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The expanded human disease network combining
protein–protein interaction information

Xuehong Zhang1,3, Ruijie Zhang*,1,3,, Yongshuai Jiang1,3, Peng Sun1,3, Guoping Tang1, Xing Wang1,
Hongchao Lv1 and Xia Li*,1,2

The human disease network (HDN) has become a powerful tool for revealing disease–disease associations. Some studies

have shown that genes that share similar or same disease phenotypes tend to encode proteins that interact with each other.

Therefore, protein–protein interactions (PPIs) may help us to further understand the relationships between diseases with

overlapping clinical phenotypes. In this study, we constructed the expanded HDN (eHDN) by combining disease gene

information with PPI information, and analyzed its topological features and functional properties. We found that the network

is hierarchical and, most diseases are connected to only a few diseases, whereas a small part of diseases are linked to many

different diseases. Diseases in a specific disease class tend to cluster together, and genes associated with the same disease are

functionally related. Comparing the eHDN with the original HDN (oHDN, constructed using disease gene information) revealed

high consistency over all topological and functional properties. This, to some extent, indicates that our eHDN is reliable.

In the eHDN, we found some new associations among diseases resulting from the shared genes interacting with disease genes.

The new eHDN will provide a valuable reference for clinicians and medical researchers.
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INTRODUCTION

In past decades, biological questions were often approached by studying
individual genes and their functions.1 Despite the enormous success of
this reductionist approach, it has become increasingly clear that this
method ignores the relationship between both genes and gene pro-
ducts.1 The recent availability of a wealth of functional genomic and
proteomic (‘omic’) information, and the development of high-through-
put data-collection techniques, has resulted in a transition from
individual gene-based traditional molecular biology to ‘network
biology’.1,2 In network biology, biological processes are considered as
complex networks of interactions between the cell’s numerous compo-
nents rather than as independent interactions involving only a few
molecules. Researchers have constructed various types of networks that
include, protein–protein interaction network,3 metabolic network,4

transcription regulatory network5 and gene coexpression network.6

With the development of network biology, the nodes of biological
networks are no longer limited to cell components alone. Instead,
some researchers have introduced macroscopic concepts and biological
networks, like the human disease network (HDN),7 the phenotype
network8 and the drug-target network,9 have recently been constructed.

Goh, et al used the Online Mendelian Inheritance in Man (OMIM)10

knowledgebase to construct the HDN in which two diseases are
connected to each other, if they share at least one gene. Initially,
OMIM focused on high-quality data with high significance for Mende-
lian disorders. Although, in recent years, more complex traits have been
included, this history still introduces some bias; most importantly,

association studies of non-Mendelian, common complex diseases, often
have low-significance values. The Genetic Association Database
(GAD)11 collects, standardizes and archives almost all of the genetic
association study data from published literature and is, therefore, more
exhaustive than OMIM. In current biology research, the number of
known disease genes is limited and so the identification of disease
susceptibility genes remains an important issue. Some studies have
indicated that genes that share similar or same disease phenotypes tend
to encode proteins that interact with each other.12,13 Indeed, the
Hermansky–Pudlak syndrome14 and Fanconi anaemia15 are known to
be caused by mutations affecting different interacting proteins.

Here, we describe the construction of the expanded human disease
network (eHDN) by combining the available disease gene information
in GAD with PPI data from the Human Protein Reference Database
(HPRD),16 in which the PPIs are sourced from literature by manual
curation. We analyzed the topological features and functional proper-
ties for the eHDN. Comparing the eHDN with oHDN revealed high
consistency over all topological and functional properties. This is
proven that our eHDN is credible. We hope that our study will
provide a new approach for exploring the associations between
diseases with overlapping clinical phenotypes.

MATERIALS AND METHODS

Disease-gene association and protein–protein interaction data
A compendium of human disease-gene associations with a total of 39 930 records

corresponding to 5638 diseases/phenotypes and 2675 genes, was obtained from
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GAD on 6 June 2009. We selected 6350 records that described positive associations

between genes and disorders. The PPI data set, obtained from HPRD on 14 July

2009, contains 37 107 interactions. After eliminating self-interactions and inter-

actions that corresponded to the Entrez ID ‘None’, 35 000 interactions between

9303 genes remained. For details of these datasets see Supplementary information.

