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Variable set enrichment analysis in genome-wide
association studies

Wei Yang1, Lisa de las Fuentes2, Victor G Dávila-Román2 and C Charles Gu*,1,3

Complex diseases such as hypertension are inherently multifactorial and involve many factors of mild-to-minute effect sizes.

A genome-wide association study (GWAS) typically tests hundreds of thousands of single-nucleotide polymorphisms (SNPs), and

offers opportunity to evaluate aggregated effects of many genetic variants with effects that are too small to detect individually.

The gene-set-enrichment analysis (GSEA) is a pathway-based approach that tests for such aggregated effects of genes that are

linked by biological functions. A key step in GSEA is the summary statistic (gene score) used to measure the overall relevance of

a gene based on all SNPs tested in the gene. Existing GSEA methods use maximum statistics sensitive to gene size and linkage

equilibrium. We propose the approach of variable set enrichment analysis (VSEA) and study new gene score methods that are

less dependent on gene size. The new method treats groups of variables (SNPs or other variants) as base units for summarizing

gene scores and relies less on gene definition itself. The power of VSEA is analyzed by simulation studies modeling various

scenarios of complex multiloci interactions. Results show that the new gene scores generally performed better, some

substantially so, than existing GSEA extension to GWAS. The new methods are implemented in an R package and when

applied to a real GWAS data set demonstrated its practical utility in a GWAS setting.
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INTRODUCTION

Complex diseases often involve the interplay of many genes and
environmental factors. The approach of genome-wide association
study (GWAS) has shown great potential in dealing with such
complexity, as demonstrated by the many exciting recent findings.1

By scanning hundreds of thousands of single-nucleotide polymorph-
isms (SNPs), GWAS is less biased than candidate gene approach and
more powerful than traditional linkage analysis in detecting genetic
variants that confer modest disease risk. It provides new opportunities
to evaluate a group of genes as a whole for potentially important
synergetic effects. However, most published GWAS studies focus on
marginal effects of individual SNPs. Seldom has the interplay of
multiple genes been carefully evaluated, largely because of prohibitive
computational burden and a lack of appropriate tools. In this study,
we present a gene-set-based approach for evaluating the collective
action of multiple SNPs in many genes with companion software that
aims at reduced computational burden by taking advantage of known
genetic pathways.
In gene expression analysis, the method of gene-set enrichment

analysis (GSEA),2 was proposed to overcome similar problems of
prohibitive computation and lack of modeling for interactions. To
measure the degree of ‘enrichment’ of association signals in a gene set,
GSEA uses ‘enrichment score’ to summarize the association test scores
of every gene in the gene set. If a gene set is over-represented by
functional genes that are relevant to the disease of interest, GSEA will
have enhanced power by combining strength of multiple genes.
Indeed, the gene set identified by early GSEA application3 led to

subsequent functional validation of connections between impaired
mitochondrial activity and insulin resistance.4,5 The approach may be
extended to GWAS studies. However, a key modification is needed for
a scoring method that can combine association signals of multiple
SNPs to obtain a single value representing the importance of that gene
to the disease trait. Once such a ‘gene score’ is obtained, enrichment of
association in gene sets can be tested as before.
In GWASs, the number of SNPs in a gene varies from a handful to

hundreds, with only one or a few responsible for functional diver-
gence, or in linkage disequilibrium (LD) with causal variants. Ideally,
only such SNPs should be used to represent the gene. Therefore, a
gene score may be defined by the maximum test statistics among all
SNPs in a gene.6 But genes with more genotyped SNPs or weak LD
among them may score higher this way just by chance. A partial
remedy for such a bias is to normalize gene-set enrichment scores. For
example, the original GSEA method did so by scaling using the mean
score estimated from permutation tests and by using the method
described by Wang et al 6 by standardization.
An alternative approach is to perform normalization at the gene-

score level, so that biases due to varying gene size and LD structure are
minimized before deriving gene-set enrichment scores. We present
several methods for normalizing gene scores and their utility in
extending GSEA to GWAS. The new approach can evaluate enrich-
ment of associated variables in predefined sets of genes, SNPs, and is
termed ‘variable-set enrichment analysis’ (VSEA). An R software
package (also named VSEA) is developed to implement the new
methods, with a collection of gene sets constructed from known
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biological pathways to facilitate real GWAS analysis. We present
evaluations of the new methods by simulation and analysis of real
GWAS data, and discuss how VSEA is related to other existing gene-set
-based methods and their suitable applications in different scenarios.

