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Smoothed functional principal component analysis
for testing association of the entire allelic spectrum
of genetic variation

Li Luo1, Yun Zhu2 and Momiao Xiong*,2

Fast and cheaper next-generation sequencing technologies will generate unprecedentedly massive and highly dimensional

genetic variation data that allow nearly complete evaluation of genetic variation including both common and rare variants.

There are two types of association tests: variant-by-variant test and group test. The variant-by-variant test is designed to

test the association of common variants, while the group test is suitable to collectively test the association of multiple rare

variants. We propose here a smoothed functional principal component analysis (SFPCA) statistic as a general approach for

testing association of the entire allelic spectrum of genetic variation (both common and rare variants), which utilizes the

merits of both variant-by-variant analysis and group tests. By intensive simulations, we demonstrate that the SFPCA statistic

has the correct type 1 error rates and much higher power than the existing methods to detect association of (1) common

variants, (2) rare variants, (3) both common and rare variants and (4) variants with opposite directions of effects. To further

evaluate its performance, the SFPCA statistic is applied to ANGPTL4 sequence and six continuous phenotypes data from

the Dallas Heart Study as an example for testing association of rare variants and a GWAS of schizophrenia data as an example

for testing association of common variants. The results show that the SFPCA statistic has much smaller P-values than many

existing statistics in both real data analysis examples.
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INTRODUCTION

Resequencing of genomes will generate unprecedentedly high-dimen-
sional genetic variation data that allow nearly complete evaluation of
the genetic variation including several million common (45%
population frequency), low frequency (o1% and o5% population
frequency) and rare variants (o1% population frequency) in the
typical human genomes.1,2 Despite their promise, next-generation
sequencing (NGS) technologies suffer from three remarkable
limitations: high error rates, enrichment of rare variants and large
proportion of missing values.3,4 Since an individual rare variant
would have a relatively small impact on the common disease and the
rare variants have very low frequencies in the populations, the power
of the traditional analytical tools that are mainly designed for the
purpose of detecting common variants, for testing association of rare
variants will be limited. Developing new analytical tools for the
analysis of the massive sequencing data poses a novel and great
challenge to statistical analysis.5

Genetic studies of complex diseases are undergoing a paradigm
shift from the single market analysis to the joint analysis of multiple
variants in a genomic region that can be genes or other functional
units.6 Large simulations have shown that combining information
across multiple variants in a genomic region of analysis will greatly
enhance power to detect association of rare variants.2 In the past
several years, various versions of collapsing methods in which all

rare variants are collapsed and treated as a single variable for
analysis have been developed.2,3,7–17 Although in some cases group
tests have a higher power than the individual tests, they also suffer
limitations. First, group tests ignore difference in the effects of
SNPs at different genomic locations on phenotype. Second, group
tests do not leverage linkage disequilibrium (LD) in the data.
And third, since sequence errors are cumulative when rare variants
are grouped, group tests are sensitive to the genotyping errors
and missing data. To utilize the advantages of both single variant
analysis and group tests and address the limitations inherent by single
variant analysis and group tests, we view the genome as a continuum
and variants in the genome as a realization of a stochastic process
which can be modeled as a random function and proposed to
use functional principal component analysis (FPCA) for testing
the association of rare variants with disease.18 FPCA can greatly
enhance the power to detect association of variants. However,
when the genetic variant functions in FPCA rapidly change within
the genomic region, the basis expansion in the FPCA cannot approxi-
mate the genetic variation data well, which will decrease the power
of FPCA. To overcome this limitation, we propose to develop the
smoothed FPCA (SFPCA) for testing the association of rare variants
that combines a measure of goodness-of-fit with a roughness penalty
to retain the advantages of basis expansion, but circumvent its
limitation.
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Group tests often make implicit homogeneity assumptions where
all putatively functional variants within the same genomic region are
assumed to have the same direction of effects. However, in practice,
the variants with opposite directions of effects will be simultaneously
presented in the same genomic region.5 Group tests have difficulties
in dealing with heterogeneity due to size and effect signs. The second
purpose of this paper is to show that the SFPCA will take the sign and
size heterogeneity of the variants into account and be less sensitive to
the presence of variants with opposite directions of effect.