Measuring the topological features of a network
The ‘degree’ (k) is defined as the number of edges that point to a node. The

‘clustering coefficient’ is defined as Ci¼2n/ki (ki�1), where n is the number of

links connecting the ki nearest neighbors of node i to each other, and ki (ki�1)/

2 is the total number of triangles that can pass through node i. The clustering

coefficient reflects the local clustering of a network, and the average of Ci over

all nodes of a network characterizes the overall tendency of the nodes to form

clusters or groups. The function C(k) is defined as the average clustering

coefficient of all nodes with k links. For most networks, C(k) approximately

follows C(k) Bk,�1 indicating that the network has hierarchical features.1,17

Dyadicity (D) and heterophilicity (H), which are two network properties of

nodes, have been used to quantifying whether diseases in the same disease class

tend to cluster together in a network.8,18 Dyadicity D41 (Do1) suggests that

the diseases in a disease class tend to have more (fewer) links to each other than

randomly expected. For heterophilicity H41 (Ho1), the diseases in a disease

class have the tendency to connect more (less) loosely than expected randomly.

For details of the computation of D and H see Supplementary information.

Randomization of disease-gene associations
To obtain random controls for the topological features of eHDN, we randomly

shuffled the disease-gene associations while keeping unchanged both the

number of genes that a disorder is associated with and the number of disorders

that a gene is implicated in. From the randomized disease-gene associations, we

created a randomized eHDN by projecting it onto disease space.7 We generated

104 independent randomized samples.

Measuring the functional properties of a network
The maximum fraction of genes annotated to the same disease that have the

same GO (Gene Ontology)19 terms is defined as GO homogeneity. We

introduced KEGG (Kyoto Encyclopedia of Genes and Genomes)20 homogene-

ity and defined it as the maximum fraction of genes assigned to the same

disease that have the same KEGG terms. To reduce the bias, we removed the

corresponding disease pathways from KEGG when the KEGG homogeneity is

calculated for a certain disease. We also introduced subcellular location

homogeneity, which we defined as the maximum fraction of genes assigned

to the same disease that have the same subcellular location. Similarly, we used

tissue homogeneity to measure the maximum fraction of genes implicated in

the same disorders that are expressed in a specific tissue. The Pearson’s

correlation coefficient (PCC) and cosine correlation distance (CCD)21 for each

gene pair associated with the same disease were calculated to measure the

coexpression characteristic from different perspectives. The synchronized

expression property of the genes in a specific disease was characterized by

the average PCC and CCD. For details of the computation and randomization

of functional properties, see Supplementary information. We performed 104

independent randomization runs over all the defined functional properties.

Gene expression microarray data
To calculate the tissue homogeneity, coexpression and synchronized expression,

we used the microarray data that is available for normal human tissues.

We selected the GSE7307 and GSE3526 (Affymetrix U133 plus 2.0 arrays)

datasets from the Gene Expression Omnibus (GEO) repository.22 GSE7307

and GSE3526 contain 83 and 63 distinct tissue types referring to 20 080 and

17 906 human genes, respectively. To determine the tissue-selective genes, we

used the Significance Analysis of Microarrays (SAM) algorithm23 as described

previously.24 For details of the microarray data, see Supplementary information.

RESULTS

Construction of the eHDN
We obtained an association list, which contains 1336 diseases/pheno-
types and 1639 disease genes from GAD. All the diseases were classified

into 19 categories according to the Disease Class field of GAD. We
constructed a bipartite graph to represent the associations between
diseases and disease genes, and defined it as the GAD diseasome.
Using the GAD diseasome, we generated the oHDN projection of the
bipartite graph. In the oHDN, nodes represent diseases and two
diseases are connected to each other if they share at least one disease
gene. We then constructed the extended diseasome by combining the
disease gene information with the protein–protein interaction infor-
mation. We added, to the GAD diseasome, 332 genes that give
proteins that interact with at least two proteins encoded by genes
associated with a disorder, to generate the GAD-HPRD2 diseasome
(Supplementary Table S1). We used the newly obtained GAD-HPRD2
diseasome to generate the eHDN projection (Figure 1). For details of
the construction of eHDN see Supplementary information.