METHODS

The GSEA Approach
Subramanian’s GSEA method. This method was proposed in gene

expression analysis to detect significant ‘enrichment’ of disease association in

a gene set. Let L0 ¼ fG1;G2; :::;GNg be the list of all genes measured on a

gene expression microarray. Sorting their association test statistic values

(for example, t-test score) from largest to smallest, we get rð1Þ; rð2Þ; :::; rðNÞ
and a ranked gene list L ¼ fGð1Þ; Gð2Þ; :::; GðNÞg. Let S � L0 be the gene-set of

interest. The enrichment in S is evaluated in three steps:

Calculate the enrichment score (ES): A Kolmogorov–Smirnov statistic is used

to measure over-representation of S at the top of the ranked list L. It is

calculated by examining the ranked gene list L, increasing a running sum

statistic when encountering a gene in S and by decreasing it when not. The

enrichment score is defined as the maximum of the running sum statistics:

ESðS; DÞ ¼ max
1�j�N

X
Gðj�Þ2S;j��j

jrðj�ÞjP

NR
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X
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where D denotes observed data, |S| the number of genes in S,

NR ¼
P

Gðj�Þ2S

jrðj�ÞjP , and P a tuning parameter giving higher weights to highly

associated genes (P¼1 was recommended in gene expression studies2).

Evaluate the significance of the enrichment score by permutation: ES is

repeatedly calculated after shuffling disease status of samples, which generates

an empirical null distribution of ES. An empirical P-value is estimated by the

proportion of permutations that result in larger ES than originally observed.

Correct for multiple testing: When a large number of gene sets are tested

simultaneously, false discovery rate (FDR) or family-wise error rate (FWER)

may be used to correct for multiple testing. The enrichment scores are

normalized first to minimize undesirable effects of varying gene-set size and

within-gene-set correlations. Finally, the normalized ES (NES) is defined as:

NESSubramaniaðS;DÞ ¼ ESðS;DÞ=meanðESðS;pÞÞ ð2Þ

where ES(S, p) is the enrichment score for permutation p.

Extension of GSEA to GWAS. A key step in extending GSEA to GWAS studies

is to derive a summary score that combines signals from individual SNPs in

each gene.6 Denote the SNPs of gene Gk as Vk1;Vk2; :::;Vkm, and their

association test statistic as tk1; tk2; :::; tkm. In Wang’s extension of GSEA to

GWAS,6 gene score for Gk is assigned the highest test statistic value among all

the SNPs, max(tkj). Following this, the enrichment scores are calculated as in

the original GSEA. To adjust for multiple testing, normalized ES is calculated as

follows:

NESWangðS; DÞ ¼ ESðS;DÞ �meanðESðS;pÞÞ
SDðESðS; pÞÞ ð3Þ

We note that a summary ‘gene score’ simply defined by the maximum of per-

SNP statistic favors larger genes (more genotyped SNPs with weak LD) because

they may score higher by chance as a result of the greater number of

independent tests. Therefore, new methods are needed to correct such biases

for improved performance of gene-set enrichment analysis in GWAS.

New methods using normalized gene scores
We propose to perform normalization of gene scores before calculating gene-set

enrichment scores, making the gene scores comparable for genes of different

sizes. Several alternatives are introduced below in addition to the max statistic

used by Wang et al.6

Gene scores based on maximum SNP statistics. The first class of gene scores

aims to normalize the maximum SNP statistics by their empirical distribution

derived from permutation analysis. For gene Gk, denote the observed max-

imum statistic as mk(D) and the permuted mk(p). We will consider new gene

scores defined as follows based on maximum SNP statistics:

rWANG k ¼ mkðDÞ ð4Þ

rCHI2MEAN k ¼ mkðDÞ=meanðmkðpÞÞ ð5Þ

rCHIMEAN k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkðDÞ

p
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ffiffiffiffiffiffiffiffiffiffiffiffi
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p
Þ ð6Þ

rCHI2 k ¼ ½mkðDÞ �meanðmkðpÞÞ�=SDðmkðpÞÞ ð7Þ

rCHI k ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
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mkðpÞ

p
Þ�=SDð

ffiffiffiffiffiffiffiffiffiffiffiffi
mkðpÞ

p
Þ ð8Þ

rABSZ k ¼ F�1ð1� Pk=2Þ ð9Þ

where Pk ¼ P̂rðmkðDÞÞ ¼ PrðmkðpÞ4mkðDÞÞ F is the standard normal cumu-

lative distribution function. CHI2MEAN and CHIMEAN adjust for gene sizes

by scaling and CHI2 and CHI by standardization, all based on the distribution

of permuted per-SNP test scores. The square root function used in CHIMEAN

and CHI was motivated by experiments using various transformations to

obtain more comparable gene-score distributions.

