
ARTICLE

Adaptive clustering and adaptive weighting methods
to detect disease associated rare variants

Qiuying Sha1, Shuaicheng Wang1 and Shuanglin Zhang*,1

Current statistical methods to test association between rare variants and phenotypes are essentially the group-wise methods

that collapse or aggregate all variants in a predefined group into a single variant. Comparing with the variant-by-variant

methods, the group-wise methods have their advantages. However, two factors may affect the power of these methods. One is

that some of the causal variants may be protective. When both risk and protective variants are presented, it will lose power by

collapsing or aggregating all variants because the effects of risk and protective variants will counteract each other. The other is

that not all variants in the group are causal; rather, a large proportion is believed to be neutral. When a large proportion of

variants are neutral, collapsing or aggregating all variants may not be an optimal solution. We propose two alternative methods,

adaptive clustering (AC) method and adaptive weighting (AW) method, aiming to test rare variant association in the presence of

neutral and/or protective variants. Both of AC and AW are applicable to quantitative traits as well as qualitative traits. Results

of extensive simulation studies show that AC and AW have similar power and both of them have clear advantages from power to

computational efficiency comparing with existing group-wise methods and existing data-driven methods that allow neutral and

protective variants. We recommend AW method because AW method is computationally more efficient than AC method.
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INTRODUCTION

Studies of the genetic architectures of several common diseases as
well as simulation studies suggest that causal variants can be either
common or rare.1–7 The main purpose of current genome-wide
association studies (GWAS) is mapping common variants using
indirect mapping methods based on tagging SNPs. GWAS have
successfully detected many common variants responsible for
complex diseases.8–11 However, it has also been observed that the
variants identified through GWAS account for only a small portion of
the presumed phenotypic variation, and hence many variants remain
to be discovered.12 Therefore, there is a great interest to investigate the
function of rare variants in the etiology of common diseases and rare
variant association studies become more and more popular.7,13–17 In
order to perform rare variant association studies, direct association
mapping method in which all variants must be indentified should be
used. New technologies allow sequencing of parts of the genome—or,
in the future, the whole genome—of large groups of individuals.18

Sequencing can directly identify millions of rare mutations in the
genome, and may therefore be able to identify rare mutations that are
not tagged by tagging SNPs, which makes rare variant association
studies feasible.19

Based on the idea of collapsing or aggregating rare variants in a
gene or a pathway, several statistical methods to detect associations of
rare variants have recently been developed, which includes the cohort
allelic sums test (CAST) method,20 the combined multivariate and
collapsing (CMC) method,21 the weighted sum (WS) method,22 the
variable minor allele frequency (MAF) threshold method,23 and the
cumulative minor-allele test (CMAT) method24 among others. These

group-wise methods have been proved to be more powerful than the
variant-by-variant methods. However, two factors may affect the
power of these methods. One is that some of the causal variants may
be protective. The other is that not all variants in the group are causal;
rather, a large proportion is believed to be neutral. The group-wise
methods assume that all causal variants are risk variants. This
assumption may be reasonable for some diseases,7 but it is possible
that some variants are protective.25 When both risk and protective
variants are presented, it may lose power by collapsing or aggregating
all variants because the effects of risk and protective variants will
counteract each other. When a large number of neutral variants are
included, the group-wise methods will also lose power because more
neutral variants mean more noise and smaller signal–to-noise ratio.
One way to reduce the number of neutral variants in the analysis is
focusing on non-synonymous variants in gene coding regions.7,26

In addition, bioinformatics tools such as SIFT,27 PMUT,28 and
PolyPhen29 can be used to predict functionality of non-synonymous
variants. We can further focus on non-synonymous variants
that lead to putatively deleterious mutations. However, empirical
studies have shown that predictive errors of these tools are
high and agreement among them is low.17,25,30 Therefore, the
usefulness of the bioinformatics tools is limited. As pointed by Liu
and Leal,30 even when functionality can be correctly inferred, whether
the identified variants affect the phenotype of interest is still
unknown. Thus, we expect that a large proportion of variants
under study are neutral and the group-wise methods by collapsing
or aggregating all variants in the group may not be optimal.
New methods that can combine the effects of risk and protective
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variants and can reduce the noise produced by neutral variants are
needed.