Using the PPI information, we obtained 1852 new disease-gene
links. For example, CDK5, which was linked to Alzheimer’s disease in
the eHDN, is an important regulator of brain development, neuronal
maturation and synaptic transmission, and participates in the Alzhei-
mer’s disease pathway. DLG4 was linked to Huntington’s disease
because of its interaction with the disease susceptibility genes, HTT,
GRIK1 and GRIK2. DLG4 is annotated to the GO biological process
terms, signal transduction, synaptic transmission and nervous system
development, and, in KEGG, to the Huntington’s disease pathway.
Thus, our eHDN will help researchers investigate whether the genes
that interact with the previously identified (real) disease genes and
that are involved in the same cell functions or pathways also influence
the occurrence of the disease.

A total of 1102 new connections were established between the
diseases in the eHDN (Supplementary Table S2). As an example,
type 2 diabetes mellitus (T2DM) is connected to kidney failure,
nasopharyngeal carcinoma and skin carcinoma. T2DM is a metabolic
disease, which is characterized by high blood glucose and related
insulin deficiency. Some researchers have indicated that end-stage
renal disease is one of the complications of T2DM.25 Chan, et al26 have
reported that cancer is emerging as an important cause of morbidity
and mortality for Asian patients with diabetes and at high risk of
cardiorenal complications. The new links among diseases offers mean-
ingful information for clinicians that will allow them to adopt early
strategies to tackle a number of complications in the treatment of
diseases.

Analysis of the topological features
The eHDN displays many links between both individual diseases and
disease classes (Figure 1). Of the 1336 diseases in eHDN, 1226 have at
least one edge with other diseases, suggesting that most diseases have
some common genetic origins with other diseases. A common
biological basis for some complex diseases has been reported earlier.27

By calculating the distribution of the number of genes associated with
a disorder, s, we found that most diseases have a few disease genes
(Figure 2a, the average of s was 4.75). However, the top 10 diseases
related to cancer, and metabolic, neurological, psychogenic, immune
and cardiovascular diseases, have dozens of disease genes.

Analysis of the degree and clustering coefficient
The degree (k) distribution of the eHDN approximates a power law
(Figure 2b), showing that eHDN is scale-free.1 This result also
indicates that most diseases are connected to only a few other diseases,
whereas a small number of diseases, including breast cancer (k¼584),
atherosclerosis (k¼519) and rheumatoid arthritis (k¼433), are linked
to many different diseases. Cancers are densely connected to each
other because multiple types of cancer have common genes, like TP53,
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TGFB1, APC and PTEN, associated with them.28–31 Most of the
common genes have the GO biological process terms, cell growth,
cell aging and apoptosis, cell cycle, DNA damage repair and embryonic
development, associated with them. For the eHDN, C(k) approxi-
mately follows C(k) Bk�1, indicating that it is a hierarchical network
(Figure 2c). The distribution of k and C(k) are both significantly
different from the random controls (P-value o2.2e�16). For details of
the analysis of the degree and clustering coefficient see Supplementary
information.

The modular structure of the eHDN
The dyadicity and heterophilicity values for the eHDN obtained using
19 disease classes illustrate that diseases in a specific-disease class are
clustered into densely connected groups (Supplementary Table S3).
There are, however, some differences for each disease class. The
immune diseases class, for example, has a high-dyadicity value,
suggesting a clearly modular structure. The high connectivity may
be attributed to the common susceptibility genes associated with
immune diseases, such as the major histocompatibility complex
(MHC), CTLA4 and PTPN22, that encode molecules involved in
the immune response.32,33 Some disease classes, for example, the
developmental diseases, are heterophilic indicating a tendency to
connect to different categories of diseases. One possible explanation
is that most developmental diseases influence multiple tissues or
physiological systems.8

Analysis of the functional properties
Several studies have shown that genes related to the same disease tend
to display functional relatedness.34,35 These functionally related genes
usually belong to common function modules, such as the coexpression
modules, cellular pathways, or molecular complexes.8,17 We analyzed
the functional relationships of genes associated with the same diseases,

by examining their functional annotation, tissue expression, coexpres-
sion and synchronized expression data.