Gene scores based on other multilocus test statistics. We consider two multilocus

statistics. One is Hotelling’s T2-test, as implemented in the PLINK software.7

The other is proposed by Zhou et al8 to summarize SNP associations within a

gene. We name the two gene scores as ‘T2’ and ‘LCMT’. For both methods, the

P-value for a gene is calculated first and then mapped to a w2 distribution with

one degree of freedom or the square root of the distribution. The mapped

statistic is used as the gene score in the VSEA test.

Gene scores based on tagging SNPs. In this class of methods, we bypass the use

of genes as analysis units and instead use a set of representative SNPs selected

from these genes. Success of such tests depends on how to properly choose the

SNPs. Wang’s gene score is a special case that selects single SNPs with

maximum statistics. At the other extreme, we may include all SNPs from all

genes in the gene set (termed as ‘ALL_SNP’). Between these extremes, we

considered three other SNP-set-based methods.

TAG: Tag SNPs are selected as representatives using the method by Meng

et al 9 and Lin and Altman.10

PCA1: For each gene, principal component analysis (PCA) is first performed

on allele count correlation matrix. The eigenvectors for the first few compo-

nents are used to obtain linear combinations of the SNP association test

statistics and form the ‘pseudo-SNP’ statistic, which is further used in ‘SNP-set’

enrichment analysis:

tPCA1 k ¼ tT�ek

�� ��= ffiffiffiffiffi
lk

p
ð10Þ

Where lk is the kth largest eigenvalue and ek is the corresponding eigenvector.

PCA2: Similar to ‘PCA1’, this method uses another definition for ‘pseudo-

SNP’ statistic:

tPCA2 k ¼ tT�ðek � ekÞ ð11Þ

where operator o stands for the element-wise product of two vector/matrix of

the same size. When there are SNPs in complete LD within the gene, both PCA

methods will remove extra copies of repeated SNP statistics.

Implementation of the new algorithm
The gene scores presented above are implemented in the following procedure to

perform VSEA in GWAS.

(1) Perform GWAS by calculating single SNP and/or multilocus association

test scores. PLINK7 is called to generate the test statistics for both original

and permuted data sets.

(2) Calculate normalized gene scores; for SNP-set-based scoring algorithms,

this step is replaced by selecting representative SNPs.
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(3) Calculate enrichment score following the original GSEA algorithm for

each gene set.

(4) Evaluate significance of the enrichment scores by contrasting with that in

permuted data.

(5) Normalize enrichment scores by scaling (formula 2) or standardization

(formula 3) when multiple gene sets are tested, correcting for multiple

testing by FDR/FWER.

The procedure is implemented in an R package called VSEA with utility tools

for data formatting and annotation of results. It uses PLINK for computational

intensive calculations, in which more flexible modeling is available

(for example, tests with environmental covariates included).

Simulation study
Simulation study is used to evaluate the performance of the proposed new gene

scores and to compare two approaches with normalizing enrichment scores.

We simulated 10 disease models, all with the same prevalence of 25%, and

six interacting disease loci. Disease SNPs contribute to the binary trait through

interactions, which were specified through penetrances of joint genotypes at the

six disease loci. As shown in Table 1, the minor allele frequencies (MAFs) of the

six loci are 5%, 10%, 20%, 30%, 40% and 50%, respectively. The 10 scenarios

are divided into two groups for lower (B12%) and higher (B20%) values of

heritability. Each of the two groups is comprised of five scenarios: (S1) no

marginal effect is observed for any of the six loci; (S2-1) two loci with low MAF

have moderate marginal effects (OR¼1.2 in recessive model) and the other four

have no marginal effects. (S2-2) Similar to 2 but the two loci with moderate

marginal effects have high MAFs; (S3-1) and (S3-2) are similar to (S2-1) and

(S2-2), but two loci have strong marginal effects (OR¼2 in recessive model).

