neither missing genotype data nor genotyping error, and 0.9982 in the
simulations where there is. In the inbred pairs, the correlations were
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0.9985 and 0.9977, when there is no error or missing data and when
there is, respectively.
Another application of obtaining locus-specific estimates of IBD is

to use these to define segments that are potentially shared IBD. In the

same simulated CEU data set, we defined a detected segment as a set
of at least two consecutive SNPs each with a probability 450% of
sharing at least one allele IBD and checked the accuracy of these
detected segments (Figure 2). For IBD segments that are 2 cM or
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Figure 1 Estimated vs true IBD sharing. Estimated IBD sharing, averaged over all SNPs as a function of the true IBD sharing, averaged over all SNPs,

for (a) outbred pairs and (b) inbred pairs where the genotype data (1) have neither missing data nor error and (2) have 5% missing data and 2% error.
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Figure 2 Power, FDR, and sensitivity of segment detection. Segments are placed into the nearest integer length (in cM) bin (eg, 0.5–1.5cM length
segments are placed into the 1-cM bin). The 10-cM bin contains all segments longer than 9.5 cM. Displayed are (a) outbred pairs, (b) inbred pairs, and

(c) autozygous segments in the inbred pairs. MR is the missing data rate and EP is the probability of a genotyping error.

IBD and positive selection
L Han and M Abney

207

European Journal of Human Genetics



larger, the power (ie, the fraction of true IBD segments that have at
least one detected segment in it) and sensitivity (ie, the fraction of
SNPs within an IBD segment that exceeded the IBD detection
threshold) range from 0.7 to 1.0 and 0.5 to 0.9, respectively. False
discover rates (ie, the fraction of SNPs within a detected segment that
are not IBD) range from 0.4 to 0.01. Note that a more conservative
threshold could also be used with a resulting decrease in false discover
rates at the cost of lower power and sensitivity. In general, we find
that GIBDLD is robust to missing genotypes and genotyping error
when detecting shared IBD segments and consistently gives highly
accurate estimates of IBD sharing.
It was previously discovered that there are numerous relative pairs

in the MKK, only some of which were documented in the HapMap
phase 3 data release.23,28 The presence of these undocumented relative
pairs, many of which are distant (ie, first cousins or greater) suggests
that consanguineous matings may also be present or that pairs of
individuals may have more than a single recent common ancestor. We
applied GIBDLD in the MKK population to identify and characterize
related pairs and then search for additional IBD in the nominally
unrelated pairs.
Although we seek to distinguish related from unrelated pairs, doing

so in the MKK is problematic because of a generally elevated level of
background relatedness in the population. To demonstrate this, we
repeated the simulations for outbred pairs described above, using the
Yoruba in Ibadan, Nigeria (YRI) haplotypes. Instead of using a single
chromosome, we sampled entire autosomes, using 206 016 SNPs with
minor allele frequency40.05, and sampled unrelated rather than
related pairs. Autosomes were sampled without replacement and
recombination in the unrelated panel was simulated by gene dropping
through 1, 2, or 3 generations. A training sample of 200 individuals
was used to estimate the LD parameters. Previous work has found
relatively little cryptic relatedness in the YRI.23 From a simulated
sample of 1000 unrelated pairs, the mean genome-wide value of
p̂ was 0.0035 with a maximum of 0.0083 (Supplementary Figure S2).
In contrast, the MKK mean genome-wide value of p̂ across all pairs is
0.0086 (Supplementary Figure S3). Based on the YRI simulations, we
set a threshold of 0.01 for p̂ in the MKK above which we define a pair
as ‘related’ and below which we define a pair as ‘unrelated,’ although
‘very distantly related’ is likely to be a more accurate characterization.
The related MKK pairs were then binned into relationship types
depending on their genome-wide empirical kinship coefficient p̂
(Table 1) where the bin boundaries were based, in part, on the
location of gaps in the distribution of p̂ (Supplementary Figure S3).
Note that there were no pairs that had p̂ in the ranges 0.28–0.5 and
0.16–0.22. The 84 first-degree relatives we find agree with previous