There is increasing consensus that complex diseases are caused by
common and rare variants. Many statistics can be used to test for
association of either common variants or rare variants, but very few
can be used to test association of both common and rare variants.
Third purpose of this report is to demonstrate that the SFPCA can be
used to test the association of the entire allelic spectrum of genetic
variation.

To accomplish these goals, we will use large-scale simulations to
calculate the type 1 error rates and evaluate the power of 12
alternative statistical methods: the SFPCA discretization, SFPCA
Fourier expansion, FPCA discretization, FPCA Fourier expansion,
collapsing method, combined multivariate and collapsing (CMC)
method,8 generalized T2,2,19 multivariate principal component
analysis (MPCA), the weighted sum statistic (WSS)9 and the
variable threshold (VT) method10 under various scenarios. To
further evaluate its performance, the SFPCA is applied to the
ANGPTL4 sequence and six continuous phenotypes data from the
Dallas Heart Study20 and a GWAS of schizophrenia data.

MATERIALS AND METHODS

Smoothed FPCA
We first review the definition of genetic variant profiles.18 Let t be the position

of a genetic variant within a genomic region and T be the length of the

genomic region being considered. For convenience, we rescale the region [0,T]

to [0,1]. Because the density of genetic variants is high, we can view t as a

continuous variable in the interval [0,1]. Assume that nA cases and nG controls

are sampled and sequenced. We define the genotype of the ith case as

YiðtÞ¼
2 MM
1 Mm
0 mm

8<
: ; i¼ 1; . . . ; nA ð1Þ

where M is an allele at the genomic position t. Similarly, we can

define a genetic variant function XiðtÞ; ði¼ 1; . . . ; nGÞ for the ith control.

Now, we review the concept of functional principal component for

association studies.18 To capture variation of genetic variant function, we

define a linear combination of functional values:

f ¼
Z1

0

bðtÞXðtÞdt ð2Þ

where b(t) is a weight function and X(t) is a centered genetic variant function

defined in equation (3). The functional principal components can be obtained

by choosing weight function b(t) to maximize the variance of f:18

Varðf Þ¼
Z1

0

Z1

0

bðsÞRðs; tÞbðtÞdsdt ð3Þ

where R(s,t) is the covariance function of the genetic variant function X(t).

The observed genetic variant profiles are typically not smooth, which leads

to substantial variability in the estimated functional principal component

curves. To improve the smoothness of the estimated functional principal

component curves, we impose the roughness penalty on the functional

principal component weight functions. We often penalize the roughness of

the functional principal component curve using its integrated squared second

derivative. The balance between the goodness-of-fit and the roughness of the

function is controlled by a smoothing parameter m.

The smoothed functional principal components can be obtained by solving

the following integral equations (see Appendix):

Z1

0

Rðs; tÞbðsÞds¼ l½bðtÞþ mD4bðtÞ�: ð4Þ

Note that when m¼ 0, the SFPCA is reduced to an unsmoothed FPCA.

Computations for the smoothed principal component function
and the principal component score
The eigenfunction is an integral function and difficult to solve in closed form.

A general strategy for solving the eigenfunction problem in (4) is to convert

the continuous eigen-analysis problem to an appropriate discrete eigen-

analysis task.21 In this paper, we use basis function expansion methods to

achieve this conversion (see Supplementary File 1).

Let {fj(t)} be the series of Fourier functions. For each j, define o2j�1¼
o2j¼ 2pj. We expand each genetic variant profile Xi(t) as a linear combination

of the basis function fj:

XiðtÞ¼
XT
j¼ 1

CijfjðtÞ: ð5Þ

Define the vector-valued function X(t)¼ [X1(t),yXN(t)]T and the vector-

valued function f(t)¼ [f1(t),yfT(t)]T. The joint expansion of all N genetic

variant profiles can be expressed as

XðtÞ¼CfðtÞ ð6Þ

where C is a coefficient matrix C¼ (Cij)N�T.