For each of the 10 scenarios, we considered 10 joint-penetrance tables randomly

generated to satisfy the marginal constraints. Case–control data sets were then

simulated using the SNAP software.11

Every simulated data set has 300 SNPs consisting of 30 blocks, each with 10

SNPs. SNPs are in high LD within blocks but LD-free across blocks. The six

disease loci locate in the first six blocks, respectively. Their positions in

corresponding blocks are totally random. We used 750 cases and 750 controls

for all 10 scenarios. As we will see later, from the results using 750 cases and

750 controls, scenarios S2-1C1, S2-1C2, S2-2C2 and S2-2C2 tend to have lower

power, thus additional sample sizes were used for these scenarios (1500:1500

and 3000:3000) to see how power would be improved; likewise, smaller samples

were also used for scenarios that have higher power (250:250 for S3-1C1,

S3-1C2, S3-2C2 and S3-2C2).

To define a gene in the simulated data, we selected a random streak of SNPs

around each disease locus from the corresponding block. The six disease genes

form a gene set in the VSEA test. Further, we defined a reference gene set

consisting of irrelevant SNPs similarly, by randomly selecting six blocks that do

not have disease loci, and took one locus from each of them to locate a ‘gene’

around it. Power and false-positive rates were calculated based on 100 replicates

for each penetrance tables. Further, results were averaged over the 10-pene-

trance table configurations used in each scenario.

Before calculating gene scores, single SNP tests were performed using the

1 d.f. allelic test implemented by PLINK. In general, the power of VSEA is also

dependent on the choice of appropriate single SNP test methods despite

the gene score method that is used.

Real GWAS data analysis
To evaluate its practical use, we also applied VSEA to a pilot GWAS data set

that characterizes the cardiovascular structural and functional manifestations of

hypertension, collectively termed hypertensive heart disease (HHD).

Curation of pathway-based gene sets. To facilitate real data analysis, we

constructed biologically interesting pathways from publicly available databases,

including KEGG,12 GO13 and BioCarta. We retrieved 179 pathways from KEGG

(release 44.0) and 313 pathways from BioCarta (November 2007). For pathways

in GO, we constructed gene sets on the basis of GO level 4 annotations

for biological process and molecular function. Some nodes in GO level 4 were

excluded if they occured in levels 2 and 3 as well. For nodes in level 5 and

onward, their genes were assigned to their ancestral GO annotations in level 4.

Construction of these GO gene sets was carried out using the goTools package

and the GO database from BioConductor 2.1, which used the 200708 release of

GO. We obtained 2150 gene sets from GO database. The exact number of gene

sets in analysis will differ depending on the genotyping platform for each

GWAS data set. Detailed breakdown of gene sets constructed from KEGG,

Table 1 Ratio of marginal genotypic effects at each individual locus

in the 10 scenarios of simulation study

L1 L2 L3 L4 L5 L6

Minor allele frequency

Scenario 0.05 0.1 0.2 0.3 0.4 0.5 Total heritability

S1C1 1:1:1 1:1:1 1:1:1 1:1:1 1:1:1 1:1:1

S2-1C1 1:1:1.2 1:1:1.2 1:1:1 1:1:1 1:1:1 1:1:1

S2-2C1 1:1:1 1:1:1 1:1:1 1:1:1 1:1:1.2 1:1:1.2 B0.12

S3-1C1 1:1:2 1:1:2 1:1:1 1:1:1 1:1:1 1:1:1

S3-2C1 1:1:1 1:1:1 1:1:1 1:1:1 1:1:2 1:1:2

S1C2 1:1:1 1:1:1 1:1:1 1:1:1 1:1:1 1:1:1

S2-1C2 1:1:1.2 1:1:1.2 1:1:1 1:1:1 1:1:1 1:1:1

S2-2C2 1:1:1 1:1:1 1:1:1 1:1:1 1:1:1.2 1:1:1.2 B0.2

S3-1C2 1:1:2 1:1:2 1:1:1 1:1:1 1:1:1 1:1:1

S3-2C2 1:1:1 1:1:1 1:1:1 1:1:1 1:1:2 1:1:2

A population prevalence of K¼25% is used in all scenarios.
All disease models in all scenarios are assumed to have six disease single-nucleotide
polymorphisms with their minor allele frequencies listed under the corresponding marker
names.
Entries in the table are relative genotypic risks of (minor homozygote) heterozygote (major
homozygote).
Bold entries indicate loci with some marginal effects.