GO and KEGG homogeneity analysis
Of the genes in the eHDN, 1923 were annotated in GO, and 1189 of
them had corresponding KEGG annotations. We measured the func-
tional relatedness of genes within the same disease by analyzing GO
and KEGG homogeneity. For the GO homogeneity, we not only
considered the GO annotations as a whole, but we also calculated
homogeneity separately for each branch of GO, biological process,
molecular function and cellular component. We found a significant
elevation of GO homogeneity in eHDN compared with the homo-
geneity in the random control. For the GO annotations, as a whole,
the P-value was o2.2e�16 (Figure 3a) and the P-values were smaller
than 2.2e�16 for all three branches. Similarly, we calculated KEGG
homogeneity, and found that 54% of the diseases show almost perfect
homogeneity compared with only 29% in the random control
(P-value o1.0e�5). Thus, we concluded that, based on the GO and
KEGG annotations, genes that belong to the same disease have similar
cellular and functional characteristics. For details of the GO and
KEGG homogeneity analysis see Supplementary information.

Subcellular location homogeneity analysis
The function of a protein and its role in a cell are closely correlated
with the subcellular location or environment of the protein.36

For example, drug target proteins and non-drug target proteins have
different subcellular locations.37 We introduced the subcellular
location homogeneity to measure the tendency of the protein products
of genes in a common disease to cluster in the same subcellular
location. We calculated the subcellular location homogeneity for
the eHDN and found that it differs significantly from the random
control (P-value o7e�07, Figure 3b), indicating that genes in

Figure 1 The expanded HDN (eHDN). In the eHDN, each node corresponds to a distinct disease and is colored based on the disease class to which it

belongs. The names of the 19 disease classes are shown on the right. Links between diseases in the same disease class are correspondingly colored and

links connecting different disease classes are gray. The size of each node is proportional to the number of genes associated with the corresponding disease,

and the thickness of the link is proportional to the number of genes shared by the diseases it connects. Diseases with 410 associated genes are named.
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the same disease share similar subcellular location. For details of
the subcellular location homogeneity analysis, see Supplementary
information.

Tissue homogeneity analysis
We selected two microarray datasets of healthy human tissue to
analyze tissue homogeneity. In all, 1925 and 1781 of the genes in

Figure 2 Analysis of the topological features in the eHDN. (a) The distribution of the number of genes associated with a disorder, (s). (b) Distribution of the

degree (k). (c) The distribution of the clustering coefficient follows C(k) Bk�1, a straight line of slope-1 on a log-log plot.

Figure 3 Analysis of the functional properties in the eHDN. (a) Distribution of the GO homogeneity of a disease. A random control with the same number of

genes chosen randomly is shown for comparison. (b) Distribution of the subcellular location homogeneity of a disease. A random control with the same

number of genes chosen randomly is shown for comparison. (c) As an example of GSE7307, the distribution of Pij values for the expression profiles of each

disease gene pair that belongs to the same disorder (solid line) and the control (dashed line), representing the PCC distribution between all gene pairs, is

shown. (d) For the GSE7307, the distribution of the average PCC (Pdisease) between the expression profiles of all the genes associated with the same disorder

(solid line) and the random control (dashed line) with the same number of genes chosen randomly is shown.
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the eHDN are expressed in GSE7307 and GSE3526, respectively. We
found that the tissue homogeneity coefficients are significantly higher
for the eHDN compared with the random controls in both GSE7307
(P-value o1.0e�5) and GSE3526 (P-value o4.9e�5). These results
show that genes associated with the same disease are generally
expressed in a specific tissue. For details of the tissue homogeneity
analysis, see Supplementary information.

Coexpression and synchronized expression analysis
We used the Pearson’s correlation coefficient (PCC) and cosine
correlation distance (CCD) to measure the coexpression and synchro-
nized expression features of genes assigned to the same disease. For the
GSE7307 data, the distribution of PCC and average PCC in the eHDN
are higher than in the random controls (P-value o1.0e�5, Figures 3c
and d). When CCD was used as an evaluation indicator, the expres-
sion correlation of the disease genes was more significant than was
indicated by the PCC. In the eHDN, 45 diseases with the average
PCC40.5 and CCDo0.1 display high synchronized expression char-
acteristic, for example, pulmonary hypertension (PCC¼0.902, CCD¼
0.007) and Gilbert syndrome (PCC¼0.823, CCD¼0.027). We carried
out the same analysis for the GSE3526 data and obtained similar
results. These results indicated that disease genes that are implicated in
the same disease, display high expression profile correlation.