In matrix form, we can express the variance-covariance function of the

genetic variant profiles as

Rðs; tÞ¼ 1

N
fTðsÞCTCfðtÞ ð7Þ

Similarly, the eigenfunction b(t) can be expanded as

bðtÞ¼
XT
j¼ 1

bjfjðtÞ andD4bðtÞ¼
XT
j¼ 1

o4
j bjfjðtÞ or

bðtÞ¼fðtÞTb andD4bðtÞ¼fðtÞTS0b

ð8Þ

where b¼ [b1,y,bT]T and S0¼ diag (o1
4,y,oT

4). Let S¼ diag ((1þ mo1
4)�1/2,

y,(1þmoT
4)�1/2). Then, we have

bðtÞþmD4bðtÞ¼jðtÞTS� 2b

Substituting expansions (7) and (8) of variance-covariance R(s,t) and eigenfunc-

tion b(t) into the functional eigen equation (4), we obtain

1

N
CTCb¼ lS� 2b ð9Þ

which can be rewritten as

S
1

N
CTC

� �
Su¼ lu ð10Þ

where u¼ S�1b. Thus, b¼ Su and b(t)¼f(t)Tb is a solution to eigen

equation (4).

Note that ouj, uj4¼ 1 and ouj, uk4¼ 0 for koj. Therefore, we obtain a

set of orthonormal eigenfunctions as shown in equation (11):

j j bj j j 2
m ¼ bT

j S
� 2bj ¼ uT

j SS
� 2Suj ¼ 1 and o bj; bk 4 m ¼ bT

j S
� 2bk ¼ uT

j uk ¼ 0 ð11Þ

where an inner product of two functions is defined as

ðf ; gÞm ¼
R
f ðtÞgðtÞdtþm

R
D2f ðtÞD2gðtÞdt, where D2f ðtÞ¼ d2 f ðtÞ

dt .

Test statistic
We use the pooled genetic variant profiles Xi(t) of cases and Yi(t) of controls to

estimate the set of orthonormal principal component function

bjðtÞ; j¼ 1; 2; :::; k (eigenfunctions) using the basis expansion methods. By

the K-L decomposition, the smoothed functional principal component score
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can be obtained by

xij ¼ o xiðtÞ; bjðtÞ4 m and Zij ¼ o yiðtÞ; bjðtÞ4 m; j¼ 1; 2 . . . k

We denote vectors of averages of functional principal component scores in

cases and controls by �x¼ �x1; . . . �xk
� �T

and �Z¼ ½�Z1; . . . �Zk�
T, where

�xj ¼
PnA

i¼ 1

xij and �Zj ¼
PnG

i¼ 1

Zij; j¼ 1; 2; :::; k, and define the pooled covariance

matrix S¼ 1
nA þ nG � 2

PnA

i¼ 1

ðxi � �xÞðxi � �xÞT þ
PnG

i¼ 1

ðZi � �ZÞðZi � �ZÞT
� �

, where

xi ¼ ½xi1; . . . xik�T ; Zi ¼ ½Zi1; . . . Zik�
T . Let L¼ð1/nA þ 1/nGÞS.

Then, the statistic is defined as T¼ð�x� �ZÞTL� 1ð�x� �ZÞ.
Under the null hypothesis of no association of the genomic region with a

disease, the statistic T is asymptotically distributed as a central w2
ðkÞ

distribution.

RESULTS

Null distribution of test statistics
When the sample size is large, the distribution of the SFPCA test
statistic for testing the association of the genomic region with a trait
of interest is distributed under the null hypothesis of no association as
a central w2

ðKÞ distribution, where K is the number of functional
principal components used in the test. To examine the validity of this
statement, we performed a series of simulation studies.

We used the MS software22 to generate a population of 2 000 000
chromosomes, each with 60 common SNPs (MAFZ0.05) and 180
rare SNPs (MAFr0.05) in a genomic region on the basis of a
coalescent model that mimics the LD pattern and the population
history. The frequencies of minor alleles in the genomic region vary
from 10�5 to 0.43. A number of individuals, ranging from 1000 to
5000, each consisting of two chromosomes, were sampled from the
population and equally assigned to cases and controls. A total of
10 000 data sets were generated and the proposed test statistics were
performed for each data set. For each test, we selected the number of
functional principal components that account for 90% of the total
variations.