Recently, several adaptive or data-driven methods have been
proposed to detect rare variant association.25,31–33 Han and Pan31

proposed to use a statistic to determine whether a variant should be
protective or risk and change sign of genotypic scores of protective
variants when aggregating. However, neutral variants are not carefully
considered in this method. All of Bhatia et al,32 Hoffmann et al,25 and
Zhang et al33 proposed to find the ‘best’ subgroup in the group of
variants considered and only collapse or aggregate the variants in the
‘best’ subgroup. Some of other methods that are robust to the
direction and magnitude of the effects of causal variants have been
also proposed, which include C-alpha test,34 sequence kernel
association test (SKAT),35 and weighted Goeman’s test (WGT).36,37

C-alpha, SKAT, and WGT, by testing the variance rather than the
mean, are robust to the direction of the effects of causal variants.

In this article, we propose two alternative methods to test
association between a group of rare variants and the phenotype
in the presence of neutral and protective variants. One method, called
adaptive clustering (AC), clusters variants into risk, neutral, and
protective variants based on the optimal threshold of a statistic, and
then tests association by combining the effects of risk and protective
variants and deleting the effects of neutral variants. The other
method, called adaptive weighting (AW), gives a continuous weight
for each variant instead of clustering variants in a rigid manner. In
this method, the variants that have strong associations with the
phenotype will be given higher weights, which can potentially
distinguish risk, neutral, and protective variants. Extensive simulation
studies are used to evaluate and compare the performance of the
proposed methods with existing group-wise methods and a data-
driven method. Results show clear advantages of our proposed
methods from power to computational efficiency.

METHODS
Consider a sample of n individuals. Each individual has been genotyped at m

variants in a genomic region (a gene or a pathway). As discussed in

Introduction, there may be risk, neutral, and protective variants among the

m variants. Collapsing all the m variants together, the protective variants will

offset the effects of risk variants and the neutral variants will produce noise. If

we know which variants are risk, neutral, or protective, then we can delete the

neutral variants and combine the effects of risk and protective variants.

However, for a specific phenotype, it is hard to separate the three kinds of

variants by using bioinformatics tools. We propose to use an adaptive method

that uses data at hand to separate the three kinds of variants. Specifically, we

use the score test statistic to separate the variants. Denote yi (1 for cases and 0

for controls in a case–control study) and Xi as the trait value and genotypic

score of the ith individual, where Xi can be multidimensional. Under the

assumption of the generalized linear model,38 the score test statistic to test

association between the trait and genotype is given by Chapman et al39

S2ðyi;Xi; i¼ 1; :::; nÞ¼U 0V � 1U ð1Þ

where U ¼
Pn
i¼ 1

ðyi � �yÞðXi � �XÞ and V ¼ 1
n

Pn
i¼ 1

ðyi � �yÞ2
Pn
i¼ 1

ðXi � �XÞðXi � �XÞT .

When Xi is one dimension, we also say that Sðyi;Xi; i¼ 1; :::; nÞ¼U/
ffiffiffiffi
V

p
is

score test statistic. We use the score test to test association between the trait

and each of the m variants. Let xi1,...,xim denote the genotypic scores of the ith

individual at the m variants, where xik¼ 0,1, or 2 (the number of the minor

allele), and Sk ¼ Sðyi; xik; i¼ 1; :::; nÞ¼U/
ffiffiffiffi
V

p
denote the value of the score

test statistic to test association between the trait and the kth variant. For a

given threshold C, we consider the kth variant as a risk, neutral, or protective

variant, if Sk4C, |Sk|rC, or Sko�C, respectively. When the information of

risk, neutral, and protective variants is available, we use the following method

to construct a test that can reduce the noise produced by neutral variants and

can combine the effects of risk and protective variants.

Let RC and PC denote the sets of risk and protective variants, respectively.