In summary, by analyzing the properties of the eHDN we conclude
that: (1) there is a common genetic origin for most diseases, especially
for complex diseases; (2) most diseases have only a few disease genes,
whereas a small number of diseases are related to dozens of genes;
(3) a power law degree distribution shows that the eHDN is scale-free;
(4) the majority of diseases have links to only a few diseases, whereas a
handful of diseases are connected to many different diseases; (5) the
eHDN is hierarchical; (6) diseases in a specific disease class have a
tendency to cluster into densely connected groups; and (7) genes
associated with the same disease tend to: (i) share GO and KEGG
terms, (ii) have similar subcellular location, (iii) be expressed in a
specific tissue, (iv) exhibit high-coexpression levels, and (v) display
synchronized expression characteristic.

To illustrate the credibility of our eHDN, we carried out a
comparative analysis of eHDN and oHDN. We found that the
eHDN is highly consistent with the oHDN over all topological and
functional characteristics. To further demonstrate the reliability of
eHDN, we eliminated the real disease genes from the GAD-HPRD2
diseasome and obtained the HPRD2 diseasome and its HDN projec-
tion. We then analyzed the topological and functional properties of the
HDN projection and found them to be consistent with the oHDN
(Supplementary information). This result, to some extent, confirms
that the properties of the HDN projection obtained by eliminating the
true disease genes from GAD-HPRD2 diseasome are similar to the
oHDN. Therefore, we feel confident that our eHDN constructed by
combining disease gene information with protein–protein interaction
information is reliable.

DISCUSSION

The integration analysis of various ‘omic’ data has become increasingly
widespread because each approach has intrinsic caveats.2 For instance,
important information may be missing because of false negatives or
misleading because of false positives. Therefore, the data emerging
from any single omic approach should be cautiously interpreted
because it only provides crude indications of gene or protein
function.38,39 Some studies have indicated that these limitations
can be mitigated by integrating two or more omic datasets.2,39

To explore disease–disease relationships from a functional perspective,

we constructed the eHDN by integrating phenome and interactome
information.

Here, the reasons for adding genes that give proteins interacting
with at least two proteins encoded by genes associated with a disorder,
to expand the oHDN are discussed. We first obtained GAD-HPRD1
diseasome by added 5175 genes that encoded proteins interacting with
at least one proteins encoded by genes associated with a particular
disease, to GAD diseasome. We analyzed the topological and func-
tional properties of the HDN projection generated from the GAD-
HPRD1 diseasome and found that it was inconsistent with the oHDN.
To test whether the inconsistency arose from the genes that we added
to expand GAD diseasome, we separately removed the real disease
genes from GAD-HPRD1 diseasome and GAD-HPRD2 diseasome to
obtain HPRD1 diseasome and HPRD2 diseasome, respectively. We
then analyzed the topological and functional properties of the HDN
projections generated from the HPRD1 diseasome and HPRD2
diseasome, and found that while the latter is consistent with the
oHDN, the former is not. Thus, we concluded that genes that were
added to obtain GAD-HPRD1 diseasome may affect its overall
properties. By comparing the two expanded networks, we concluded
that GAD-HPRD2 diseasome is more reasonable.

Generally speaking, the biological processes of living cells are
attributable to complex interactions between multiple gene pro-
ducts.1,2 Evidence from many resources has shown that diseases
with overlapping clinical phenotypes are caused by mutations in
functionally related genes34 and that protein–protein interactions are
the strongest manifestation of a functional relationship between
disease genes.13 Applying a network model to represent associations
between diseases has proven to be an effective approach for revealing
the relationship among diseases on a large scale.7,8 Our study consi-
dered the interactions among gene products, and measured the
topological and functional properties of eHDN from a network-
based perspective. We discovered new links among diseases by
comparing the eHDN with oHDN. The new links among diseases
will provide some meaningful information for clinicians and medical
researchers that may help them to understand the relation between
diseases. Although 35 000 interactions between 9303 proteins were
used in this study, the actual number of interactions between these
proteins will be much greater. In addition, the disease phenotypic data
are limited at present. With increasing quantity and quality of
interaction and phenotypic data, the reliability and utility of eHDN
will be further improved.
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