Table 1 summarized the type 1 error rates of the SFPCA test
statistics for testing the association of rare variants within a genomic
region. It showed that the estimated type 1 error rates of the test
statistic were not appreciably different from the nominal levels
a¼ 0.05, a¼ 0.01 and a¼ 0.001. We also performed simulation
studies to examine the validity of the null distribution of the test
statistics in testing the association of a set of both common and rare
variants within a genomic region. All 240 common and rare variants
were used to calculate the type 1 error rates. Table 2 summarized the
type 1 error rates of the SFPCA statistic for testing the association of
all 240 variants in the genomic region with the disease. It showed that
the estimated type 1 error rates of the SFPCA statistic were also not
appreciably different from the nominal levels a¼ 0.05, a¼ 0.01 and
a¼ 0.001.

Power evaluation
To evaluate the performance of the FPCA-based statistics for testing
the association of a set of rare variants with disease, we used the same
data set as that for type 1 error rate calculation to estimate their
power to detect a true association. We considered four disease models:
additive, dominant, recessive and multiplicative.

An individual’s disease status was determined based on the
individual’s genotype and the penetrance for each locus. Let Ai be a
rare risk allele at the ith locus. Let Gkiðk¼ 0; 1; 2Þ be the genotypes
aiai, Aiai and AiAi, respectively, and fki be the penetrance of genotypes
Gki at the ith locus. The relative risk (RR) at the ith locus is defined as

R1i¼ f1i/f0i and R2i¼ f2i/f0i, where f0i is the baseline penetrance of the
wild-type genotype at the ith variant site. We assume that for the
additive disease model, R2i¼ 2R1i�1; for the dominant disease
model, R2i¼R1i; for the recessive disease model, R1i¼ 1; and for
the multiplicative disease model, R2i¼R1i

2. The genotype RR was
assumed to be inversely proportional to the MAF where the
population attributable risk (PAR) of each group was assumed to
be 0.005.7 We assumed equal RR across all variant sites and the
independence of the variants influencing disease susceptibility. Each
individual was assigned to the group of cases or controls depending
on their disease status. The process for sampling individuals from the
population of 2000 000 haplotypes was repeated until the desired
samples were reached for each disease model.

Figure 1 and Supplementary Figures 1–3 plot the power curves of
12 statistics: SFPCA discretization, SFPCA Fourier expansion, FPCA
discretization, FPCA Fourier expansion, sequence kernel association
test (SKAT),23 WSS, VT, MPC-based statistic, Collapsing method and
Generalized T2 statistic, Single marker w2 test where permutation was
used to adjust for multiple testing and the CMC method (variants
with frequencies r0.005 were collapsed) as a function of the
proportion of risk increasing variants for testing the association
of 180 rare variants with disease under additive, dominant,
multiplicative and recessive disease models, respectively, assuming a
baseline penetrance of 0.01, and that 2000 cases and 2000 controls
were sampled for additive, dominant and multiplicative models, and
3000 cases and 3000 controls for the recessive models. The SFPCA-
based statistics had the highest power, followed by the classical FPCA-
based statistics, SKAT, WSS and VT under four disease models. The
single marker test, generalized T2 and CMC methods under all disease
models had the lowest power to detect association of rare variants.
When the PAR is assumed a constant, the number of risk increasing
variants determines the marginal PAR of each variant in the group.
From these figures, we can see that the power of all 12 statistics is an
increasing function of the proportion of risk variants.

Next, we evaluate the impact of the sample sizes on the power. We
assume that 15% of rare variants were risk increasing variants.

Table 1 Type 1 error rates of the smoothed FPCA statistic for testing

the association of the rare variants in a genomic region with a disease

Sample size a¼0.05 a¼0.01 a¼0.001

1000 0.0473 0.0100 0.0008

2000 0.0489 0.0095 0.0009

3000 0.0487 0.0099 0.0009

4000 0.0492 0.0106 0.0010

5000 0.0490 0.0100 0.0009

Table 2 Type 1 error rates of the smoothed FPCA statistic for testing

the association of both common and rare variants in a genomic region

with a disease

Sample size a¼0.05 a¼0.01 a¼0.001

1000 0.0493 0.0111 0.0010

2000 0.0518 0.0107 0.0010

3000 0.0523 0.0105 0.0011

4000 0.0475 0.0098 0.0010

5000 0.0500 0.0107 0.0009
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Figure 2 and Supplementary Figures S5 and S6 showed the power of
the above 12 statistics as a function of sample sizes under additive,
dominant, multiplicative and recessive models, respectively. Similarly
to Figure 1 and Supplementary Figures S1–S3, we observed that the
SFPCA-based statistics had the highest power in all settings. Differ-
ences in the power between the SFPCA-based statistics and eight
other non-FPCA statistics increased as the sample sizes increased. We
also observed that most of the time the difference in power between
the FPCA by expansion and FPCA by the discretization method is
small.