Table 2 Numbers of gene sets constructed from KEGG, BioCarta

and GO for various genotyping platforms

Gene set Gene set size

Platform database 1–2 3–20 21–200 Z201 Total

All curated KEGG 7 56 112 4 179

BioCarta 4 250 60 0 314

GO 425 876 636 213 2150

Total 436 1182 808 217 2643

Affymetrix 100k KEGG 9 84 81 1 175

BioCarta 23 275 13 0 311

GO 526 611 212 31 1380

Total 558 970 306 32 1866

Affymetrix 500k KEGG 7 63 106 3 179

BioCarta 7 264 43 0 314

GO 563 663 263 48 1537

Total 577 990 412 51 2030

Affymetrix 5.0 KEGG 7 64 105 3 179

BioCarta 7 269 38 0 314

GO 564 665 256 48 1533

Total 578 998 399 51 2026

Affymetrix 6.0 KEGG 7 59 109 4 179

BioCarta 6 261 47 0 314

GO 570 659 273 49 1551

Total 583 979 429 53 2044

Hypertensive heart KEGG 7 64 105 3 179

disease pilot data BioCarta 7 270 36 0 313

GO 556 667 254 48 1525

Total 570 1001 395 51 2017
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GO and BioCarta for some Affymetrix SNP (Affymetrix Inc., Santa Clara, CA,

USA) array platforms and our HHD pilot GWAS data are presented in Table 2. In

the real data analysis, we only tested gene sets that contain at least three but no

more than 200 genes represented by markers in a given GWA data set, to alleviate

multiple testing and to avoid testing overly narrow or broad functional categories.

Example GWAS data set. To illustrate the utility of VSEA, we applied the

method to a pilot data set of 74 cases and 70 controls from a GWAS study of

HHD. Hypertension affects millions of people and HHD is associated with

elevated cardiovascular morbidity and mortality.14 Several ongoing GWAS

studies attempt to characterize the genetic components of hypertension and

related diseases.15 In the pilot HHD sample, SNPs were genotyped using the

Affymetrix Mapping 500K Array Set. The data of the SNPs underwent quality

control (QC) using commonly accepted criteria on array quality (missing rate

r0.05, mean heterozygosity between 0.25 and 0.3) and on marker quality

(call rate Z0.99 for SNPs with MAF r0.05, call rate Z0.95 for all other SNPs

and Hardy–Weinberg test P-value410�6). A total of 389 344 SNPs passed QC,

which were mapped to genes based on annotation provided by Affymetrix.

There were 15 863 genes associated with a total of 320 747 distinct SNPs

available for VSEA analysis. We then applied VSEA to this data set using

different gene score methods and 1000 permutations, and analyzed empirical

distributions of statistics and compared results between gene score methods.

RESULTS

Simulation study
We first checked empirical false-positive rates of the proposed VSEA
tests. As shown is Figure 1, the mean false-positive rate fluctuates
around the nominal P-values for all scenarios considered by the
simulation study. This indicates that the algorithms proposed for
calculating a summary gene score, all performed reasonably well and
their corresponding VSEA tests are comparable with each other in
terms of type-I error rates.
However, the power of the VSEA test can differ substantially

depending on the gene score method used. Among the algorithms
based on maximum SNP statistics, most of our proposed methods
(except for ‘ABSZ’ and ‘ABSZ2’), including ‘CHI’, ‘CHI2’, ‘CHIMEAN’
and ‘CHI2MEAN’, performed better or similar to ‘WANG’ under all

10 scenarios considered with various sample sizes. The all-time-best
performer is ‘CHI2’, which was consistently more powerful than
others. As shown in Figure 2a, at a significance level of a¼0.05
(nominal P-value), average improvement in power ranged between
14% to as much as 40% depending on the underlying model and the
sample size.
Using multilocus gene scores does improve VSEA test power in

some scenarios (Figure 2b). LCMT usually has comparable or greater
power compared with Wang’s maximum statistics, except in S3-2C1
and S3-2C2 using 750:750 samples, in which there are extremely large
single SNP effects. The other multilocus method, Hotelling’s T2, has
slightly better power than Wang’s maximum statistics in most cases,
except when some risk SNPs have relatively large marginal effects
(S3-1, S3-2).
VSEA tests using gene scores based on most of the tagging SNP-set-

based methods performed at least as good as Wang’s GSEA
(see Figure 2c). The ‘ALL_SNP’ method seemed to be one of the
best performers. However, even the best of these methods was still not
as powerful as the ‘CHI2’ method.
When there was no marginal effect in any of the six disease SNPs