results,23 while we detect 73 second-degree relatives to Pemberton
et al’s 80. Seven of Pemberton et al’s 80 second-degree relatives we
inferred to be third-degree relatives. In addition, we found 137 new
third-degree and 1655 fourth- and fifth-degree pairs. All pairs in each
relationship category are given in the Supplementary Data. In
addition, the Supplementary Table S1 contains maximal subsets of
individuals such that all pairs in the subset have p̂ less than a specified
threshold. These subsets were constructed following a strategy similar
to that previously used for the HGDP-CEPH panel.29 It is worth
noting that even though the vast majority of MKK pairs are unrelated,
there are only 36 individuals who are not detectably related to at least
one other individual. Furthermore, even in the pairs categorized as
unrelated, a number of pairs show evidence of possibly distant
relatedness. For instance, there are 22 unrelated pairs that have IBD
segments at least 30 cM long, and 21 pairs that have at least 16
segments of length 2 cM or larger (Supplementary Tables S2 and S3).
We detect only low levels of consanguinity, however, with a maximum
empirical inbreeding coefficient of 0.0228. We find 10 individuals
with autozygous segments of at least 10 cM and 19 with at least three
autozygous segments of length 2 cM or longer (Supplementary Tables
S4 and S5).
A particularly compelling application of estimating IBD in a

population is the potential for detecting recent or ongoing positive
selection, particularly when it acts on standing variation – a form of
selection that is especially challenging to detect.1 We searched for
regions in the genome that may have been under selection in the
MKK population by identifying loci that have anomalously high
IBD sharing. To find these loci, we computed p̂i at every SNP i
for every unrelated pair of individuals. At each SNP, we then
computed the mean of p̂i across all the unrelated pairs. Figure 3
shows these values at all SNPs across the genome with horizontal
lines showing the arbitrary thresholds below which 99.9 and 99%
of all SNPs are located. The mean of p̂i across all unrelated pairs
and all SNPs is 0.005. At our most stringent threshold, four regions
show excess IBD sharing: chromosome 1 (171.76–174.26Mb),
chromosome 2 (135.05–136.55Mb), and two regions on chromo-
some 6 (29.77–30.17Mb and 130.61–130.81Mb). At the 99% threshold,
we detect 50 regions showing evidence for excess IBD sharing
(Supplementary Table S6).
We considered the possibility that high levels of LD in a region may

not be fully modeled by GIBDLD, resulting in artificially inflated
estimates of IBD. To evaluate this possibility, we divided the genome
into 0.1 cM bins and computed the mean p̂i for all bins where the
average r2 across pairs of SNPs was 40.2. We saw no evidence of
systematically inflated p̂i in these regions (Supplementary Figure S4).
Of the previously mentioned four regions exceeding our most

stringent threshold, the chromosome 2 region showed the largest
excess of IBD sharing in the genome with a mean p̂i of 0.055. This
1.5Mb region contains 27 genes including LCT, the gene encoding
lactase. This region has been implicated as the genetic basis for lactase
persistence in several African populations, including some from
Kenya, and has evidence of having undergone recent, strong positive
selection.30 The first region on chromosome 6 (29.77–30.17Mb) is
coincident with the HLA class I region, a portion of the genome well
known as being under strong selective pressure due to its importance
in immune system function.31 The second highest peak on
chromosome 6 (130.61–130.81Mb) contains only two known genes,
KIAA1913 and SAMD3. This region has previously been implicated as
possibly having been under selection in the YRI, with a signal peak
lying between these two genes,32,33 though we are unaware of any
studies finding such evidence in other populations.

Table 1 Relationship and genome-wide empirical kinship coefficient

categories

p̂ Relationship Number of pairs

Z0.5 Monozygotic twin 1a

0.22–0.28 First-degree relative (PO, FS) 68 (PO), 16 (FS)

0.10–0.16 Second-degree relative (HS, AV, GG) 73

0.05–0.10 Third-degree relative (1C, GAV) 144

0.01–0.05 Fourth- and fifth-degree relative (1.5C, 2C) 1655

0–0.01 Unrelated pairs 14728

Abbreviations: PO, parent–offspring; FS, full sibling; HS, half sibling; AV, avuncular;
GG, grandparent–grandchild; 1C, first cousin; GAV, grand-avuncular; 1.5C, first cousin once
removed; 2C, second cousin.
aLikely a duplicate sample.23
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Of the four highest peaks in our genome scan, the one on
chromosome 1 (171.76–174.26Mb) was the second most extreme,
behind only the signal on chromosome 2. Unlike the three other
regions, the published literature contains less support for selection
having acted here. In the study by Tang et al,34 a gene in this region, G
protein-coupled receptor 52 (GPR52), was listed as showing evidence
of having undergone selection, but only in Europeans using the
Perlegen data set. This signal was not replicated in the European
HapMap data. The region we detect is fairly broad (2.5Mb) and
contains 22 genes. Although this may be an independent replication
of the GPR52 signal, the fact that we are looking in a substantially
different population and that IBD is expected to have little power to
detect selection that has taken a haplotype to near fixation,1 while the
method of Tang et al34 is designed to find regions that are at fixation
due to selection, we feel it is possible that we are detecting an
independent and novel signal.
In Figure 4, we plot the distributions of p̂i across pairs for the top