Next, we investigate the power of statistics for testing association of
both common and rare variants. Figure 3 plotted the power of 12
statistics for testing association of all 240 common and rare variants
as a function of proportion of risk variants under the additive model,
assuming that 2000 cases and 2000 controls were sampled and
Supplementary Figure S7 showed the power of 12 statistics for testing
association of all 240 common and rare variants as a function of
sample sizes under the additive model, assuming 15% of risk variants.
The power pattern of 12 statistics under other diseases models was
similar to that of the tests under additive models (data not shown).
From these figures, we observed that the SFPCA substantially
outperform the non-SFPCA and other statistics. As sample sizes
increased the difference in power between the SFPCA and other tests
rapidly increased.

To examine the impact of the direction of association of risk alleles
with disease on the power of the tests, we randomly select 7.5% of
variants as risk variants and 7.5% of variants as protective variants.
We plotted Figure 4 to show the power curves of the 12 statistics for
testing association of 180 rare variants as a function of sample size
under additive model and Supplementary Figure S8 to show the
power curves of the 12 statistics for testing association of all 240
common and rare variants as a function of sample sizes under
additive model. The patterns of power curves of the 12 statistics under
the dominant, multiplicative and recessive models were similar to
Figure 4 and Supplementary Figure S8 (data not shown). These
results clearly demonstrated that the power of the SFPCA was the
highest, followed by the classical FPCA, SKAT, WSS and VT. We also
observed that the generalized T2, single marker test, collapsing
method and CMC almost had no power to detect association of
either rare variants or both common and rare variants in the presence
of both risk and protective variants. It is interesting to note that the
FPCA-based statistics do not assume that all variants within the
genomic region being tested have the same direction of effect and do
not require a testing stage to predict direction of effect. The results
showed that the SFPCA and FPCA statistics can effectively deal with
the simultaneous presence of both risk and protective variants
without additional computation.
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T2 statistic, single marker w2 test and CMC method (the variants with
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model, assuming baseline penetrance of 0.01 and 2000 cases and 2000
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significance level a¼0.05, assuming baseline penetrance of 0.01.
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Application to real data examples
To further evaluate their performance for testing association of rare
variants, the SFPCA tests were first applied to the ANGPTL3, 4, 5 and
6 sequence and phenotype data from the Dallas Heart Study.21 The
total numbers of rare variants with a minor allele frequency o0.05 in
the ANGPTL3, 4, 5 and 6 genes which were identified from 3553
individuals were 49, 83, 91 and 66, respectively. Since the SFPCA
method requires that each individual should have at least two rare
variants in the genomic region being tested, we excluded 98
individuals with only one rare variant. The total number of rare
variants with a minor allele frequency o0.03 in ANGPTL 4 was 71.
To examine the phenotypic effects of the rare variants in the
ANGPTL 3, 4, 5 and 6 genes, two groups of individuals with the
lowest and highest quartiles of the five traits related to lipid
metabolism were selected. The individuals with plasma triglyceride
(Trig) levels less than or equal to the 25th percentile were classified as
the lowest quartiles of the Trig and the individuals with plasma Trig
greater than or equal to the 75th percentile were grouped as the
highest quartiles of the Trig. We can similarly classify the individuals
as the lowest and highest quartiles of high density lipoprotein
cholesterol (HDL), total cholesterol, very low density lipoprotein
cholesterol (VLDL) and body mass index (BMI). P-values from the
SFPCA methods, the classical FPCA methods, SKAT, WSS, VT,
MPCA-based statistic, the generalized T2 statistic, single marker w2

test where permutation was used to adjust for multiple testing,
collapsing and CMC methods for testing association of 71 rare