(S1C1 and S1C2), all VSEA methods seemed to have no power at all
(power close to nominal P-value). When there were even weak marginal
effects in two of the six disease SNPs (S2-1C1, S2-1C2, S2-2C1 and S2-
2C2), VSEA methods started to gain power and became useful with
studies of larger sample sizes. For example, at a¼0.05, VSEA test using
the ‘WANG’ method had average power from 0.128 to 0.154 for the
four configurations with a sample size of 750:750; the power increased
to 0.205–0.264 for a sample size of 1500:1500 and to 0.373–0.566 for a
sample size of 3000:3000. VSEA test using the more powerful ‘CHI2’
method achieved a power of 0.172–0.286 with a sample size of 750:750,
to 0.345–0.555 for a sample size of 1500:1500 and to 0.694–0.919 for a
sample size of 3000:3000. When there were strong marginal effects in
two of the six disease SNPs, VSEA tests using all the proposed gene-
score-calculating methods yielded good results. ‘CHI2’, ‘CHI’, ‘CHI2-
MEAN’ and sometimes ‘WANG’ had powers close to 1 with 750 cases
and 750 controls. In these scenarios, power of VSEA remained high
even when we drop the sample sizes to 250 cases and 250 controls. In
particular, ‘CHI2’ had an average power of B0.99 for configurations
S3-2C1 and S3-2C2, and around 0.68 for S3-1C1 and S3-1C2.

Real GWAS data
As the gene score method ‘CHI2’ outperformed others in the simula-
tion study, we only report below results using ‘CHI2’ and those using
‘WANG’ for comparison. In the real data analysis, the PLINK
permutation test (step-1 of the VSEA algorithm) took B37min on
a single thread on a 2.4GHz Dual-Core AMD Opteron Processor 2216
(PerformanceWare 1475, Pogo Linux, Inc., Redmond, WA, USA).
After that, steps 2–4 of the VSEA analysis using ‘WANG’ or ‘CHI2’
gene score method each took B14h.
Nominal P-values from calculation using ‘CHI2’ and ‘WANG’ gene

scores have a rank correlation of 0.65. In Table 3, we list the top 10
gene sets with smallest P-values by VSEA analyses using the ‘CHI2’
gene score method. For comparison, we also included ranks of the
gene sets by the ‘WANG’ method. A similar table based on WANG is
in Supplementary Table S1. Although there was some overlap between
the two methods, a majority of the top 10 gene sets selected by the two
methods were different. This could be related to the small sample size
of the example data set (no gene set reached a significance level of
0.05 after adjustment for multiple testing). Therefore, biological
interpretation of these results may be limited by the small sample
size of this example data set.

Figure 1 Mean false-positive rate of VSEA, estimated by averaging over

100 replicates of simulated data sets, under each of the scenarios

considered by the simulation study. Sample sizes are shown at the end of

each scenario name.
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Figure 2 Estimated power of VSEA test by simulation study, using gene scores based on (a) maximum SNP statistics; (b) multilocus analysis; and

(c) SNP-set enrichment. Sample sizes are shown at the end of each scenario name. The left panels use 750 cases and 750 controls, whereas the right panel

uses other sample sizes (1500:1500, 3000:3000 and 250:250, identified by labels of the x-axis).

Table 3 Top gene sets identified by VSEA test (using CHI2 gene score) in the HHD pilot data

Gene set ID Pathway description Gene set size

Rank by

Wang et al6 P-value FWER_P

GO:0015101 Organic cation transporter activity 10 6 0.001 0.917

GO:0045785 Positive regulation of cell adhesion 8 50 0.004 0.996

h_IL12 Pathway IL12- and Stat4-dependent signaling pathway in th1 development 20 316 0.006 1

GO:0046487 Glyoxylate metabolic process 3 372 0.006 1

h_RNApol3 Pathway RNA polymerase III transcription 8 153 0.007 1

h_npp1Pathway Regulators of bone mineralization 5 54 0.007 1

h_pepiPathway Proepithelin conversion to epithelin and wound repair control 4 4 0.008 1