The genotypic scores of the ith individual across risk variants, across protective

variants, and across all variants are given by

xRC

i ¼
X
kARC

wkxik; xPCi ¼
X
kAPC

wkxik; and xCi ¼ xRC

i � xPCi ;

respectively, where wk ¼ 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npkð1� pkÞ

p
is the weight suggested by Madsen

and Browning22 and pk is the estimated MAF with pseudo-counts at the kth

variant using controls only for case–control studies and using all sampled

individuals for quantitative traits. The test statistic to test association between

the trait and the genomic region is the score test statistic

SC ¼ Sðyi; xCi ; i¼ 1; :::; nÞ¼U/
ffiffiffiffi
V

p
: ð2Þ

Two adaptive tests combining effects of risk and protective variants
The test SC is intuitively appealing. However, the test statistic depends on the

threshold C and choosing an appropriate value of threshold C is crucial to the

performance of the test. It is difficult to choose the optimal value of the

threshold C because the optimal value depends on many factors and different

data sets may have different optimal values. To overcome the difficulty of

choosing the optimal value, we propose the following two methods.

(1) Instead of using a fixed threshold in SC, we use a variable-threshold

approach. We call the test with variable-threshold as Adaptive Clustering test

combining effects of both risk and protective variants (AC2). The statistic of

AC2 maximize the value of SC across values of threshold C, that is,

AC2¼maxC SC :

Statistical significance of AC2 can be evaluated by a permutation test. To

calculate AC2, we only need to maximize SC across m values of C: S1, S2,..., Sm,

the values of score test statistic at the m variants. Thus, the computational cost

of AC2 for analyzing a genomic region with m variants is O(m).

(2) Instead of using a threshold in SC, we use continuous weights. We call the

test with continuous weights as Adaptive Weighting test combining effects of

both risk and protective variants (AW2). In AW2, the genotypic score of the ith

individual is given by

xwi ¼
Xm
k¼ 1

Skwkxik ¼
X

k : Sk 4 0

Skj jwkxik �
X

k : Sk o 0

Skj jwkxik;

where wk is the weight suggested by Madsen and Browning22 and Sk is the

value of score test statistic applied to the kth variant. AW2 is the score test and

test statistic is given by

AW2¼ Sðyi; xwi ; i¼ 1; :::; nÞ:

In AW2, the variants that have strong association with the trait will be given

higher weights which can potentially distinguish risk, neutral, and protective

variants. The computational cost of AW2 for analyzing a genomic region with

m variants is O(1).

Two adaptive tests using effects of risk variants only
To incorporate the effects of protective variants, AC2 and AW2 include the

terms xPCi and
P

k : Sk o 0

Skj jwkxik in their genotypic scores. However, in the case

of no protective variants, including xPCi and
P

k : Sk o 0

Skj jwkxik means including

noise terms and may make AC2 and AW2 lose power. Here, we propose

another two tests for the case of no or small proportion of protective variants:

AC method using risk variants only (AC1) and AW method using risk variants

only (AW1). AC1 is the same as AC2 but replacing genotypic score

xCi ¼ xRC

i � xPCi in AC2 by xCi ¼ xRC

i . AW1 is the same as AW2 but replacing

genotypic score xwi ¼
Pm
k¼ 1

Skwkxik in AW2 by xwi ¼
P

k : Sk 4 0

Skj jwkxik. We expect

that AC1 and AW1 are more powerful than AC2 and AW2 in the case of no or

small proportion of protective variants.

Comparison of methods
We compare the performance of the four proposed tests with that of the WS

test,22 the CMC method,20 STEP-UP method,25 aSum,31 and WGT.36,37 If we
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use a permutation test to evaluate the P-value, then the Goeman’s test is

equivalent to T¼UTU, where U ¼
Pn
i¼ 1

ðyi � �yÞðXi � �XÞ and Xi¼ (xi1,y,

xim)T. WGT is the weighted version of Goeman’s test in which the weight

suggested by Madsen and Browning22 is used to weight genotypes. For

quantitative traits, the rank sum test used by WS is replaced by the score

test, the T2 test used by CMC is also replaced by the score test, and the logistic

model used by aSum is replaced by a linear model.