variants (MAFr0.03) in ANGPTL4 with the five traits, were
summarized in Table 3. For the CMC method, variants with an allele
frequency o0.005 were collapsed. The results in Table 3 clearly
demonstrated that the SFPCA methods had the smallest P-values.
We observed that P-values (1.01� 10�5 and 4.47� 10�5) by the
SFPCA-based statistics for testing association of the rare variants in
ANGPTL4 with triglyceride were much smaller than the P-value
(0.016) in their original studies.21 Particularly, we observed that only
the FPCA-based statistic and SKAT identified an association of the
rare variants in ANGPTL4 with HDL and the P-values by the
smoothed FPCA methods were even much smaller than the
P-values by the SKAT and FPCA methods. This demonstrated that
the smoothing techniques can largely increase the power to detect
association of rare variants in some cases due to the improved
accuracy to fit the data by the smoothed functional principal
component curves. P-values from the 12 statistics for testing
association of rare variants in the ANGPTL 3, 5 and 6 genes with
the five traits are summarized in Supplementary Tables 1–3, respec-
tively. We observed the same pattern as that in Table 3.
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To illustrate that the SFPCA methods can be applied to common
variants, they were applied to a GWAS of schizophrenia data that were
downloaded from dbGaP to test the association of common variants
within a genomic region. The samples were of the European origin
and included 1135 individuals with schizophrenia and 1362 controls
with 727 479 typed SNPs. The total number of genes being tested is
13 804. The threshold for declaring genome-wide significance after the
Bonferroni correction is 3.6� 10�6. The number of genes signifi-
cantly associated with schizophrenia by 14 statistics: the SFPCA,
FPCA, SKAT, Collapsing, CMC, WSS, VT, single marker w2 test
T2 test, MPCA test, FPCA, linear combination test (LCT), quadratic
test (QT), de-correlation test (DT)24 is listed in Table 4. We also listed
the top 10 significantly associated genes that were identified by the
SFPCA (Fourier Expansion) in Table 5. Since in many cases the
frequency of individuals with at least one minor alleles present is close
to one, the collapsing test statistic cannot be calculated and hence its

P-values were not listed in Table 5. The results clearly showed that the
number of significantly associated genes identified by the SFPCA is
much larger than that identified by the unsmoothed FPCA and other
statistics, and the P-values by the SFPCA were much smaller than the
P-values by the unsmoothed FPCA and other statistics. Therefore, the
smoothing techniques provide a large improvement over the FPCA
methods without smoothing. Among genes in Table 5, PDLIM5 was
reported to be associated with schizophrenia and bipolar disorder,25

CERKL was associated with narcolepsy,26 HAAO was associated with
Parkinson’s disease27 and MTA3 was associated with cancer.28

DISCUSSION

We have demonstrated here that the SFPCA statistics can be used to
test association of both common and rare variants and have broad
applicability to NGS data. The SFPCA statistics have several remark-
able advantages over many previously proposed group tests.

The first advantage of the SFPCA is utilization of merits of both
single variant analysis and group tests. The smoothed functional
principal component scores take information across all variants in the
genomic region into account and hence include all single variant
variation. The SFPCA statistic is to globally compare differences in the
average of functional principal component scores between cases and
controls. In other words, it tests accumulation of differences in all
variant variation in the genomic region between cases and controls.
Therefore, the SFPCA overcomes limitations inherent by single
variant analysis and group tests and effectively employ the merits of
both single variant tests and group tests.

The second advantage is that the SFPCA methods can efficiently
use information of both risk and protective variants and allow for sign
and size heterogeneity of genetic variants. In general, the risk and
protective variants will be present in different locations in the
genomic region. Information of risk and protective variants usually
will be reflected in different eigenfunctions and hence will be included
in different functional principal component scores. The SFPCA test
statistic is to summarize the square of the differences in the smoothed
functional principal component scores between cases and controls.
Therefore, the opposite effects of risk and protective variants on the
phenotype will not compromise each other in the SFPCA statistics.
The FPCA statistics automatically take the opposite effects of the risk
and protective variants on the phenotype into account and do not
require additional computations. By simulations we showed that the
SFPCA test statistics had substantially higher power than the existing
approach in the presence of both risk and protective variants in the
genomic region being investigated.