four loci. It is worth noting that in each case B12000 pairs had
p̂io0.01. The resultant elevated sharing, then, is due to nearly 2000
pairs having significant amounts of IBD sharing and not caused by
relatively few, possibly related, pairs. Also evident are peaks in the
distributions of p̂i at 0.25 and 0.50, corresponding to high probabilities
for these pairs to have IBD sharing of one and two alleles, respectively.
Interestingly, there are also a substantial number of pairs with p̂i40.50.
This amount of IBD sharing is only possible when there is a non-zero
probability that all four alleles in the pair are shared IBD (IBD¼ 4) with
p̂i ¼ 1 being certainty of this state. Figure 4 shows that, at these loci,

many unrelated pairs show a significant probability of IBD¼ 4. The
exception to this is the HLA locus (Figure 4c). Even though there are
similar numbers of pairs with IBD¼ 1 or 2 compared with the other
three loci, there are only two pairs with p̂i40.51. This is consistent
with the view that HLA is under balancing selection with homo-
zygosity being detrimental. In fact, we find that the number of pairs
with p̂i40.51 is smaller at the HLA locus than any of the other 20 loci
with mean p̂i40.02 (Supplementary Figure S5).
We also looked for regions of the genome that show evidence of

increased autozygosity in the entire panel of 183 subjects. Aside from
relatively higher levels at three of the top four loci (ie, not HLA), we
did not find loci with clearly elevated levels of autozygosity. We note
that the sample size for this analysis (n¼ 183) is substantially smaller
than the pairwise IBD analysis (n¼ 14 728 pairs). Even though the
pairs are not independent, added variability due to a smaller sample
size may make it more difficult to identify regions with anomalous
levels of autozygosity.
Of the top 50 regions showing excess IBD, 44% are in regions

where other studies have also detected evidence for selection while
56% appear to be novel (Supplementary Table S6). Notable among
these 50 regions are five distinct peaks in different HLA regions,
comprising both class I and class II genes. On chromosome 11, there
is a peak that was close to, but did not exceed, our most stringent
threshold of 99.9%. This region was among the top signals reported
by Albrechtsen et al1 for several HapMap populations, including the
MKK. This region is of interest with respect to selection because of
the clusters of olfactory receptors it contains.

Figure 3 Mean p̂i over the genome. The mean value of p̂i at all SNPs i in the genome, averaged over all unrelated pairs in the MKK. The upper (dotted)

line is the threshold below which 99.9% of all SNPs are located and the lower (dashed) line the threshold below which 99% of all SNPs are located.
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DISCUSSION

Our analysis to detect excess IBD uses the same population and data
as Albrechtsen et al,1 who also search for genome regions with excess
IBD, yet our results are not identical. In fact, the elevated regions of
IBD they detect in the MKK (on chromosomes 6 and 11) are also
found in our analysis, but we also find many additional signals. The
primary reason for this difference, we suspect, is that they pruned
away many SNPs to eliminate LD, while our method models LD
directly, allowing us to use all SNPs in our analysis. Following data
cleaning and pruning, their data set consisted of about 200 000 SNPs,
whereas we used 1 255 766 SNPs. This additional SNP data can
provide substantial information for detecting IBD. Furthermore, we
note that the method used by Albrechtsen et al allows for IBD states
only up to two, whereas GIBDLD estimates probabilities for all nine
condensed identity states, including IBD¼ 4. At loci where there are
many pairs that have substantial probability of sharing all four alleles
IBD, methods that allow IBD sharing only up to either two or one
allele will give negatively biased estimates of p̂i. Nevertheless, we
believe it is primarily the extra information available from using all
SNPs, as well as the increased resolution they provide, that allowed us
to detect excess IBD in numerous additional regions.
Recently, another study35 evaluated IBD sharing in the HapMap