Simulation
We perform our simulation studies based on the empirical Mini-Exome

genotype data provided by Genetic data Analysis Workshop 17 (GAW17). This

data set contains genotypes of 697 unrelated individuals on 3205 genes. The

genotypes are extracted from the sequence alignment files provided by the

1000 Genomes Project for their pilot3 study (http://www.1000genomes.org). In

the first set of simulations, we generate genotypes based on the empirical Mini-

Exome genotype data of two genes: MSH4 gene (gene1) and ADAMTS4 gene

(gene2) (see Supplementary Tables S1 and S2 for haplotypes and their

frequencies). In all, 16 SNPs out of 20 SNPs in gene1 are rare (MAFo1%)

while 33 SNPs out of 40 SNPs in gene2 are rare. In the second set of

simulations, we generate genotypes based on the empirical Mini-Exome

genotype data of the Sgene. The Sgene with 100 variants is formed by merging

four genes (gene1, gene2, ELAVL4, and PDE4B). We choose this Sgene because

the distribution of MAFs in rare variants of Sgene can represent the

distribution of MAFs in rare variants of the 3205 genes in the empirical

Mini-Exome genotype data provided by GAW17 (Supplementary Figure S1).

We use the program fastPHASE40 to infer haplotypic phase for the 697

individuals for gene1, gene2, and Sgene. According to the haplotype

frequencies, we can generate genotypes. To evaluate type I error, we generate

trait value by the standard normal distribution and independent of genotypes.

To evaluate power, we generate trait value under three disease models. In the

first set of simulations, we randomly choose nc¼ 10 rare variants as causal

variants. In the second set of simulations, we randomly choose nc variants

(can be common variants) as causal variants, where nc is determined by the

percentage of causal variants. Denote nr and np as the number of risk variants

and protective variants, respectively, where nrþ np¼ nc. For an individual, let

xri and x
p
j denote the genotypic scores of the ith risk variant and the jth

protective variant, respectively. In disease model 1, we assume that all the nc
causal variants have the same heritability. Under this assumption, disease

model 1 is given by y¼
Pnr
i¼ 1

bri x
r
i �

Pnp
j¼ 1

bpj x
p
j þ e, where e is a standard normal

random number; brk and bpk are constants and their values depend on the total

heritability. Disease model 2 is given by y¼b(xr�xp)þ e, where

xr ¼ 1 if xr1 þ :::þ xrnr � 1
0 otherwise

�
, xp ¼ 1 if x

p
1 þ :::þ xpnp � 1

0 otherwise

�
. Disease model

3 is given by y¼ bð
Pnr
i¼ 1

xri �
Pnp
j¼ 1

x
p
j Þþ e. b is constant and its value depends on

the total heritability.

RESULTS

To evaluate the type I error, we consider different sample sizes and
different haplotype structures. In each simulation scenario, P-values are
estimated by 1000 permutations and type I error rates are evaluated
using 1000 replicated samples. For 1000 replicated samples, the
standard deviation for type I error rates is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05�0:95/1000

p
�

0:007 and the 95% confidence interval is (0.036, 0.064) for the
nominal level of 0.05. The estimated type I error rates of the seven
tests are summarized in Table 1. From this table, we can see that all the
estimated type I error rates are within the 95% confidence intervals,
which indicate that the estimated type I error rates are not significantly
different from the nominal level. Thus, the seven tests are all valid tests.

For power comparisons, we consider two different cases: candidate
gene association studies and regional association studies. In candidate

gene studies, P-values are estimated by 1000 permutations and powers
are calculated at a significance level of 0.05. In regional association
studies, P-values are estimated by using 10 000 permutations and
powers are calculated at a significance level of 0.001. In both cases,
power is evaluated using 200 replicated samples.

In power comparisons, we first notice that AC1 has almost identical
power with AW1 and AC2 has almost identical power with AW2 in all
the simulation scenarios (Supplementary Figures S2–S5). Thus, in
following discussions, we omit AC1 and AC2.