Table 3 P-values of 12 statistics for testing the association of rare

variants in ANGPTL4 with five traits in the Dallas Heart Study

Phenotype
Statistical method BMI Cholesterol Triglyceride VLDL HDL

Smoothed FPCA

(discretization)

0.002 0.1121 4.47E-05 0.1743 2.88E-05

Smoothed FPCA (Fourier) 0.0011 0.1267 1.01E-05 0.2076 5.49E-04

FPCA (discretization) 0.0043 0.5928 0.0077 0.1950 0.0271

FPCA (Fourier) 0.0033 0.1229 0.0062 0.1540 0.0205

SKAT 0.0096 0.2586 0.0024 0.3189 0.0092

T2 0.1876 0.4343 0.0573 0.0730 0.2392

Collapsing 0.4363 0.3853 0.7954 0.6561 0.1065

w2 (permutation) 0.0518 0.4787 0.0740 0.0887 0.3853

CMC 0.0056 0.8383 0.1718 0.2302 0.6425

WSS 0.0088 0.4959 0.1641 0.2390 0.1000

VT 0.0726 0.7659 0.4163 0.4697 0.1482

MPCA 0.0103 0.2129 0.0098 0.2030 0.1096

Table 4 Number of genes significantly associated with schizophrenia

by 13 statistics

Collapse CMC T2 w2 WSS VT LCT QT DT MPCA SKAT FPCA SFPCA

Number

of genes

0 5 5 2 2 6 3 5 2 0 9 8 56

Table 5 P-values of the top 10 significantly associated genes identified by SFPCA

Gene SFPCA FPCA SKAT CMC T2 w2 WSS VT LCT QT DT MPCA

LRSAM1 1.7E�19 3.0E�06 5.7E�4 2.1E�03 2.1E�03 2.3E�04 2.3E�01 3.0E�02 6.9E�02 8.6E�02 8.1E�02 4.2E�03

RUNDC3B 3.1E�18 2.4E�08 8.8E�8 5.6E�07 5.6E�07 9.0E�07 2.6E�01 2.5E�01 6.7E�01 8.2E�01 2.0E�01 8.3E�01

DTL 2.9E�12 5.8E�04 3.2E�6 3.5E�04 3.5E�04 8.1E�07 4.3E�01 5.1E�01 1.6E�01 1.8E�01 1.1E�01 7.7E�01

MRPS17 4.2E�12 3.4E�05 1.9E�4 2.1E�03 2.1E�03 3.7E�03 5.0E�02 1.3E�01 6.3E�01 4.0E�01 6.9E�01 4.1E�02

PDLIM5 1.6E�11 1.1E�06 2.5E�5 5.5E�05 5.5E�05 5.6E�05 5.8E�05 1.7E�03 5.8E�01 7.2E�01 9.5E�01 3.3E�05

CECR1 1.7E�11 4.3E�05 6.3E�6 5.3E�05 5.3E�05 3.6E�03 7.0E�02 1.0E�02 2.0E�01 5.1E�01 3.7E�01 2.6E�02

CERKL 2.2E�11 8.3E�07 4.4E�6 5.2E�05 5.2E�05 1.4E�03 3.1E�01 3.2E�01 9.1E�01 4.6E�01 3.3E�01 2.6E�01

EVI5 3.3E�11 6.8E�09 3.8E�3 5.2E�02 5.2E�02 2.0E�05 1.3E�04 5.0E�05 4.9E�02 9.6E�02 4.7E�02 6.3E�06

HAAO 5.7E�11 5.4E�01 5.2E�1 3.0E�08 3.0E�08 4.6E�04 5.0E�02 4.2E�01 4.6E�01 2.9E�01 5.7E�01 6.0E�01

MTA3 7.2E�11 6.3E�01 9.4E�7 6.7E�07 6.7E�07 4.6E�04 5.8E�01 3.0E�02 7.3E�01 8.6E�01 8.2E�01 9.4E�01
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The third advantage is that the SFPCA statistics can be used to test
the association of either rare or common variants or both rare and
common variants. Empirical and theoretical studies support potential
roles for both rare and common variants in complex diseases. There is
an increasing need to develop statistics that can be used to test
association of rare variants or common variants or both rare and
common variants. From large-scale simulations and real data analysis,
we showed that the SFPCA statistics had the correct type 1 error rate
and high power in all scenarios. The fourth advantage is that the
smoothing techniques can largely increase the accuracy of fitting the
data by FPCA and hence greatly improve the power to detect
association of variants. The FPCA is often enhanced by the use of
penalty techniques. The observed genetic variation records are not
smooth. Consequently, we often observe that the principal compo-
nent curves show substantial fluctuations. To reduce the variability of
principal component curves, we need to either smooth or regularize
the estimated principal component curves. The smoothing method
removes the roughness in the raw principal component curves and
hence improves the accuracy of the estimated functional principal
component scores, which will lead to improved type 1 error rates and
power.