populations. In the MKK, they find a peak of IBD sharing on
chromosome 2, likely overlapping the LCT gene region, and another
more marginal peak on chromosome 8. The method used by the
authors finds regions, of length at least 3 cM, shared IBD in pairs of
individuals. By restricting IBD detection to segments of at least this
size, they have high confidence that these regions are truly IBD. In
contrast, our IBD estimates are not based on identification of shared
segments. Instead, our IBD estimate at a locus is a weighted sum of
IBD sharing across all pairs where the weights are the probabilities

of sharing. For the problem of estimating average sharing across many
pairs, restricting the sum to only high confidence IBD will tend to
result in negatively biased estimates. GIBDLD, on the other hand,
shows little evidence of bias in our simulations and it is for this
reason, we suspect, it finds more peaks of IBD sharing.
Although several regions have anomalously high IBD sharing, we

do not have a formal test to assess statistical significance. In principle,
simulations could be done to obtain an empirical distribution on p̂i,
but doing so would necessarily depend on a variety of demographic
assumptions, such as population size, structure within the population
and method of ascertainment of the study sample. In addition, it may
also be the case that some genomic characteristics of specific regions
(eg, inversions) would result in apparently inflated IBD estimates. In
general, such genomic characteristic would have to allow for enough
diversity that there could be significant evidence in favor of IBD –
simply making all haplotypes identical reduces IBD estimates to
zero – but at the same time inhibit the creation of new variation
(ie, through recombination or mutation) for a long enough period of
time that similarity should not be considered IBD. This is a question
deserving of further study. For these reasons, we choose here to take
an empiric approach and identify outlier IBD regions. Such regions,
though consistent with and possibly indicative of selection, should
not, in isolation, be considered conclusive evidence of selection.
Nevertheless, the fact that regions such as HLA and LCT, where there
has been abundant evidence in favor of natural selection, have
elevated IBD suggests that the approach taken here is a useful one
at helping to identify targets of natural selection.
Substantial amounts of unmodeled LD could also artificially inflate

estimates of IBD. In our analysis, however, we allowed up to 20 SNPs
up to 0.1 cM away from the target SNP (ie, the SNP where IBD is
being estimated) to be included in the LD model. Our experience
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suggests that this allows us to adequately capture LD between the
target SNP and other SNPs in the region. Looking across the genome
in regions of high LD, we see no evidence of inflation of IBD
estimates. There are some regions of the genome, however, where
pairwise LD may remain substantial outside the region included in
our model. Indeed, it has been pointed out that some regions
showing extended LD may be mistakenly interpreted as signals of
selection.36 Of the four regions we highlight, the LCT and HLA
regions have long range LD. In general, though, we expect long range
pairwise LD will not introduce substantial bias in our estimates of
IBD. This is because even when the target SNP is in LD with a distant
SNP, it is also in LD with nearby SNPs that are included in our model.
The distant SNP will also be in LD with the nearby SNPs, resulting in
most or all of its predictive information on the target SNP being
captured in the model.
Identification of genomic regions undergoing selection is one of the

several applications of IBD estimation that have the potential to
greatly enhance our insight into genetics. In our analysis, we are able
to both replicate previous signals of selection detected using other
methods as well as find novel regions. Much of this, however, was
accomplished because we were able to use the full spectrum of
genotype data available. We believe that using all the genetic
information available – as opposed to thinning and thus eliminating
much of the data – to determine IBD sharing at loci will also facilitate
greater insight into other genetic questions. However, tools that are
able to use all the information, and to provide probabilistic measures
of IBD, are needed. Furthermore, as interest increases in genetic
studies in a diversity of human populations, methods that are effective
for a wide range of relatedness levels, including the possibility of
inbreeding, will be critical. In the loci that show the highest excess
IBD sharing in the MKK, for instance, there are substantial numbers
of pairs that show evidence of sharing more than two alleles IBD or
have near certainty of sharing all four alleles IBD, even though the
pairs are effectively unrelated based on a genome-wide measure.
Although a method that does not allow for inbreeding may detect a
high probability of IBD for these pairs, it would be unable to detect
this level of sharing. This is a particular concern for studies in
populations that are of limited size, genetically isolated or, like the
MKK, are largely outbred but have significant cryptic relatedness. Our
software, GIBDLD, accommodates these needs, providing a beneficial
tool for those wishing to estimate IBD.
GIBDLD is part of the IBDLD software package http://sourceforge.

net/projects/ibdld/.
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