GO:0006904 Vesicle docking during exocytosis 20 301 0.009 1

h_p53hypoxiaPathway Hypoxia and p53 in the cardiovascular system 20 62 0.01 1

h_plcdPathway Phospholipase c d1 in phospholipid associated-cell signaling 4 76 0.012 1

Abbreviations: FWER, family-wise error rate; HHD, hypertensive heart disease; VSEA, variable set enrichment analysis.
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Nevertheless, the real data on genome-wide SNPs in a large number
of genes and gene sets allowed us to examine the empirical null
distributions of the proposed gene score and enrichment score
statistics. This helped us to confirm that the objective of using the
proposed statistics was accomplished; that is, normalization of gene
scores had made the resulting statistics more comparable in spite of
different gene sizes. Some results are shown in Figures 3, in which QQ
plots of gene scores by various methods for 100 randomly selected
pairs of genes are displayed. Each pair comprises of a gene with just a
few (from 3 to 5) SNPs and another with many SNPs (Z100). In the
QQ plots, gene scores were calculated in the permuted data sets based
on the HHD pilot GWAS data set, and the quantiles of the gene scores
in permutation tests for one gene were plotted against that for the
other gene in the pair. They reflect the (dis)agreement between null
distributions between large (y-axis) and small (x-axis) genes. There-
fore, methods that produce the plots tightly centered around the
diagonals are more superior in terms of generating comparable gene
scores.
As seen in Figure 3, using the simple maximum statistic gene score

without normalization, large genes tend to have much greater gene
scores than smaller ones. On the other hand, using ‘CHI2’, ‘CHI’ or
‘ABSZ’ methods made distributions much more comparable between
large and small genes, although ‘CHI2MEAN’ seemed to bias against
large genes.
Similarly, comparisons were made between two normalized enrich-

ment scores (formulae 2 and 3) to examine their effect in deriving
comparable enrichment scores even when the sizes (number of genes)
of gene sets may vary. In Figure 4, QQ plots are displayed to compare
the empirical distributions of normalized enrichment scores for 100
randomly selected pairs of gene sets, using the ‘WANG’ (top row) and
‘CHI2’ gene scores (bottom row), respectively. For each gene-score

method, three strategies of treating gene-set enrichment scores were
compared: unnormalized (left), normalized by scaling (middle) and
normalized by standardization (right). The plots reflect the (dis)-
agreement between null distributions for different gene sets. Methods
that generated the plots that were centered more tightly around the
diagonals resulted in normalized scores that are less sensitive to gene-
set sizes, and therefore are more suitable for multiple testing correc-
tions. It is clear in Figure 4 that regardless of the gene score method
used, normalization helped in deriving more comparable enrichment
scores, and the standardization approach used by Wang is better than
the simple scaling approach used in the original GSEA.

DISCUSSION

We presented new statistics for summarizing single SNP association
test results in genes and gene sets for VSEA to evaluate enrichment of
disease association in predefined gene sets. Similar to the original
GSEA, VSEA tests whether the members of a gene set tend to co-occur
near the top of the gene list ranked by single SNP analysis. We make
several observations based on our evaluation of VSEA, using simula-
tion and real GWAS data sets.

Gene sets as the basic unit for testing genotype–phenotype
association
Traditional candidate gene studies consider single variants or
haplotypes as basic units of analysis and generally had low replication
of findings.16–18 Because of differences in LD structure across popula-
tions, tagging SNPs or haplotypes of the risk variants could be
quite different. This is particularly relevant under the common-
disease–common-variant hypothesis, in which differential recombina-
tion histories across populations could have occurred during the long
time before a mutation became prevalent. On the other hand, if there

Figure 3 Comparison of gene-score distributions between large and small genes show effects of different gene-score normalization methods. Each panel

presents overlaid QQ plots of gene-score distributions for 100 randomly selected pairs of genes in the example GWAS data set. Each pair comprises of a

small gene with just a few (from 3 to 5) SNPs and a large one with at least 100 SNPs. The empirical distribution of gene scores was generated by

calculating in the permuted data sets. The quantiles of the two distributions corresponding to each gene of the pair were then plotted against each other.