The fifth advantage is that random genetic variant function in the
SFPCA is flexible. The variable xi(t) at the single variant site can take
integer values to code alleles or genotypes, or real numbers to
represent the number of reads of the sequences, the probability of
SNP call, and the probability of the variant being functional or
weights at the variant site.

NGS techniques generalize extremely high dimensional genomic
data. Transition of analysis from low dimensional data to extremely
high dimensional data demands changes in statistical methods from
multivariate data analysis to functional data analysis. Functional data
analysis coupled with smoothing techniques will provide a powerful
tool for NGS data analysis. However, the results in this report are
considered preliminary. The number of eigenfunctions in the expan-
sion of genetic variant function and penalty parameters will influence
the performance of the smoother FPCA for association studies. How
to simultaneously identify the associated genomic regions and causal
variants within them and the optimal selection of these parameters in
genome-wide association studies are still open questions in practice.
We are facing great challenges in developing efficient and powerful
analytic platforms for association analysis of NGS data.
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APPENDIX

We define an extended inner product as

ðf ; gÞm ¼
Z

f ðtÞgðtÞdtþ m
Z

D2f ðtÞD2gðtÞdt ðA1Þ

where D2f ðtÞ¼ d2f ðtÞ/dt2. Similarly to equation (3), the penalized
sample variance is defined as

F¼
Var

R 1

0 xðtÞbðtÞdt
� 	
j j bðtÞ j j 2

m
ðA2Þ

where j j bðtÞ j j 2
m ¼

R 1

0 b
2ðtÞdtþ m

R 1

0 ½D2bðtÞ�2dt.
To find the functional principal component, we seek to maximize
F in equation (A2) which is equivalent to solving the following
optimization problem:

max
R 1

0

R 1

0 bðsÞRðs; tÞbðtÞdsdt
j j bðtÞ j j 2

m ¼
R 1

0 b
2ðtÞdtþ m

R 1

0 ½D2bðtÞ�2dt¼ 1
ðA3Þ

Using the Lagrange multiplier, we reformulate the constrained
optimization problem (A3) into the following non-constrained
optimization problem:

max
b

JðbÞ¼
Z1

0

Z1

0

bðsÞRðs; tÞbðtÞdsdtþ lð1�
Z1

0

b2ðtÞdt� m
Z1

0

½D2bðtÞ�2dtÞ

ðA4Þ
where l is a parameter. Its first variation is given by

dJ½h� ¼ d

dE
J½bðtÞþ EhðtÞ�

¼ d
dE

Z1

0

Z1

0

½bðsÞþ EhðsÞ�Rðs; tÞ½bðtÞþ EhðtÞ�dsdtþ lf1�
Z1

0

½bðtÞþ EhðtÞ�2dt�m
Z1

0

½D2ðbþ EhÞ�2g j E¼ 0

¼ 2f
R 1

0

R 1

0 bðsÞRðs; tÞhðtÞdsdt� l½
R 1

0 bðtÞhðtÞdtþm
R 1

0 D
2bðtÞD2hðtÞdt �

¼ 2

Z1

0

f
Z1

0

Rðs; tÞbðsÞds� l½bðtÞþ mD4bðtÞ�ghðtÞdtðby integral by partsÞ

¼ 2

Z1

0

f
Z1

0

Rðs; tÞbðsÞds� l½bðtÞþ mD4bðtÞ�g2dt¼ 0ðby taking hðtÞ¼
Z1

0

Rðs;tÞbðsÞl½bðtÞþmD4bðtÞ�Þ;

which implies the following integral function:R 1

0 Rðs; tÞbðsÞds¼ l½bðtÞþ mD4bðtÞ�.
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