In the first set of simulations, we compare the power of five tests:
CMC, WS, AW1, AW2, and STEP-UP. The power comparisons under
disease model 1 in the case of candidate gene association studies and
in the case of regional association studies are given in Figures 1 and 2,
respectively. From these figures, we can draw following conclusions:
(1) AW1 is consistently more powerful than CMC and WS regardless
of different values of heritability, disease models, and the number of
protective variants. In general, the power improvement of AW1 over
CMC and WS becomes larger in the presence of the protective
variants. (2) With the increase of the number of protective variants,
the power of CMC, WS, and AW1 decreases, but the power of AW1
decreases not as much as that of CMC and WS. This is because
protective variants would offset the effects of risk variants for CMC
and WS. For AW1, although protective variants do not provide more
information, protective variants do not offset the effects of risk
variants. (3) The pattern of powers of AW2 and STEP-UP is different
from that of CMC, WS, and AW1. The powers of AW2 and STEP-UP
do not decrease with the increase of the number of protective variants
because AW2 and STEP-UP can combine the effects of both risk and
protective variants. AW2 and STEP-UP may be not as powerful as
CMC, WS, and AW1 when there is no protective variant. However,
AW2 and STEP-UP will be more powerful than CMC, WS, and AW1
when there are a large proportion of protective variants. (4) Although
AW2 and STEP-UP have similar power, AW2 is more powerful than
STEP-UP in 490% of simulation scenarios. The two sample t test
based on all the simulation scenarios and 200 replications for each
simulation scenario shows that AW2 is significantly more powerful
than STEP-UP with P-value 1.7� 10�10. Furthermore, AW2 is
computationally much more efficient than STEP-UP (see Discussion
for details). (5) Comparing power of AW1 and AW2, when protective
variants are o10%, AW1 is more powerful than AW2; when
protective variants are 440%, AW2 is more powerful than AW1;
when protective variants are between 10 and 40%, which one is more
powerful depends on disease models, haplotype structures, and values
of heritability. (6) The power improvements of AW1 and AW2 over
CMC and WS in regional association studies are larger than those in

Table 1 The estimated type I error rates (in percentage) of the seven

tests

Significance level 5%

Sample size Gene CMC WS AW1 AW2 AC1 AC2 STEP-UP

500

Gene1 4.7 5.0 4.9 4.9 4.8 4.9 3.7

Gene2 4.7 4.9 5.0 4.1 5.0 4.5 5.5

1000

Gene1 3.8 5.5 4.4 3.6 4.7 3.9 4.5

Gene2 5.9 5.6 4.9 5.3 4.9 5.5 5.8

1500

Gene1 3.6 4.3 4.3 4.7 4.6 4.7 5.5

Gene2 4.5 5.5 4.3 4.7 4.4 4.4 4.0
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candidate gene association studies. This is not difficult to interpret. To
reach certain power in regional association studies in which a more
stringent significance level is used, the effects of causal variants or
sample size should be larger than that in candidate gene studies, and
in either case, it is easier to separate risk, protective, and neutral
variants. Power simulation results based on models 2 and 3 yield the
same conclusions (Supplementary Figures S6–S9).

In the second set of simulations, we compare the power of three
tests: AW2, aSum, and WGT. The power comparisons under disease
model 1 are given in Figure 3. As shown in Figure 3, AW2 and WGT
have similar power in general. WGT is more powerful than AW2
when there are no protective variants and the percentage of neutral
variants is small; AW2 is more powerful than WGT otherwise. The
power of AW2 and WGT is not affected by the percentage of neutral
variants, while the power of aSum decreases as the increase of the
percentage of neutral variants. When only rare variants are consid-
ered, aSum is more powerful than AW2 and WGT when the
percentage of neutral variants is small and aSum is less powerful
than AW2 and WGT when the percentage of neutral variants is large.
When common variants are added, the power of AW2 and WGT is
not affected much because AW2 and WGT put small weights on
common variants. However, the power of aSum decreases significantly
when common variants are added because common neutral variants
will introduce large noises for aSum.