In the plots, x-axis represents the smaller gene in the pair and y-axis represents the larger gene. Each panel is for a specific gene-score method: (a) WANG,

(b) CHI2, (c) CHI, (d) ABSZ, (e) CHI2MEAN (see text for details of each method).
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are multiple rare variants that are fairly recent in origin, allelic/locus
heterogeneity is more likely across populations. In both cases, using
single variants as basic units presents a challenge to successful
replication studies.
In contrast, the positions, sequences and functionality of genes are

highly consistent across diverse human populations. Furthermore, in
complex diseases, groups of genes tend to work together and it seems
reasonable to take gene sets as the unit for association analysis. This
also has the added value of known genetic pathways and biological
processes related to the disease of interest. This idea was successfully
demonstrated in gene expression studies.3–5 As gene expression
(transcribed mRNA) levels connect genetic variations to clinically
observed disease phenotypes, the value of GESA-type test in GWAS
could be inferred. In fact, studies of so-called expression quantitative
trait loci19–21 convincingly demonstrated that genetic variations,
together with environmental stimuli, may influence the location,
timing and/or level of gene transcription. The findings support the
abundance of cis-regulatory variations key to phenotypic variations in
humans,22 and motivate the continuing development of gene-set-
based methods for GWAS studies.

Other gene-set-based methods available for GWAS
Several newly published methods also use the gene-set approach.23–26

For example, Chasman23 studied a GSEA-type method by pooling
all SNPs in genes of a gene set to form a new set of SNPs with
a hypergeometric test for enrichment. It is a special case of the
‘tag-SNPs-set-based’ VSEA, without accounting for the effect of
varying gene sizes and gene-set sizes. They showed that the gene-
set-based method was generally more efficient than conventional
single-variant-based method when there are many variants with
small effects. Peng et al25 proposed a procedure similar to that of
ours by testing for single SNP associations first, followed by gene-wise

and then pathway-based analysis. However, the method was based
solely on P-values with an underlying assumption about the indepen-
dence of single SNP tests. In contrast, VSEA is based on a permutation
procedure that properly accommodates the dependence of tests
among single SNPs and those among genes. Therefore, Peng’s method
provides a quick way of reusing published P-values without genotype
data, and VSEA is suitable for in-depth GWAS analysis when genotype
data are available.
In general, enrichment test of gene-sets can be constructed using a

broad range of statistics for gene scores, followed by restandardization
of the gene scores, using permutation of phenotypes or genes or
both.27 The permutation procedure in GSEA-type method is known as
‘phenotype shuffling’. A different kind of permutation is ‘gene shuf-
fling’, in which gene scores are only calculated once, and then the
enrichment score for a given gene set is calculated by comparison with
randomly selected gene sets of the same size. Thus, gene shuffling can
be much faster. However, the two permutation strategies have different
underlying null hypotheses.28,29 Moreover, whereas phenotype shuf-
fling preserves important correlation structures between genes and
among SNPs and is biologically more meaningful, gene shuffling risks
destroying them. Therefore, the latter is not recommended unless the
two strategies are combined to form a possibly more powerful test.27

It remains to be seen whether this can materialize in GWAS because
shuffling both phenotypes and genes simultaneously require signifi-
cantly more computation.
The VSEA method is aimed at improving the ‘accuracy’ of gene

scores so that they are less dependent on the size of genes and gene sets
in consideration. Our study is not without its own limitations. For
example, the simulation involved only 300 SNPs and a limited number
of genes because of the lack of a realistic GWAS simulator that can
handle complex interaction models. The method also did not expli-
citly model or directly test for interaction effects. Instead, it relies on

Figure 4 Comparison of enrichment scores when different enrichment score normalization methods were used. Each panel presents overlaid QQ plots of

distributions of enrichment scores calculated in the example GWAS data, using 100 randomly selected pairs of gene sets. The empirical distribution

of enrichment scores was estimated using 1000 permuted data sets. For each pair of gene sets, the quantiles of the two distributions corresponding to each

set of the pair were plotted against each other. Columns of the figure correspond to three approaches to normalization and the rows to methods used for

calculating gene scores: top row (a–c) using the ‘WANG’ method and bottom row (d–f) using the ‘CHI2’ method.
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predefined gene sets to capture a large collection of weak marginal
effects, a common drawback of existing gene-set-based methods.
Nevertheless, novel and improved GSEA methods continue being
developed30 in gene expression analysis. For GWAS studies, the
persisting problem of ‘missing heritability’31 demands also for similar
methods to detect collective actions of many risk factors. Therefore,
further investigation is warranted for robust gene-set- and pathway-
based methods that can more effectively incorporate biological infor-
mation and be capable of providing functional understanding of new
findings about the disease of interest.
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