DISCUSSION

New sequencing technologies such as ABI SOLiD and Illumina HiSeq
that allow sequencing of parts of the genome—or, in the future, the
whole genome—of large groups of individuals have made rare variant
association studies feasible. However, statistical methods to test
association between rare variants and phenotypes are still under
developed. In this article, we have developed two novel methods, AC
and AW, aiming to test rare variant association in the presence of
neutral and/or protective variants. Our results show that AC and AW
have very similar performance. We recommend AW because AW is
computationally more efficient than AC. Two tests, AW1 and AW2,
are proposed under the AW method. AW2 is designed to test rare
variant association in the presence of neutral and protective variants
while AW1 is designed to test rare variant association in the presence
of neutral with no or small proportion of protective variants. We use
extensive simulation studies to compare the performance of our
proposed methods with existing methods. Our results show that AW1
is consistently more powerful than CMC and WS (two typical group-
wise methods) in all the simulation scenarios, while AW2 is more
powerful than STEP-UP (one recently developed data-driven method
that allows neutral and protective variants) in 490% of simulation
scenarios.

In population-based association studies, it has been long recog-
nized that population stratification can seriously confound associa-
tion results. In common variant association studies, several methods
that use a set of unlinked genetic markers genotyped in the same
samples have been developed to control for population stratifica-
tion.41–44 All of the four tests proposed in this article can be easily
modified such that they can be robust to population stratification.
Principal component (PC) approach that summarizes the genetic
background through the PC analysis of genotypes at genomic
markers43,44 can be used to modify our four tests. We take AW2
as an example. Let Ti¼ (ti1, ti2,..., tiK)T denote the first K PCs of
genotypes at genomic markers of the ith individual. We adjust both
the trait yi and genotypic score xwi for the PCs by applying linear
regression. That is,

yi ¼b0 þb1ti1 þ :::þ bKtiK þ ei and xwi ¼ a0 þ a1ti1 þ :::þ aKtiK þ ti:

Let y�i and xw�i denote the residuals of yi and xwi , respectively. We can
consider y�i and xw�i as the trait value and genotypic score of the ith
individual after adjusted for population stratification. AW2 will be
robust to population stratification if we replace yi and xwi by y�i and
xw�i , respectively.
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Figure 1 The power comparisons of the five tests based on disease model

1. hh represents the total heritability of the 10 causal variants. Since there

are 10 causal variants in total, 0, 10, 20, 30, 40, and 50% protective

variants represent 0, 1, 2, 3, 4, and 5 protective variants. Sample size is

1000. P-values are estimated using 1000 permutations and power is

evaluated at a significance level of 0.05 using 200 replicates for each

scenario. This simulation mimics candidate gene association studies.
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Figure 2 The power comparisons of the five tests based on disease model

1. hh represents the total heritability of the 10 causal variants. Since there

are 10 causal variants in total, 0, 10, 20, 30, 40, and 50% protective
variants represent 0, 1, 2, 3, 4, and 5 protective variants. Sample size is

1000. P-values are estimated using 10000 permutations and power is

evaluated at a significance level of 0.001 using 200 replicates for each

scenario. This simulation mimics regional association studies.
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In rare variant association studies, the use of asymptotic distribu-
tions of test statistics is not appropriate because very small MAF can
lead sparse data. Almost all of existing methods for testing rare
variant association use a permutation test to evaluate P-values. The
use of the permutation test makes us to consider the computational
efficiency of each method. Data-driven methods are usually compu-
tationally more intensive than other methods. Analyzing a single gene
with m variants, the computational complexity of variable MAF
threshold method23 that considers all possible MAF thresholds is at
order of O(m) and STEP-UP method is at order of O(m2), while our
proposed AW method is at order of O(1). The running time of AW
method to analyze one gene with 20 variants, 1000 individuals, and
1000 permutations is o0.5 s. To perform genome-wide studies, we
can first select genes that show evidence of association based on a
small number (eg, 1000) of permutations, and then, a large number
of permutations are used to test the selected genes.

Each of AW1 and AW2, the two tests we proposed under AW
method, has its advantages. In general, AW2 is more powerful when a
large proportion of causal variants are protective; AW1 is more
powerful otherwise. In practice, we suggest to apply both of the two
tests because it is hard to know which test is more powerful for a
specific data set. We can also construct a test that combine AW1 and
AW2 by

AWcom ¼ minðp1; p2Þ;

where p1 and p2 are the P-values of AW1 and AW2, respectively. The
power of AWcom is expected to be between that of AW1 and AW2.
However, further investigation is needed to evaluate the performance
of AWcom.
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